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Abstract
While quantum mechanics is a research field of physics with fundamental questions
about its nature still pending, its possible applications in complex computation or
secure communication are already being investigated. This thesis is based on an ex-
periment where long-distance entanglement between two single rubidium-87 atoms,
separated by 400m, can be generated and used to reject local hidden variable theo-
ries through a loophole-free Bell test and to demonstrate key ingredients for future
quantum networks.

The main goal of this thesis was to investigate, using fast online machine learning
techniques, if, how, and to what extent two major aspects of the experiment can be
improved. First, the initial state preparation of the atom via optical pumping, that
is necessary for the lambda level scheme that creates atom-photon-entanglement as
a first step in the atom-atom-entanglement procedure is studied. Second, we look
into the readout process of the atomic state that consists of a Zeeman-level selec-
tive ionization scheme. Both processes rely on the interaction between the atom
and external light fields. Their respective shape can be controlled by acousto-optic
modulators which we will operate using an arbitrary waveform generator.

For finding the best way of steering the two processes, we have developed on-
line optimizers that employ machine learning techniques, in particular differential
evolution and Gaussian process regression. The optimizers are not only capable of
global optimization and work well even in noisy environments, but are also capable
of generating statistical models for the processes that help us understand the re-
lation between input parameters to the experiment and the returned experimental
performance.
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1. Introduction
Quantum mechanics (QM) is a fundamental theory in physics, whose development
began around the turn of the 20th century when it was first realized that classi-
cal mechanics would fail on the (sub)atomic scale [1]. Notable early problems that
could only be solved by requiring the quantization of nature at the microscopic level
were Max Planck’s radiation law in 1900 [2, 3] as well as Albert Einstein’s explana-
tion of the photo-electric effect in 1905 [4]. One of the defining features quantum
systems is entanglement, a term derived from the German Verschränkung. It is
highly non-classical, as we will see soon, is used in quantum information processing
and communication [5], and has applications in lithography and metrology [6]. If
a system of particles is entangled, it is impossible to describe its constituents in-
dependently, which has a profound effect on the correlations of measurements with
entangled particles. Some claimed that ”the quantum mechanical description of
physical reality [...] is not complete” [7] as phenomena resulting from entanglement
seemed to violate local-realism. As a consequence, an almost three-decades long
debate about the possibility and necessity of extending QM to a local hidden vari-
able (LHV) theory began [8, 9]. Eventually, John Bell succeeded in showing that in
certain experimental scenarios involving pairs of entangled particles LHV theories
would predict different outcomes than quantum theory [10]. Bell’s theorem can be
formulated as an inequality whose most prominent form is the CHSH inequality [11].

Experimental test of Bell’s theorem need to fulfill a set of assumptions, that oth-
erwise turn into loopholes for LHVs. Early works by Freedman and Clauser [12] in
1972 and Aspect, Dalibard, and Roger [13, 14] in 1982 left two major loopholes open,
that were closed individually by Weihs et al. (1998) and Rowe et al. (2001). Closing
both loopholes in one experiment was first accomplished in Delft [15], Vienna [16],
and Boulder [17] as well as by Wenjamin Rosenfeld, Harald Weinfurter et al. at
LMU Munich [18]. The latter experiment employed heralded, long-distance entan-
glement over almost 400m of two single rubidium-87 atoms. It can also serve as a
demonstrator for quantum technologies like quantum network links and quantum
cryptography, in particular device independent quantum key distribution (DIQKD).
The experiment creates entanglement between the two individually trapped atoms
through a two-step process. First, the hyperfine state of each atom is entangled
with the polarization of a photon. Then, the entanglement is swapped onto the
two atoms by performing a joint Bell state measurement (BSM) on the two pho-
tons. This thesis will investigate two aspects of the experiment: the initial state
preparation, that is needed before atom-photon entanglement can be generated via
spontaneous decay, and the atomic state readout, that is required to verify the
atom-photon or atom-atom-entanglement. In this thesis we will explore if and how,
by modifying the involved laser fields, it is possible to improve the performance of
initial state preparation and readout. In particular, we investigate if this can be
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1. Introduction

achieved by optimizing the radio-frequency (RF) input of acousto-optic modulators
(AOM) using an arbitrary waveform generator.

AOMs are widely used across quantum optics experiments. They offer fast and
efficient switching with rates of several MHz. AOMs have been employed in real-
time holographic display [19], synthesized aperture radar [20], or for performing
fast, high-fidelity quantum state tomography [21]. Driving an AOM simultaneously
with multiple RF frequencies can be interesting on a technical level, for example for
improving the pointing stability of the output beam during intensity ramps [22]. It
also facilitates the generation of defect-free 1D [23] and 2D [24] arrays of cold atoms.
These methods provide a pathway towards a programmable quantum simulator that
could be used to explore quantum many-body phenomena [25].

For the purpose of optimizing the laser fields in a closed-loop configuration we
will employ machine learning (ML) techniques, in particular Gaussian process re-
gression and differential evolution. ML is a branch of artificial intelligence that
produces algorithms capable of improving their performance over time by studying
data rather than being explicitly programmed to do so. Today, ML has a prominent
role in society and industry as well as science. ML algorithms have gained traction
in physical research in recent years [26], with applications in statistical physics [27],
cosmology [28] and more. ML can be used for quantum optical control [29], both
in theory [30, 31] or experiment [32, 33]. Our optimization scheme is based on the
open-source M-LOOP package which has been developed specifically for the use in
scientific experiments and has previously demonstrated the optimized production of
Bose-Einstein-condensates [34].

This thesis will be structured as follows: Chapter 2 describes the quantum me-
chanical concepts behind and experimental methods and setup used for the creation
of (heralded) atom-atom entanglement. Chapter 3 introduced Gaussian process re-
gression and differential evolution, the algorithms used in the optimizations of the
initial state preparation and readout process, that are presented in chapter 4.
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2. Entangling Single Rubidium
Atoms

2.1. Quantum Mechanics and Entangled Two
Qubit Systems

The mathematical framework for quantum mechanics was created in the mid-1920s
when matrix mechanics was first introduced by Heisenberg [35] and later fully for-
mulated by Born, Jordan and Heisenberg [36]. Its full description would go beyond
the scope of this thesis but is readily available for the interested reader for example
in books by Sakurai [37] or Griffiths [38]. Nevertheless, I will attempt to summarize
some key aspects of the the above mentioned works.

2.1.1. Quantum States and Density Matrices
Mathematically, in quantum mechanics a physical system is described within a
Hilbert space H of dimension D. D can be either finite or infinite depending on
the nature of the physical system at hand. The particular state of systems might be
represented by a single complex vector in H, that is either one single basis state or
a superposition of multiple basis states, in which case it is referred to as pure. This
principle of superposition sets quantum systems apart from classical states.It is best
manifested in the famous double-slit experiment. While for classical particles we
can reconstruct, which slit the particle has passed before it hit the detection screen,
this information cannot be known, even in principle, in quantum mechanics [39].

For the more general case of a statistical mixture of more than one pure quantum
state, one often uses the density operator or density matrix formalism to describe
the system. Following the notation proposed by Dirac in 1939 [40], this thesis will
denote pure states as either ket |φ〉 or bra 〈φ| living in H or its dual space H ∗,
respectively. A density operator takes the form of a sum over its 1 ≤ N ≤ dim(H)
constituent states,

ρ =
N
∑

i=1

pi |φi〉 〈φi| , (2.1)

where the coefficients pi ≤ 1 are the probabilities to find the systems in state |φi〉.
Their sum and thus the trace of ρ needs to be equal to one. For the special case
of N = 1, ρ represents a pure state. While the concrete representation of ρ is not
unique, it is per definition Hermitian, thus diagonalizable and can be, in theory,
brought into a form as in equation 2.1.
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2. Entangling Single Rubidium Atoms

2.1.2. Two Level Systems
Systems with two possible distinct, i.e. orthogonal, internal states are of particular
interest for various applications in quantum technologies. They are referred to as
quantum bits or just qubits. In our particular setup we use two hyperfine states of
the ground state of Rubidium 87 to encode a qubit as described in section 2.3.1. The
underlying Hamiltonian of the system has two orthogonal eigenstates, denoted |0〉
and |1〉, respectively. An arbitrary state |ψ〉 in the two-dimensional Hilbert space
H2 can be expressed (unambiguously up to an arbitrary global phase factor) as
superposition of the two basis states

|ψ〉 = α |0〉 + β |1〉 ∈ H2, (2.2)

where the coefficients or amplitudes α, β ∈ C need to fulfill the normalization con-
dition |α|2 + |β|2 = 1. Thus, we parameterize |ψ〉 by the two angles θ ∈ [0, π] and
ϕ ∈ [0, 2π],

|ψ〉 = cos(θ/2) |0〉 + eiϕ sin(θ/2) |1〉 . (2.3)
This lets us express a given state as a unique three dimensional vector with unit

length according to




u
v
w



 =





sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)



 . (2.4)

All possible superposition states form the so called Bloch sphere which is shown in
figure 2.1 with some important states. Note that the Bloch sphere is mathematically
equivalent to the Poincaré sphere which is often used to represent the polarization
states of electromagnetic waves [41].

While pure states of a two-level system occupy the surface of the Bloch sphere,
mixed states lie within it. Generally, for a given state, pure or mixed, described by
the 2× 2 density matrix ρ one finds the representation [42]





u
v
w



 =





2Re(ρ10)
2 Im(ρ10)
ρ00 − ρ11



 , (2.5)

where ρij with i, j = 0, 1 are the components of the density matrix.

2.1.3. Entanglement and Bell’s Inequality
Quantum states that describe systems of multiple quantum particles can have an-
other strictly non-classical property: entanglement. Mathematically, an entangled
state can be best understood in contrast to its counter part, product states. Product
states of N particles can be written in the form

|ψproduct〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN〉 (2.6)
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2. Entangling Single Rubidium Atoms

|ψ〉

ϕ

θ

~u ≡ |↑〉x

~v ≡ |↑〉y

~w ≡ |↑〉z ≡ |0〉A

|↓〉z ≡ |1〉A

(a) Bloch sphere

|D〉

|A〉

|R〉|L〉

|H〉 ≡ |1〉P

|V 〉 ≡ |0〉P

(b) Poincaré sphere

Figure 2.1.: Bloch sphere (a): The state |ψ〉 (blue) that is fully described by
the polar angle ϕ and the azimuthal angle θ. Also indicated are the Bloch sphere
representations of the atomic qubit in the three bases, relevant for later section.
Poincaré sphere (b): the six major polarizations of the photon are indicated.

Any state that cannot be decomposed as in 2.6 is said to be entangled. While
this definition is simple and straightforward, it is in general difficult to determine
whether a given (mixed) state is entangled or not. We will now restrict ourselves to
the discussion of entanglement in pure two qubit systems. While it is the simplest
case of entanglement, it still captures many important concepts. A more general
discussion can be found in [43].

Any state within the 2 × 2 = 4 dimensional Hilbert space of two qubits (basis
states |0〉 and |1〉) can be written as

|ψ〉 = c00 |00〉 + c01 |01〉 + c10 |10〉 + c11 |11〉 (2.7)

where the amplitudes cij are properly normalized and we used the shorthand nota-
tion |ij〉 ≡ |i〉 ⊗ |j〉. The orthonormal basis {|00〉 , |01〉 , |10〉 , |11〉} can be linearily
transformed into the so called Bell basis

∣

∣Φ+
〉

=
1√
2
(|00〉 + |11〉) (2.8a)

∣

∣Φ−〉 =
1√
2
(|00〉 − |11〉) (2.8b)

∣

∣Ψ+
〉

=
1√
2
(|01〉 + |10〉) (2.8c)

∣

∣Ψ−〉 =
1√
2
(|01〉 − |10〉) (2.8d)

Those states are called maximally entangled, meaning that their von Neumann
entropy S = −Tr{ρ ln ρ} takes the maximum value of S = 2 ln 2 for states in the
four dimensions [44].

Entanglement has been at the center of many discussions about the nature of
QM. The correlation between the measurement results of the components of an
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2. Entangling Single Rubidium Atoms

entangled system are in contradiction to what is possible for classical measurement
results and have led to the proposal of extending QM to a local hidden variable
(LHV) theory. Bell’s theorem of 1964 [10] put forward a criterion for testing if
nature was described by such a theory. It is formulated as an inequality which is
fulfilled by all LHV theories but violated by QM. It was later adapted by Clauser,
Horne, Shimony, and Holt [11] whose inequality can be testes more easily in in
experiments and it’s violation can confirm that nature is not described by LHVs. It
considers an abstract scenario in which two observers, often called Alice and Bob,
each receive a qubit from a pair of qubits emitted by a source. Alice (Bob) has
access to a device that can perform two different measurements depending on the
input A (B) which can take the value 0 or 1 and gives an output X (Y) that is either
+1 or -1. The experiment is evaluated based on the value of SCHSH defined as

SCHSH := |E1,1 − E1,0|+ |E0,1 − E0,0|, (2.9)

where the correlators Ea,b have the form

Ea,b =
NX=Y

a,b −NX 6=Y
a,b

NX=Y
a,b +NX 6=Y

a,b

(2.10)

NX=Y
a,b and NX 6=Y

a,b denote the number of events with correlated and anti-correlated
outputs, respectively, for inputs A = a and B = b.

It can be shown that under a set of four assumptions (local measurements, inde-
pendent measurements, independent inputs, unpredictable inputs1) and the correct
measurements outlined in table Table 2.1 that SCHSH has different bounds for LHV
theories and quantum mechanics, namely

SCHSH ≤ 2 for LHV theories (2.11a)
and SCHSH = 2

√
2 for QM considering

∣

∣Ψ−〉. (2.11b)

For an experimental test of the CHSH inequality, the four assumptions from above
turn in requirements that need to be guaranteed through the experimental design.
Furthermore, each assumption opens up a ”loophole” for local-realism to be true,
despite a measured SCHSH > 2. Those loopholes are as follows:

1. Locality loophole
No communication between Alice and Bob can be allowed and the measure-
ment process must take place outside each other’s light cone.

2. Freedom of choice loophole
The inputs for Alice and Bob’s measurements must be independent and ran-

1details found in [45, section 3.2.1]
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2. Entangling Single Rubidium Atoms

input
1 0

Alice σz σx
Bob 1√

2
(σz + σx)

1√
2
(σz − σx)

(a) Measurement operators.

A = 1 A = 0

B = 1 E1,1 = −1/
√
2 E0,1 = −1/

√
2

B = 0 E1,0 = −1/
√
2 E0,0 = +1/

√
2

(b) Bell correlators.

Table 2.1.: Scenario for a measurement of the CHSH inequality. Inputs 1 and 0
lead to measurement of the operators shown in (a). Considering the singlet state
|Ψ−〉 from eq. 2.8d leads to the correlator in (b)
.

dom. For this typically a random number generator for each side of the exper-
iment is employed, which in turn requires assumptions about the randomness
of their outputs.

3. Detection loophole
Implicitly the assumption that each created pair leads to one measurement
outcome was made. In reality, detection efficiencies are smaller than 1. It can
be shown that there exists a lower bound for the necessary detection efficiency
depending on the experiment in question. For experiments with heralded
entanglement, this bound can be shown to be 2/3 for each side.

4. Memory loophole
Naturally, a given experiment can only produce finite statistics. One often as-
sumes for the statistical analysis that the results or a repeated experiment are
independent and identically distributed, which could be exploited by a LHV
where the measurement outcomes depend on previous inputs and results [46].
The loophole can be addressed by a reformulation of the correlators [46] or by
employing a game formalism [47, 48]

An experiment that succeeds in closing all four loophole at once is called loophole-
free. One such experiment was the Bell test with widely separated, entangled atom-
atom-pairs, that was conducted at LMU in 2016 [18]. This thesis presents work that
has been done on the setup that was used for this experiment.

2.1.4. Time Evolution of a Quantum Mechanical System
After having discussed how physical systems are represented in quantum mechanics
(sec. 2.1.1) it is natural to ask how such systems will evolve over time. This question
was first investigated by Erwin Schrödinger [49], leading to the formulation of one
of the most famous equations in physics, the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 (2.12)

7



2. Entangling Single Rubidium Atoms

which completely describes the (necessarily) unitary time-evolution of a pure state
|Ψ(t)〉 governed by the Hermitian Hamiltonian H. H(t) itself might, in general, be
time-dependent. Equation 2.12 can be generalized to also include mixed systems [44]

i~
∂

∂t
ρ(t) = [H(t), ρ(t)] := H(t)ρ(t)− ρ(t)H(t) (2.13)

where we defined the commutator [·, ·]. Equation 2.13 is known as the Von-Neumann-
or Von-Neumann-Liouville equation.

Nevertheless, equations 2.12 and 2.13 are only able to capture unitary dynamics,
where phase coherence is maintained at all times. This would require a completely
isolated system, a situation that can only be an approximation for any real phys-
ical system. More realistically, interactions between a system and its surrounding
will dissipate the system’s energy and lead to spontaneous decays and randomized
phases. Such systems are referred to as open quantum systems in contrast to closed
quantum systems, that can be described by the Schrödinger and Von-Neumann-
Liouville equations.

For open systems the situation is more complex. The most general Markovian
approach to describe an open system living in the N -dimensional Hilbert space
HN , leads to the Lindblad (or Lindblad-Gorini-Kossakowski-Sudarshan) master
equation for the system’s density matrix [50]

∂

∂t
ρ(t) =

−i
~

[H(t), ρ(t)] +
N2−1
∑

m,n=1

hmn

(

Anρ(t)A
†
m − 1

2
{A†

mAn, ρ(t)}
)

(2.14)

where Am form a arbitrary orthonormal basis (ONB) of the Hilbert-Schmidt oper-
ators on HN and where AN2 is ∝ 1. The positive semi-definite coefficient matrix h
describes the incoherent dynamics of the system. Equation 2.14 may be diagonalized
to yield

∂

∂t
ρ(t) =

−i
~

[H(t), ρ(t)] +
N
∑

i=1

Liρ(t)L
†
i −

1

2
{L†

iLi, ρ(t)} ≡ Lρ(t), (2.15)

where Li are the jump operators.

When dealing with systems whose incoherent dynamics can solely be attributed to
spontaneous decays, another form of the Lindblad equation can be used [51] which
is particularly useful for numerical implementations, namely

∂

∂t
ρ(t) =

−i
~

[H(t), ρ(t)] +
1

2

N
∑

i,j=1

Γij (|i〉〈j| ρ(t) |j〉〈i| − {|j〉〈j| , ρ(t)}) , (2.16)

8



2. Entangling Single Rubidium Atoms

where Γij is the decay rate for decays from |i〉 to |j〉.

Both equations 2.13 and 2.15 define a system of N2 partial differential equation
of which a number can be neglected due to the hermiticity ρij = ρ∗ji and trace of the
density matrix, leaving N2 − N2−N

2
− 1 equations to solve. Only for a small number

of simple systems and/or by using sophisticated techniques like damping bases [52],
this can be done analytically. More often it is necessary to rely on numerical ap-
proximations, as was done for simulations of the optical pumping (sec. 2.4.1) and
readout process (sec. 2.4.3). The ”quantum jump model” [53] describing the excita-
tion process (see sec. 4.2.1 also is based on 2.16.

2.2. Entanglement of Distant Particles
Entanglement between two widely separated 87Rb atoms lies at the heart of our
experiment. While it would be in theory possible to separate the atoms after having
generated entanglement between them, it is more practical to keep their positions
fixed and perform the entanglement in two steps: First we generate entanglement
between an atom and a photon on each side and then bring the photons together
and measure them jointly, whereby we transfer the entanglement to create atom-
atom-entanglement. The two steps will be explained in sections 2.2.1 and 2.2.2,
respectively.

2.2.1. Atom-Photon-Entanglement
In our experiment entanglement between an atom and a photon is generated through
a lambda level scheme. Lambda level schemes have wide application in quantum
technologies and can be employed for coherent state transfer [54, 55], electromagnetically-
induced transparency (EIT) [56], or, as in our case, hybrid entanglement to name
just a few.

A Lambda level scheme consist of at least two (ground) levels that are each dipole-
connected to a single (excited) level, but not to each other [56]. As the excited state
is higher in energy, the three levels and the possible transitions form the Greek letter
lambda (Λ) (e.g. the σ-transitions in fig. 2.2), hence the name. In our experiment,
our excited state |F ′ = 0,mF = 0〉 can decay into the stable, three-fold degenerate
ground state |F = 0,mF = 0,±1〉 by emission of a single photon. It should be noted
that these states are part of a larger manifold that can, however, be neglected here.
Each of the three possible decay channels for |F ′ = 0,mF ′ = 0〉 leads to a distinct
combination of the polarization state of the emitted photon and the angular mo-
mentum in the ground state |F = 0,mF 〉 as shown in figure 2.2.

The decay is governed by the the linewidth Γ of the excited level. As we deal with
a stable ground state, for long enough times (t >> τ , where τ = 1/Γ is the lifetime

9



2. Entangling Single Rubidium Atoms

of the excited state) we can approximate that the entire system is in a superposition
state of the three ground states and the state of the emitted photon

|Ψtot〉AP =
1√
3
(
∣

∣Σ+
〉

P
⊗ |1,−1〉A + |Π〉P ⊗ |1, 0〉A +

∣

∣Σ−〉
P
⊗ |1,+1〉A), (2.17)

where we neglected any remaining population in the excited state2. This represents a
well defined quantum state with entanglement between the projection of the angular
momentum of the particle onto the quantization axis and the polarization mode
(|Σ±〉 , |Π〉) of the emitted photon. The polarization mode can be decomposed into
the spin eigenstate (σ±, π) and spatial and frequency modes (|θ, ω〉 of the photon [57],
yielding

∣

∣Σ±〉 =

√

3

16π
(1 + cos2 θ)

∣

∣σ±〉 ⊗
∑

θ,ω

gω |ω, θ〉 , (2.18a)

and |Π〉 =
√

3

8π
sin θ |π〉 ⊗

∑

θ,ω

gω |ω, θ〉 . (2.18b)

If we now opt for collecting the emitted photons along the quantization axis where
θ = 0 we can eliminate the case where mF = 0 and the photon is π-polarized. As the

2corresponding to the infinite time limit t→ ∞

|1, 0〉|1,−1〉 |1,+1〉

|0, 0〉

F = 1

F ′ = 0

πσ+ σ−

Figure 2.2.: Spontaneous decay of
a quantum system from the excited
state with vanishing angular momentum
(F ′ = 0) into a ground state with to-
tal angular momentum F = 1 and thus
three possible projections mF = 0,±1
along the quantization axis.

z
θ

π

σ
±

Figure 2.3.: Emission characteristics
for π- and σ±-polarized light, repre-
sented by the square of the expressions
in 2.18. The emission is rotationally
symmetric around the quantization axis.
Due to the transverse nature of EMR,
emission of π-polarized light along the
quantization axis is forbidden.
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2. Entangling Single Rubidium Atoms

energy difference of |1,+1〉 and |1,−1〉 is much smaller than the energy-uncertainty
of the excited state, we finally arrive at the expression for a maximally entangled
two-qubit state3, formed of a circularly polarized photon and an atom which we
know from section 2.1.3:

|Ψ〉AP =
1√
2

(∣

∣σ+
〉

P
|1,−1〉A +

∣

∣σ−〉
P
|1,+1〉A

)

(2.19)

2.2.2. Atom-Atom-Entanglement
After having successfully created entanglement between an atom and a photon on
each side, one is ready for the next step: entangling the two atoms via the entangle-
ment swapping process. Experimentally, by means of a joint measurement of the two
photons, this process enables to swap the entanglement from the two atom-photon
pairs to a combined state of the two atoms [53, 58–60].

2.2.2a. Heralded Entanglement via Entanglement Swapping

We will consider two entangled qubit pairs

|Ψ〉AP,1(2) =
1√
2

(

|1〉A,1(2) |0〉P,1(2) + |0〉A,1(2) |1〉AP,1(2)

)

(2.20)

where the subscripts denote the particle A (P) for atom (photon) and pair 1 (2) .
This is equivalent to equation 2.19, with the more general notation |0〉 and |1〉 for
that atomic and photonic state.

The combined state

|Ψ〉all = |Ψ〉AP,1 |Ψ〉AP,2

=
1

2

(

|10〉AP,1 |10〉AP,2 + |10〉AP,1 |01〉AP,2 + |10〉AP,1 |01〉AP,2 + |01〉AP,1 |01〉AP,2

)

(2.21)

can be decomposed into Bell states (2.8) of two photons and two atoms to yield

|Ψ〉all =
∣

∣Ψ+
〉

AA

∣

∣Ψ+
〉

PP
+
∣

∣Ψ−〉
AA

∣

∣Ψ−〉
PP

+
∣

∣Φ+
〉

AA

∣

∣Φ+
〉

PP
+
∣

∣Φ−〉
AA

∣

∣Φ−〉
PP
.

(2.22)
Projection of the combined state onto a photonic Bell state

IAA ⊗ |ΨBell〉 〈ΨBell|PP |Ψ〉all
results in an entangled atom-atom-pair in the same state. Therefore, the outcome
of a BSM of the two photons will determine the entangled state of the two photons.

3we will adopted the simpler notation |ψi〉 ⊗ |ψj〉 ≡ |ψi〉 |ψj〉 from now on
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2. Entangling Single Rubidium Atoms

The detection of the photons therefore heralds the entanglement between the atoms.

2.2.2b. Photonic Bell-State Measurement

One established method for a BSM on two photons employs a two-photon-
interference on a beamsplitter [59, 61]. What happens when two indistinguishable
single photons each impinging on a different input port of a beamsplitter is known
as the Hong-Ou-Mandel effect [62]. This section will briefly introduce the effect
with the additional polarisation degree of freedom taken into account, with a more
detailed discussion in [45].

The experimental setup for the BSM (fig. 2.4) is simple. Two photons, each
entangled with an atom in one of the traps, impinge onto two orthogonal input
ports of a (perfect, polarization independent 50/50) beamsplitter (BS). Behind each
output port sits polarization dependent beamsplitter (PBS) that separates V and
H polarization. A single-photon detector is placed after each relevant PBS output.

The BSM only considers the photonic part of the entangled state |Ψ〉all. It is
easy to see that performing the partial trace over the atomic part results in mixed
state for the two photons, with equal population in all four Bell states. Using the
Fock state formalism (second quantization) [63] we can express the transformation
of these input states as
∣

∣Φ±〉
in
→ 1√

2

(

b̂†1,H b̂
†
1,H ± b̂†1,V b̂

†
1,V − b̂†2,H b̂

†
2,H ∓ b̂†2,V b̂

†
2,V

)

|0, 0〉out , (2.23a)
∣

∣Ψ+
〉

in
→ 1√

2

(

b̂†1,H b̂
†
1,V − b̂†2,H b̂

†
2,V

)

|0, 0〉out , and (2.23b)
∣

∣Ψ+
〉

in
→ 1√

2

(

b̂†1,H b̂
†
2,V − b̂†1,V b̂

†
2,H

)

|0, 0〉out . (2.23c)

b̂†i,P is the creation operator for a photon at output port iP in figure 2.4 and
|0, 0〉out is the vacuum state on the output side. Please not that here we refer to
the Fock state or occupation number state with zero particles in each output port
and not the qubit state ”0” as in the previous and following sections.

A detailed description including possible imperfections can be found in [45, 53].
We will observe four different signatures with the single-photon detectors:

1. one photon in 1V and 2H or 1H and 2V : projection onto |Ψ−〉

2. one photon in 1V and 1H or 2H and 2V : projection onto |Ψ+〉

3. both photons on one detector: projection onto |Φ±〉 with no chance of distin-
guishing between the two

12



2. Entangling Single Rubidium Atoms

BS

PBS

PBS

in2

in1

out2

out1

1
V

1
H

2
H

2
V

Figure 2.4.: Photonic BSM sheme: The two photons enter a beamsplitter (BS)
through different input ports. Each output is split by into H and V by a polarizing
beamsplitter (PBS), leading to four different outputs on single photon detectors
(1H , 1V , 2H , and 2V ).

4. one photon in 1H and 2H or 1V and 2V : only occurs due to experimental
imperfections

Only signatures 1 and 2 herald the measurement of the photonic state onto |Ψ±〉in,
therefore projecting |Ψ〉all onto |Ψ±〉PP |Ψ±〉AA which we can express in terms of the
polarization P ∈ {H, V } and the atomic spin in x-direction sx ∈ {↑, ↓} as

∣

∣Ψ±〉
PP

=
1√
2
(|HV 〉 ± |V H〉) and

∣

∣Ψ±〉
AA

=
1√
2
(|↓↑〉xx ± |↑↓〉xx) . (2.24)

For a real experimental implementation of such measurement there are various
error sources that lead to a lower fidelity of the entangled atom-atom-state. First,
imperfections of the beamsplitters, such as deviations from the 50/50 splitting ratio or
partial polarization dependence for the first beamsplitter, will lead to errors in the
measurement of |Ψ±〉 and an effective mixing of the Bell states as described in [60].
Second, the two photons might be not indistinguishable due to imperfect spectral,
temporal, or spatial overlap. The former two have to be ensured by the excitation
and emission process (sec. 2.4.2) of the respective photons, while the latter depends
on the BSM setup.
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2. Entangling Single Rubidium Atoms

F = 1

F = 2
52S1/2 |1,+1〉|1,−1〉

F ′ = 1

F ′ = 2
52P1/2

F ′′ = 0

F ′′ = 1

F ′′ = 2

F ′′ = 3

52P3/2

ionization threshold

-3 -2 -1 0 +1 +2 +3 mF

D2: 780 nm

D1: 795 nm

474 nm 267 MHz

157 MHz

72 MHz

817 MHz

6.8 GHz

Figure 2.5.: Hyper-fine structure of 87Rb as found in [64]. The ground state 52S1/2

is split into two (F = 1 and F = 2), the excited states 52P1/2 and 52P3/2 into two
(F ′ = 1, 2) and four (F ′′ = 0, 1, 2, 3) hyper-fine levels, respectively. All hyper-fine
states are further split into 2F + 1 Zeeman substates labeled by mF . Transition
wavelengths between the ground and excited state are 795 nm and 780 nm for the
D2 (52S1/2 ↔ 52P1/2) and D1 (52S1/2 ↔ 52P3/2) transition. The atomic qubit is
encoded in the two substates |F = 1,mF = ±1〉 of the atomic ground state 52S1/2,
also denoted |1,+1〉 ≡ |↑〉z and |1,+1〉 ≡ |↓〉z.

2.3. Trapping Single Atoms
After having introduced the theoretical steps to create atom-atom entanglement
through a lambda scheme followed by entanglement swapping, we will turn our
attention to the technical details on how to trap and control the single atoms.

2.3.1. Rubidium 87
In order to perform experiments generating heralded entanglement between distant
particles, one needs a suitable quantum system that:

1. allows to distribute entanglement between the stationary qubits

2. has the possibility for a high fidelity readout

3. offers sufficiently long coherence times.
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2. Entangling Single Rubidium Atoms

The candidate of choice for our experiment is a single atom of the alkali metal
rubidium. Alkali metals are often used in quantum optics experiments as they
hold the unique feature of having a single valence electron. Rubidium has two
naturally occurring, long lived or stable isotopes, 85Rb (I = 5/2; stable) and 87Rb
(I = 3/2; τ1/2 = 4.88× 1010 yr), of which the latter is chosen for our experiment as
its hyper-fine structure (fig. 2.5) suit the experimental requirements, in particular
the possibility for implementing a lambda level scheme. Generally, the physical
constants about 87Rb in this thesis will be identical to those found in [64], unless
specified explicitly.

The qubit is encoded in the highlighted degenerate mF = ±1 Zeeman substates
of the 52S1/2, F = 1 ground state, with the lambda scheme (sec. 2.2.1) implemented
between these states and the 52P3/2, F

′′ = 0,mF = 0 excited state, entangling the
Zeeman substate with the polarization of the emitted photon. An efficient readout
is possible as the two Zeeman states can be addressed individually by appropriately
polarized light (sec. 2.4.3). Unfortunately those states are particularly susceptible
to magnetic fields, heavily affecting the coherence properties of the atomic state.
Proposed solutions for this problem are a standing wave dipole trap [65] and a
Raman state transfer of one superposition state the 52S1/2, F = 2 manifold [66].

Convention for Denoting Atomic States

Throughout the rest of this thesis we will use the following convention for the atomic
states: F = X, F ′ = X, and F ′′ = X will refer to states with hyperfine number
X in the ground 52S1/2 level, and the excited 52P1/2 and 52P3/2 levels, respectively.
The associated Zeeman substates (mX) will be denoted |(F =)X, (mF =) = mX〉,
|F ′ = X, (mF =)mX〉, and |F ′′ = X, (mF =)mX〉, where the information in might
not be explicit. Unless stated otherwise, mX is with respect to the quantization
axis, that is defined by the microscope objective (figure 2.7).

2.3.2. Neutral Atom Trap
Each of the two stationary qubits, also called quantum memory, constitutes of
a single 87Rb atom, located in two separate laboratories in the basements of
the faculty of physics in Schellingstraße 4 (lab 1) and faculty of economics in
Schackstraße 4 (lab 2), which are 398m apart and connected via 700m of single
mode optical fiber (fig. 2.6). The centerpiece of the experiment are the two traps
located in the two laboratories. It should be noted that the setups for the traps in
both laboratories differ slightly on a technical level but are conceptually identical.
Thus, I will, unless specified explicitly, use the trap in lab 1 (fig. 2.7) as example to
illustrate the working principles of the experiment. The trap in lab 2 is for example
explained in [45, Appendix F].
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2. Entangling Single Rubidium Atoms

Figure 2.6.: Location of the two laboratories at the main campus of the Ludwig-
Maximilians-Universität, Munich. Laboratory 1 (Lab 1) and Laboratory 2 (Lab
2) are located in the basement of the departments of the faculty of physics at
Schellingstraße 4 and economics at Schackstraße 4. Optical fibers for communica-
tion and for guiding the fluorescence photons emitted by the atoms are connecting
the two laboratories. Map data provided by the Bayerisches Landesamtfuer Digi-
talisierung, Breitband und Vermessung.

An optical dipole trap (ODT) is employed to store the atoms [67]. Before it is
possible to transfer the atoms to the ODT, a cloud of cold atoms needs to be created
inside a magneto-optical trap (MOT) [68] by means of Doppler cooling [69, 70].

2.3.2a. Vacuum, Magneto-Optical Trap, and Cooling

The atoms reside inside a vacuum chamber that can be evacuated to pressures
below 10−9 mBar using an ion-getter-pump. For closing the locality loophole in the
Bell test [18] the vacuum cell also houses two sets of channel electron multipliers
(CEMs) that are currently not used. 87Rb atoms are provided by a dispenser,
which is kept off most of the time. The leakage of the vacuum cells is small, thus is
sufficient to dissolve rubidium deposits that build up on the inner wall of the glass
cell by using a UV LED. More details on the vacuum setup can be found in [71, 72].

MOTs are a well-established method for cooling and trapping neutral atoms. They
use a combination of a magnetic quadrupole field created by coils in a anti-Helmholtz
configuration and light to simultaneously cool and localized the atoms [68]. Three
pairs of counter-propagating, circularly polarized beams, each containing a light from
a cooling laser that is slightly red detuned from the closed D2, F = 2 ↔ F ′′ = 3
transition and from a repump laser resonant to the D2, F = 1 ↔ F ′′ = 2 transition,
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2. Entangling Single Rubidium Atoms

Figure 2.7.: Experimental setup. ODT and Fluorescence Collection: The the
linearly polarized ODT beam (light blue) is focused by the microscope objective onto
the position of the atomic cloud trapped by the MOT (dark blue arrows: cooling)
inside the evacuated glass cell. Fluorescence collection from the atom (green, left)
into a single-mode fiber is done through the same objective; its direction defines the
quantization axis (z-axis). Pumping and Excitation: the pump1→1 (red) and
excitation (orange) are π-polarized and orthogonal to the quantization axis (here
±x). The pump2→1 is overlapped with the vertical cooling beams that propagate
along ±y. Readout: the readout laser (green, right) propagates in −z direction.
Its polarization χro is set by a polarizer followed by a λ/4 and λ/2 waveplate. The
ionization laser (purple) is overlapped with the ODT laser by a dichroic beamsplitter
and focused with the objective on the atom.

are intersected inside the cell at the center of the coils where the magnetic fields
vanish. The spatially varying induced Zeeman shift creates a force that pushes
the atoms towards the trap center, slowing them down and thus cooling in the
process. Typical parameters for the MOT in our setup are a cloud diameter < 1mm,
containing > 104 atoms [73] at a temperature well below the Doppler limit for 87Rb
of 146 µK. Actually, temperatures as low as 30 µK to 40 µK [74, 75] can be achieved
through additional polarization gradient cooling [76].
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2.3.2b. Optical Dipole Trap

Going from a trap with several thousand atoms to one containing only a single
one is achieved by transferring one atom to an optical dipole trap (ODT) [67, 77]
that uses the interaction between a laser field and the induced dipole moment of
the atom. The laser field is far detuned from any transition such that excitation is
negligible. It creates an AC Stark shift in the the atomic level structure depending
on the intensity of the beam at the position of the atom. For red detuned lasers this
creates an attractive three-dimensional potential dimple for the atom, centered at
the focal point of the beam where the local intensity is maximal. With conventional
lasers only small potential depths of few mK are achievable, making initial cooling
of the atoms necessary. Assuming linearly polarized light the rotationally invariant
potential is described by

UODT(r, z) =
πe2Γ

2ωD1

(

2

∆2,F

+
1

∆1,F

)

I(r, z). (2.25)

UODT depends on the decay rate of the excited state Γ, the transition frequency
of the D1-line ωD1

and the detuning with respect to the D1 and D2 line, ∆1,F and
∆2,F . The intensity I(r, z) is assumed to be described by a Gaussian mode of the
laser beam, taking the form

I(r, z) = I0

(

w0

w(z)

)2

exp

(

− 2r2

w(z)2

)

(2.26)

with the beam waist w(z) =
√

1 + (z/zR)2 at position z from the focus point of the
laser (z = 0), the Rayleigh length zR = πw2

0/λ, the laser’s wavelength λ, waist w0,
and intensity I0 at the focus. We can use a harmonic approximation [78, 79] for the
resulting potential, that has two different trap frequencies in transverse

ωT =

√

4UODT(0, 0)

mw2
0

(2.27a)

and longitudinal

ωT =

√

2UODT(0, 0)

mz2R
(2.27b)

direction where m is the mass of 87Rb.

Our setup employs a laser locked at a wavelength of 852 nm focused at the
position of atomic cloud trapped by the MOT. The focal waist w0 & 1.92 µm and
Rayleigh length zR = 13.6 µm allow only for a single atom to be trapped due to
collisional blockade effects [79, 80]. Choosing the optical power of the laser at
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60mW results in potential depth UODT(0, 0) = kB · 3.2mK and trap frequencies
ωT = 2π · 92 kHz and ωL = 2π · 13 kHz [74].

The ODT is created using a single high numerical aperture (NA) microscope (
NA=0.5 [81] ) that focuses the ODT beams to the desired waist. It also serves to
collect fluorescence light scattered from the atom, allowing to decide whether or
not an atom is present in the trap. Thus, a necessary requirement for the design
has been the ability to focus 780 nm and 850 nm light at the point inside the glass
cell. A dichroic beamsplitter makes sure only 780 nm light is guided to the single
photon detection setup or the quantum frequency conversion setup that enables
entanglement over even larger distances [82]. Despite the large NA, only a small
fraction of the light, represented by the collection efficiency ηcol, can be coupled into
the optical fiber leading to the detection setup. The limiting factors are the the
microscope objective itself, in particular the collection and aberration effects, on
one hand. On the other, finite transmission losses in the optical fiber, the objective
or other optical elements as well as the detector efficiencies reduce the achievable
ηcol [71].

The quantization axis of the systems is colinear with the direction of the fluores-
cence collection. Conventionally, this will be uses as the z-axis of the experiment’s
coordinate system as seen in figure 2.7.

2.3.2c. Loading Sequence and Fluorescence Collection

The loading or trapping of a single atom happens in a fully computer controlled
and automated procedure. It starts by turning on the cooling beams and the
current in the quadrupole coils , as well as the dipole trap laser. This creates a
cloud of cold atoms out of which a single atom eventually is transferred to the
ODT. The atom starts scattering the cooling light, increasing the photon detection
rate rapidly. Once it surpasses a set threshold, the atom is assumed to be trapped
and the quadrupole coils are switched off, discharging the other, untrapped atoms.
The single atom in the ODT is now ready for experiments. Its presence in the trap
is monitored and if the photon detection rate drops below a second, typically lower
threshold, it is assumed to be lost and the procedure starts again.

This sequence was recently modified for the ongoing efforts to increase the spatial
separation between the stationary nodes [82] using polarization-preserving quantum
frequency conversion (QFC) [83] of the 780 nm photons to the telecom S-band at
1522 nm. Starting from just before the excitation try, all the light from the atom is
guided towards the frequency converter, with no light reaching the silicon avalanche
photodiode (APD) used for the fluorescence detection. The switching between those
two channels is done using a microelectromechanical systems (MEMS) switch. The
fluorescence count on the APDs subsequently drops to zero. After performing the
readout, the MEMSs switch is switched back to verify the presence of the atom.
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(a) Fluorescence trace without MEMS
switch.
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(b) Fluorescence trace with MEMS switch

Figure 2.8.: Fluorescence trace as the number of registered counts integrated for
a fixed time integral (here 40ms). Background counts for times when no atom
is trapped are due to the cooling beams. The atom is considered trapped if the
fluorescence counts rise above a value of 60 (green) and lost if fewer than 40 counts
per 40ms are registered. In (b), while the MEMS switch is guiding the photons
towards the QFC, only background photons are recorded. The decision about the
presence of the atom is only made after collecting fluorescence for 40ms.

A small software delay (20 − 40ms) has to be added to allow enough counts to
accumulate on the APDs for this procedure to work. The fluorescence traces for
both sequences are shown in figure 2.8.

2.4. Entanglement Generation and Analysis

2.4.1. State Preparation
Before being able to start the atom-photon entanglement generation process, the
atom needs to be initially prepared in |1, 0〉 state. From there the atom can be trans-
ferred into the excited |F ′ = 1,mF = 0〉 state by applying a short laser pulse, from
where atom-photon entanglement can be created via spontaneous decay (sec. 2.2.1).

2.4.1a. Optical Pumping

Preparing the atom in |1, 0〉 is done via a technique called optical pumping. After
successfully loading and cooling, the atom has a high probability to be in the F = 2
manifold, as the dipole transition used for the cooling (F = 2 ↔ F ′′ = 3) is closed.
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Figure 2.9.: Pumping scheme. The resonant pump1→1 (pump2→1) transition is
drawn in red (blue). The two different polarizations of pump2→1 are indicated by
dashed and undashed lines. Note that there is no transition that resonantly connects
the dark state, |1, 0〉 to any other level.

After several pumping-excitation cycles however, the atom will most likely be in
either of the F = 1 substates as we will see briefly.

The pumping process is designed to excite all sub-levels of the ground state
except for |1, 0〉 which will be referred to as the dark state in the context of optical
pumping. Therefore, two different laser fields are applied, referred to as pump1→1

and pump2→1. The former is resonant to the transition F = 1 ↔ F ′′ = 1, the latter
to the transition F = 2 ↔ F ′′ = 1 (fig. 2.9). From the excited level, decays into all
Zeeman substates of the ground manifold are possible as long as the dipole selection
rules are respected. The decay amplitudes can be calculated from the linewidth of
the excited level ΓD1

and the corresponding Clebsch-Gordan coefficients. It should
be noted, that instead of the excited 52P3/2 level, 52P1/2 could have been employed.
However, spontaneous decays from |F ′ = 1,±1〉 to |1, 0〉 only have a branching
ratio of 1/6 compared to a branching ratio of 25/60 for decays from |F ′′ = 1,±1〉
to |1, 0〉.

The pump2→1 laser aims at depopulating all F = 2 Zeeman sub-levels. Regardless
of its polarization, two out of five sub-levels are unaffected by a single laser field.
Therefore, the pump2→1 laser is circularly polarized and split into multiple beams,
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that are guided at the atom from opposing directions. This is done differently in
both laboratories:

lab 1: two independent, counter-propagating beams

lab 2: three orthogonal beams retro-reflected with piezo-mounted mirrors;
pump2→1 is overlapped with the cooling light

Two coherent laser fields that have opposite circular polarization and identi-
cal field strength will recombine to form a linearly polarized light field. With
π-polarized light it is not possible to excite the outermost Zeeman sub-levels
(mF = ±2), thus a pumping sequence is chosen, where the different polarizations
are separated in time. In lab 1 this is realized by turning on and off the beam
periodically before splitting it and than delaying one of the beams using additional
optical fiber. The turning on and off is done by masking the amplitude of the
RF-input of a AOM by a repeating logic signal of 6.6MHz. The duty-cycle of the
signal is 50%, thus requiring an additional fiber of length 75 ns · c/nfiber = 15m,
assuming a refractive index nfiber = 1.5 for the optical fiber (fig. 2.10a). Lab 2 uses
a different time sequence, where the beam the RF-input modulation has a period of
200 ns, of which the AOM is switched on for 160 ns. Additional fibers of 10m and
20m are used to create a time difference of 50 ns and 100 ns (fig. 2.10b). Therefore,
at any given time two of the three beams are switched on, with the combination
alternating in time. The approach for atom 2 is more complex and it is hard to
prove that it is advantageous compared to a case where the beams are continuously
switched on. However, as experimentally the difference is in fact significant 2.11

0 100 200 300 400 500 600
time (ns)

in
te

n
si

ty
 (

a
.u

.)

(a) Lab 1

0 100 200 300 400 500 600
time (ns)

in
te

n
si

ty
 (

a
.u

.)

(b) Lab 2

Figure 2.10.: Illustration of the pump2→1 sequence in fig. 2.10a lab 1 and fig. 2.10b
lab 2. Different colors indicate different beams. Note that in lab 1, the two different
beams are counter-propagating whereas in lab 2, the beams are orthogonal and each
beam is retro-reflected onto itself. Intensities are not to scale.
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Figure 2.11.: Excitation-power-scan (error: 3σ) for optical pumping with (blue)
and without (orange) sequenced pump2→1 laser in lab 2.

The pump1→1 laser is aimed to depopulate |1,±1〉. Due to photons nec-
essarily carrying some non-vanishing angular momentum, a dipole transition
F = 1,mF = 0 ↔ F ′′ = 1,mF = 0 is forbidden. Therefore, π-polarized light
with a wavelength corresponding to the F = 1 ↔ F ′′ = 1 transition cannot
resonantly interact with |1, 0〉 and only the Zeeman substates with non-zero mF

are depopulated, if pump1→1 is polarized parallel to the quantization axis. In lab
1, pump1→1 is counter-propagating to the excitation laser (fig. 2.7), while it is
overlapped with the excitation in lab 2.

All involved levels and transitions required for the pumping are summarized in
figure 2.9. In total, each pumping cycle takes around 2.3 µs and has a state prepa-
ration efficiency ηprep ≈ 80%. The pumping heats the atom, thus 350 µs of cooling
are necessary after each 40th cycle, with the first pumping cycle after cooling being
2 µs longer [74]. In an earlier scheme [73] only one polarization for the pump2→1 was
used and an effective mixing of the Zeeman substates in the F = 2 ground level was
achieved by additionally switching on the cooling beams during pumping.

2.4.1b. Determining the State Preparation Efficiency

At this point, I want to address the definition and measurement of the state prepara-
tion efficiency. The current experimental configuration does not allow us to directly
measure the state population of |1, 0〉. We therefore need multiple measurements
to finally infer the desired quantity from the populations of the other Zeeman sub-
states of 52S1/2. Population in any of the excited levels can be neglected due to
the short lifetime already O(100 ns) after the pumping has ended. As we will see
in section 2.4.3 we can perform a state selective ionization, of either the population
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in |F = 2〉 alone or the combined population of |F = 2〉, |1, 0〉 and an arbitrary
superposition of |1,+1〉 and |1,−1〉. By choosing the superposition such that it
corresponds to two orthogonal superposition states, e.g. |↑〉x and |↓〉x, and realizing
that

Prion(|F = 2〉 ∪ |1, 0〉 ∪ |↑ (↓)〉x) = 1− Pr(|↓ (↑)〉x) := Prion,↑(↓)

it is possible to infer the state preparation efficiency ηprep = Pr(|1, 0〉) as

Pr(|1, 0〉) = 1−
[

Pr(|F = 2〉) + Pr(|1,+1〉) + Pr(|1,−1〉)
]

= 1−
[

Pr(|F = 2〉) + (1− Prion,↑) + (1− Prion,↓)
]

.
(2.28)

The equivalence follows from the fact that |↑〉x and |↓〉x can be obtained as lin-
ear combination of |1,+1〉 and |1,−1〉. The whole experimental sequence will be
described in detail in chapter 4. After a successful ionization, the atom will be lost
from the trap, making reloading necessary. Thus, measuring ηprep directly is very
time intensive. For the purpose of optimizing the initial state preparation we will
therefore rely on different methods.

2.4.1c. Effects Reducing the Initial State Preparation Efficiency

With the current pumping sequences, the initial state preparation yields ηprep ≈ 80%
after a total pumping time of Tpump = 2.3 µs (4.3 µs after cooling) in both labs.
Increasing ηprep could help to increase the event rate as well as the the entanglement
quality. This section will briefly discuss possible explanations for why ηprep is
substantially below 100% after the pumping.

Generally, there are at least two possible scenarios. On one hand, it is possible
that currently not enough time is allocated for the optical pumping and that
increasing Tpump would be sufficient to reach higher ηprep. On the other hand, the
evolution of the systems during the optical pumping might reach some steady-state
distribution which corresponds to ηprep ≈ 80%. We performed a measurement of
ηprep for different pumping times between 1.5 µs and 39.5 µs with the parameters
of the pumping at the optimal values for Tpump = 2.3 µs. It should be noted that
the probabilities in figure 2.12 were measured directly after the cooling due to
the nature of the measurement. This means that the atom is in F = 2 before
the pumping, which however was not explicitly verified. It appears that the
population of |1,±1〉, corresponding to the sum of 1 − Prion,↑ and 1 − Prion,↓,
reaches a constant small, but non-vanishing value already after very short pumping
times while the while the population of F = 2 only decreases slowly. It is possible
that even shorter time steps could have resolved the dynamics of |1,±1〉 more
accurately. During the experimental sequence, cooling only happens only after
40 pumping-excitation trials. Based on the measurement neither scenario can
be fully excluded. We will now turn our attention to possible effects that might

24



2. Entangling Single Rubidium Atoms

0 5 10 15 20 25 30 35 40

pumping time (µs)

0

10

20

30

40

50

p
op

u
la
ti
on

(%
)

1-Prion,↑

1-Prion,↓

Pr(|F = 2〉)

1− ηprep

Figure 2.12.: Measured ionization probabilities Prion,↓, Prion,↑, and Pr(|F = 2〉), as
well as inferred initial state preparation efficiency ηprep. The pumping sequence was
optimized for Tpump = 2.3 µs. It should be noted however, that due to the nature of
the measurement, the pumping is always preceded by cooling. In the experimental
sequence, this is only the case for the first pumping sequence. Only points between
1.5 µs and 39.5 µs were recorded.

impair our ability to reach higher ηprep, and if applicable, how they could be reduced.

The first effect we considered is a possible misalignment of the pump1→1 laser
which can be decomposed into translations along and rotations around the three
axes (fig. 2.7). Assuming that the laser itself is linearly polarized, it is easy to
see that only rotations around the axis of propagation (x) result in effects that
cannot be compensated by increasing the optical power in the beam. To only drive
transitions from |1,±1〉, the polarization of pump1→1 should be parallel to the
optical axis (χ1→1 = V ). Rotations by an angle α around x change this polarization
to χ′

1→1 = cosα · V + sinα · H, which will lead to effective σ± light fields, that
would excite |1, 0〉.

Second, we realize that transitions from any Zeeman substate to |1, 0〉 are only
possible by at least temporarily populating one of the excited states. While it is to
be expected that the rate of change of the population of |1, 0〉 would decrease over
time as it becomes less likely to populate the 52P3/2 manifold, there are processes
that could result in effectively leaving the excited states populated. As an example,
stimulated Raman adiabatic passage (STIRAP) processes [54] could coherently
transfer population between |1,±1〉 and |F = 2〉 without ever populating the
excited levels. STIRAP and similar techniques of coherent state transfer have wide
applications in physics and chemistry [55, 84], however they are undesirable in our
experimental setup.

As a third effect, off-resonant excitation, in particular of the target state |1, 0〉,
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could reduce ηprep. In 87Rb the natural linewidth of the D2 transition is ΓD2
=

2π ·6.065(9)MHz as a result of the short lifetime of the excited 52P3/2 level [85]. On
top, we have power-broadening [86]

Γ′ = ΓD2
·
√

1 +
I1→1

Isat

by the pump1→1 laser. We can roughly estimate the intensity of the pump1→1 laser
at the position of the atom by assuming the entire optical power P1→1 ≈ 5.5 µW
is distributed over a disk of diameter w0 ≈ 110 µm4. The resulting intensity
I1→1 = 58mWcm−2 is well above the saturation intensity Isat ≈ 3.58mWcm−2.
Thus, off-resonant transition from |1, 0〉 to |F ′′ = (0, 2)〉, whose respective detunings
are only 72MHz and 156MHz, are likely to contribute to the observed reduction of
ηprep. This effect might be mitigated by modifying the intensity of pump1→1 as a
function of time.

Another promising solution is to use the D1 transition for depopulating |1,±1〉.
As the energy difference of h ·816.656(30)MHz between F ′ = 1 and F ′ = 2 in 52P1/2

is significantly larger than the energy differences in 52P3/2 and than the natural
linewidth ΓD1

= 2π · 5.746(8)MHz of the transition, off-resonant excitation should
be reduced. In addition, the possibility of coherent two-photon transitions between
F = 1 and F = 2 is removed. However, we have to take into account that the
branching ratio for decays from |F ′ = 1,mF = ±1〉 to |1, 0〉 is only 1/6 compared
25/60 for decays from |F ′′ = 1,mF = ±1〉 to |1, 0〉, thus reducing the effective speed
of the pumping. Thus, allocating more time or the combining of pumping with
795 nm and 780 nm light for pump1→1 would probably be necessary to achieve an
effective pumping scheme.

To the end of understanding how and if the different effects would influence the
optical pumping, we designed numerical simulations based on the Lindblad equa-
tion 2.15. The simulations expand on the work in [73, 87], where the readout
process was investigated. Major differences include a significant speed-up by taking
into account the hermiticity of the density matrix and streamlining several soft-
ware components, opening up the simulation to support different and more complex
pulse shapes, and a way to interface the simulation with an external optimizer.
The simulations where designed to model resonant excitations, off-resonant excita-
tions to F ′′ = 0, 2, as well as polarization errors. For the simulation, we generated
the 17 × 17 = 289 differential equations resulting from Lindblad master equations
when considering all levels of 52S1/2 and the F ′′ = 0, 1, 2 levels of 52P3/2, of which
we removed those equations that were simply the complex-conjugate of a second
equation. We then employed Mathematica 11.0 to numerically integrated this sys-
tem of complex-valued ordinary differential equations using a Runge-Kutta method.

4both those values are only crude approximations, based on measurements in lab 1
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However, in preliminary investigations numerical errors numerical errors, that could
have been neglected for shorter simulation times, accumulated and became more rel-
evant, were found to be limiting. The simulated time period for the readout process
(∼ 200 ns) is one order of magnitude smaller than the one for the optical pumping
process (2.3 µs), thus increasing the working precision would have been necessary.
Future simulations of the optical pumping process could benefit from solving real
and imaginary part of each ODE separately and removing equations that can be
shown to be trivial as done in [88]. Additionally, the speed of the simulations may
be increased through the use of more efficient numerical solving methods and an im-
plementation in a compiled language such as C++or Julia. Simulation that consider
even larger systems of ODEs exist for atomic hydrogen [88, 89] and could potentially
be adapted for 87Rb. Despite not being able to fully describe the fully dynamics of
the optical pumping process, the simulation helped to inform and motivate some of
the pulse shapes we considered in the optimizations in chapter 4.

2.4.2. Entanglement Generation through Spontaneous
Decay

After the pumping, the atom should be in the |1, 0〉. In order to implement
the lambda level scheme, a short laser pulse is used to drive a transition to
|F ′′ = 0,mF = 0〉, which then decays with a short lifetime of 26.24 ns [64] back to
the ground state, emitting a π-, σ+-, or σ−-polarized photon with equal probability
in the process. The emitted photons are collected along the quantization axis by a
confocal microscope, thus filtering out linearly polarized photons. The remaining
photons are guided towards a BSM, with the possibility of converting the photon
to the telecom S-band [83].

The goal of the excitation process it to generate an entangled atom-photon pair
described by equation 2.19, however not every excitation attempt results in the
desired atom-photon state. Possible reasons excitation of |1,±1〉, both resonantly
through residual circular polarization of the excitation pulse or off-resonantly to
|F ′′ = 1,mF = ±1〉. F ′′ = 0 and F ′′ = 1 are only separated by 72.218(4)MHz
while the natural linewidth of the transition is only Γ0 = 6.065(9)MHz [64]. The
probability for off-resonant excitation is further increased as the short duration of
the excitation pulse leads to significant spectral broadening (∆Γ = 21.6MHz) of
the laser [45]. Additionally, there is the chance for two photons to be emitted in one
excitation process. These effects are strongly dependent on the properties of the
excitation pulse, its polarization, temporal shape, and intensity. Their optimization
requires careful attention to the photon collection and detection efficiencies, as well
as detector dark counts. A thorough analysis of the excitation process has been
done in [45, 53].

Choosing the correct excitation power Pexc, one has to consider two aspects: on
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one hand, the excitation efficiency ηexc, the chance of correctly exciting |1, 0〉 to
|F ′′ = 0,mF = 0〉, rises as a function of Pexc. Thus, higher Pexc correspond to larger
event rates, which becomes particularly important when performing measurements
with atom-atom-entanglement where ηexc contributes quadratically. On the other
hand, off-resonant excitation becomes more relevant as Pexc is increased, thus re-
ducing the state fidelity. Taking all these different factors into consideration, the
excitation pulse was chosen to be approximately Gaussian in shape with a full width
at half maximum (FWHM) of 20.35 ns. Its intensity is set such that it yields around
80% of the maximum excitation efficiency and has to be adjusted on a regular ba-
sis [53]. The local photon detection probability, η1 = 6.7h for lab 1 and η2 = 8.61h
for lab 2, is further decreased by additional time filtering, by fiber losses (700m with
losses of 4 dB/km) for photons from lab 2 and the by QFC [81]. Thus, a fast repeti-
tion rate of pumping and excitation is desirable for achieving reasonable event-rates,
but at the same time it causes stronger heating of the atom. This increases not only
the chance of loosing the atom from the trap but also the decoherences that result
from stronger motion of the atom in the trap. A detailed discussion of the effects
that lead to decoherence effects and ways to reduce them can be found in [45, 65].

2.4.3. Ionization-based Atomic State Readout

For the quantum-mechanical projection measurement needed to determine the state
of the physical system in the experiment a state-selective ionization scheme is used.
It is possible to transfer an arbitrary superposition of |1,−1〉 and |1,+1〉 to the
excited |F ′ = 1,mF = 0〉 from where it is ionized. The ion is subsequently lost from
the trap which can be detected with high fidelity by a vanishing of the fluorescence,
or for a faster readout by collecting the released charged particles with CEMs [45].

Excitation to |F ′ = 1,mF = 0〉 is done with the readout-laser that is locked to the
D1 transition line and whose propagation direction is anti-parallel to the dipole laser.
Its polarization χro (eq. 2.29) dictates which superposition is transferred, defining the
bright state |B〉ro (eq. 2.30a), which is orthogonal to the state that is not transferred,
the dark state |D〉ro (eq. 2.30b). Any χro can be chosen by appropriately rotating a
quarter- and a half-wave plate in front of the glass cell. χro can be decomposed into
H and V polarizations

χro = cos(α) · V + e−iφ sin(α) ·H (2.29)
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thus the dark and bright state take the form

|B〉ro = cos(α)
−1√
2
(|1,−1〉 − |1,+1〉) + sin(α)e+iφ i√

2
(|1,−1〉 + |1,+1〉), and

(2.30a)

|D〉ro = sin(α)
+1√
2
(|1,−1〉 − |1,+1〉) + cos(α)e+iφ i√

2
(|1,−1〉 + |1,+1〉). (2.30b)

The ionization threshold for the ground F = 1 and the excited F ′ = 1 state are
296.82 nm and 473.73 nm [90]. Therefore, in order to only ionize excited atoms, the
ionization-laser has a wavelength below 473 nm and well above 300 nm. It is guided
at the atom through the objective that is also used for fluorescence collection and
ODT. Successful ionization immediately causes the atom to be lost from the trap,
in turn reducing the fluorescence counts, making it possible to distinguish whether
the atom was lost. Once again, additional waiting times might be necessary when
using a MEMS switch as for the case of experiments with QFC. It should be noted
that regardless of χro, atoms that are still in |1, 0〉 will always be ionized (fig. 2.13a),
therefore the (theoretical) probability to find the atom in the trap after the readout-
ionization cycle, PrD = 〈D|ρ|D〉 for the given atomic state ρ, also called redetection
probability, is

PrD = 〈D|ρ|D〉 = 1− PrB = 1− ( 〈B|ρ|B〉+ 〈1, 0|ρ|1, 0〉) , (2.31)

where we did not consider imperfections that could lead to the bright state
remaining in the trap or the dark state being ionized.

In the actual experimental setup, imperfections will play a role and will reduce
the fidelity of this state readout scheme. The most prominent limiting factors
are the life-time of the excited level as well as of resonant excitations of the dark
state to F ′ = 2. The excited state has a short lifetime of 27.7 ns [64], and might
decay spontaneously before being ionized (fig. 2.13b). This decay happens with
a high probability of 5/6 to the F = 2 ground level. Applying laser resonant to
the F = 2 ↔ F ′′ = 3, the cycling laser, opens up the possibility of a two-step
ionization (fig. 2.13c). As from F ′′ = 3 only decays back to F = 2 are allowed,
there arises no additional population, neither of the dark or the bright state via this
channel as long as only resonant excitations are considered. Nevertheless, for the
remaining times the state decays back to either the dark or bright state, with equal
probability for each state. This evidently reduces the ionization probability of the
bright state. Decays back to |1, 0〉 are forbidden as no angular momentum would be
exchanged. While the separation between the excited F ′ = 1 and F ′ = 2 manifolds
of 816.7MHz is large compared to the natural linewidth of only 5.746MHz [64],
the spectral broadening induced by the high-power ionization laser (Pion = 200mW
focused down to w0 = 1.0 µm) leads to significant off-resonant excitations [71, 91].
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(a) State-selective ionization: depending
of the polarization χro of the readout-laser
(red) as specific superposition of the Zee-
man states |1,±1〉, |B〉ro, is excited to the
52P1/2 level. The orthogonal superposition,
|D〉ro, is not affected. The third state |1, 0〉
is excited independent of the chosen po-
larization (red, dashed). From the excited
level the atom can be ionized with the ion-
ization laser (blue).
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(b) Possible decay channels for the excited
state. Due to the short life-time, the atom
might decay before being ionized. Decays
to the F = 2 manifold dominate (5/6), with
smaller branching ratios for the dark and
bright state (1/12). A decay to |1, 0〉 is im-
possible as no angular momentum would be
transferred.
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(c) Second excitation after decay to F =
2. By applying the cycling laser (green),
atoms in the F = 2 ground state can be
transferred to the F ′′ = 3 level, from where
ionization is possible. Decays from this
level are only possible to F = 2.

Figure 2.13.: Ionization-based, Zeeman-state selective readout-scheme. It is both
possible to record the drop in the fluorescence after the loss of the atom due to
ionization or to detect the ionization fragments with CEMs for faster readout.
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The performance of the readout-scheme, its ability to distinguish between dark
and bright state, is characterized by the contrast

K(χro) = Prionized (|B〉ro)− Prionized (|D〉ro) (2.32)

defined as the different between the probabilities of ionizing the bright and dark
state. It depends on the characteristics of the read-out pulse. Simulation studies
that tried to optimize the contrast under consideration of the experimental limita-
tions [71, 87, 91] found an optimum for a pulse length of 140 ns and optical power
of 1.24 µW. For these parameters, the simulations yielded ionization probabilities
of Prionized (|B〉ro) ≃ 0.98 and Prionized (|D〉ro) ≃ 0.04, resulting in a contrast
of Cro ≃ 0.94 [71]. These simulations were also examined and optimized with
regard to their computational performance and expanded in order to examine if the
flexibility to generate more complex pulse shapes could help to increase the contrast.

Determining the true contrast of a given set of parameter from the experiment is
more challenging, as result of long measurement times, low event-rates and (mostly)
statistical fluctuations.

All-together, the read-out itself takes less than 400 ns, which in combination with
the fast charge detection in 570(3) ns at 0.965 fidelity with the CEMs [45, 71, 74]
allowed to perform a Bell test that for the first time could close all loopholes for
LHV theories [18]. For ionization detection via fluorescence, its trace needs to be
integrated for several milliseconds. The total measurement time thus is larger than
30ms and has a fidelity of 0.97.

2.5. Laser Pulse Sequence Generation
In previous sections we have introduced the different ingredients necessary to
perform experiments with single atoms. It became clear that a high degree of
control over the involved laser fields, its spatial, temporal and spectral shape, is
one of the key components.

The spatial degree of freedom is, to large parts, fixed by the alignment and
specialized design of optical components. The entire experiment has been optimized
over years to yield high performance, most recently by the employment of a
new microscope objective that was able to improve the local photon detection
efficiencies by a factor of roughly 2.5 and 3.5 in lab 1 and and lab 2, respectively,
which translates to an 6.5 fold increase in atom-atom-entanglement efficiency [81].
Overall, the spatial alignment is rather stable with respect to time, however, if
necessary, re-alignment can proof to be tedious.

On the contrary, the spectral and temporal degrees of freedom are more volatile.
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The lasers in the setup are all operated in continuous wave and single frequency
mode. Their respective frequency is locked to either a reference cavity or atomic
transition using Doppler-free saturation spectroscopy [92]. Those laser beams are
distributed into several lines and frequency shifted to match their purpose in the
experiment (fig. A.1). This is done by propagating the light through acousto-optic
modulators (AOMs) whose efficiency can be varied to generate temporal pulse
shapes. This section will briefly introduce the working principles behind said AOMs.

AOMs, also called acousto-optic deflector (AOD) or Bragg cell, make use of a
specific type of photoelasticity in an optically transparent material, such a telirium
oxide of germanium crystals. The required strain is induced through exciting an
acoustic wave inside the medium, leading to a spatial and temporal modulation of
its refractive index. This corresponds to a diffraction grating moving at the speed
of sound cs through the material. Similar to the physical Bragg grating etched into
a waveguide, the condition for constructive interference of light at this grating can
be expressed in terms of the wavelength Λs = cs/Fs of the acoustic wave

2Λs sin(θB,m) = mλ (2.33)

where λ is the wavelength of the light and θB,m is the Bragg angle the integer
order m = 0,±1, ..., measured perpendicular to the propagation direction of the
sound wave. On a microscopic level, this can be understood as a photon-phonon-
scattering process. Energy-and-momentum conservation dictate that the frequency
will be shifted by an amount proportional to the frequency Fs of the sound wave

ν → νm = ν +m · Fs (2.34)

constituting a Doppler shift.

Normally, only the 0th and 1st order are considered for practical applications as
they carry the largest amount of optical power. How the optical power is distributed
over the different orders depends on the intensity of the sound wave. The efficiency
given as the ratio between input and output intensity, Iin and Iout of the 1st order
can be expressed as

ηAOM =
Iout
Iin

= sin2

(

π L

λ sin θB

√

M Is
2

)

, (2.35)

where M is a constant set by the material, L is the interaction length scale and Is
is the intensity of the sound wave.

The sound wave is generated by a vibrating piezo-electric transducer, that is
driven by an oscillating electric signal, usually in the radio-frequency (RF) range.
By changing its amplitude, the optical power in the 1st order can be varied between
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(a) Bragg condition for an AOM. Here we
assume a infinitely extended AOM as well
as light field defined by a single wavevector
~k. The condition for constructive interfer-
ence is given in equation 2.33

piezo element

(b) AOM pad using two identical plano-
convex lenses. The AOM sits at the com-
mon focal point of both lenses. The spatial
mode of the beam is not affected by the
AOM. For a double pass configuration, the
first order beam is deflected back with po-
larization rotated by 90°, e.g. by passing
through a QWP twice.

Figure 2.14.: Operation principle of an AOM

0% and 80% of the input optical power for appropriate frequencies.

Realistically, the AOM itself, as well as the light beam and the acoustic wave
are finite in size. Therefore, the Bragg condition (2.33) cannot be applied strictly
and it is possible for multiple wave-vectors, such as in a focused Gaussian beam, to
interfere constructively. It should be also noted that the response of the AOM to
changes in the RF-input is not instantaneous. First, there will be a constant time
delay as the density wave needs a finite time to reach the location of the beam,
which can be used to fine-tune the timings of the generated laser pulses. Second,
the wave front takes a finite time to cross the beam diameter, approximated by
τ = 2w0/cs. This results in a finite rise time τr = 0.85τ of the AOM, defined
as the time it takes for increasing the first order efficiency from 10% to 90% of
its maximum. This effectively leads to a low-pass filtering of the input signal.
The situation is illustrated in in figure 2.14b, where a AOM sits in the middle of
two-plano convex lenses, whose focal points are overlapped inside the AOM. This
configuration can be used in single- or double-pass configuration, corresponding to
a frequency shift of F or 2 · F , with little disturbance of the beam’s spatial mode
after the AOM pad. In the latter, the outgoing first order beam is deflected back
with its polarization rotated by 90°, which mitigates alignment problems [93].

So far, in the presented experiment AOMs were used in combination with fixed
RF drivers, that could only generate square pulses as input for the AOM, whose am-
plitude and frequency were the only dynamic degree of freedom. This thesis explores
the possibility to use a computer programmable arbitrary waveform generator for
producing more complex pulse forms that might improve the overall performance
of the experiment. To this end, machine learning techniques were employed to op-
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timize these waveforms, both in an open-loop and closed-loop configuration, using
either simulations or the experiment itself as feedback.
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Up to this point, Machine Learning (ML) algorithms, apart from a simple gradient
descent algorithm for the fiber polarization control, have not been used for the
optimization of the trap setup introduced in the previous chapter. For this thesis,
we have designed ML optimizers based on the publicly available Machine-Learner
Online Optimization Package (M-LOOP) which has been specifically developed for
the use in scientific applications [34, 94].

This chapter will give an introduction into two different ML algorithms used
within M-LOOP, Gaussian process regression (GPR) and differential evolution (DE).
Both algorithms fall into the category of supervised learning algorithms. Unlike
techniques like gradient descent, which often do not find the global optimum in the
presence of local minima, they are capable of global optimization. Finally, we will
see how M-LOOP can be integrated into an experimental setup.

3.1. Gaussian Process Regression
The goal of this section is to introduce the reader briefly into the concept of Gaus-
sian processes and their relevance in machine learning, concentrating specifically
on the aspects relevant for their implementation within M-LOOP. For a more
thorough discussion, we highly recommend the publicly available book ”Gaussian
Processes for Machine Learning” by Rasmussen and Williams [95] from which lots
of the inspiration for this section is drawn.

GPR falls into the class of supervised learning algorithms. The purpose of
supervised learning is to find (or learn) a mapping between input parameters
(~x) and output (f(~x)) based on a limited set of labelled input-output pairs, the
training data. Outputs can either take the form of continuous or discrete labels,
for regression or classification tasks, respectively. Supervised learning algorithms
should eventually be able to accurately predict the label of some input that is not
part of the training data set [95].

We will limit our discussion to regression tasks, as our output refers to the
performance of the experiment, that is the average over many realization and thus
in general continuous.

The process of finding the best approximate map or model f̃ for f is called fitting.
Apart from requiring consistency with the training data, fitting often involves mak-
ing some additional assumption about the form of f . Those assumptions restrict the
class of functions that can be considered for f and define a parametric model f̃(~x, ~θ)
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for the output. Fitting in this context means finding ~θ such that the similarity simi-
larity between f̃(~x, ~θ) and the observed data is maximized. Although this approach
can be useful to encode prior knowledge, it can result in either of two problems. On
one hand, if the class of functions is chosen too wide, f̃ might be chosen too specific
to the training data and performs poorly on unseen data. On the other hand, if it
is chosen too narrow, f̃ might not be able to catch all the defining features of the
underlying system.

3.1.1. Gaussian Process Regression
In contrast, Gaussian processes (GP) use observed similarity in the input space
to infer similarity in the output space. Knowledge about how close two points ~x
and ~x′ are is used to make predictions about the relation between f(~x) and f(~x′) [96].

In essence, GPs generalize the concept of (multivariate) Gaussian distributions
and stochastic processes, describing functions rather than scalar or vector variables.
Modelling is done by assigning probabilities to functions according to their likelihood
to describe the presented data [95]. This enables the GP

1. to be applied to a large variety of possible problems, even if those that have
complex nonlinear or multi-modal underlying functions,

2. to make predictions about the regressed functions itself as well as the uncer-
tainty of the regression, and

3. to extrapolate its prediction into unknown regions of the parameter space [97].

In the following we will examine the mathematical framework necessary to
understand a GP as well as possible implementations of it, particularly those used
in M-LOOP.

A GP describes a (infinite) collection of random variables (functions). Of this
collection, any finite subset has a joint Gaussian distribution. A GP is fully specified
by its mean m(~x) and covariance k(~x, ~x′):

m(~x) = E[f(~x)] (3.1a)
k(~x, ~x′) = E[(f(~x)−m(~x)(f(~x′)−m(~x′)] (3.1b)

k(~x, ~x′) is often referred to as the kernel of the GP. While in practise it might be
hard or even impossible to know the exact form of m and k, any finite number of
samples from the GP can be used to approximate them. M-LOOP does exactly this:
by executing an experiment a limited number of times with different parameters, it
develops a statistical model capable of predicting how the experiment performs for
arbitrary parameters.
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Figure 3.1.: Illustration of a GP learning a multi-modal function (f(x) = 2 −
e−(x−2)2 − 0.1e−(x−6)2 − (x2 + 1)−1, red line) by drawing (noise-free) samples (red
points). The prior (a) and posterior (b) prediction are shown by black lines, with
the shaded area indicating the 1σ error bands, also called uncertainty. Dashed line
represent random functions drawn from the prior (a) and posterior (b) kernel. The
point-wise average and standard deviation of all functions that could be drawn from
either kernel are precisely the mean and and uncertainty of the GP. Note how at the
observation points the uncertainty shrinks to zero and the sampled functions cross.

Assuming a (training) set of N input-output pairs {(~xi, fi ≡ f(~xi))}Ni=1 := ( ~X, ~f),
we can form a normal probability distribution function (PDF) P(~f | ~X). We will use
the shorthand P(~f | ~X) ∼ N

(

~m,K( ~X, ~X)
)

to denote

P(~f | ~X) =
1

√

(2π)N det
[

K( ~X, ~X)
]

exp

[−1

2
(~f − ~m)TK( ~X, ~X)−1(~f − ~m)

]

, (3.2)

where ~m and K( ~X, ~X) have components mi ≡ m(~xi) and K( ~X, ~X)ij ≡ k(~xi, ~xj),
respectively. K( ~X, ~X) is the Gram matrix of the covariance function k.

Selecting specific m and k is done based on the problem at hand. Often m
is chosen to be constant vector. There exist different options for choosing the
covariance (or kernel) function k(~x, ~x′), all of which at least have to be positive
semi-definite [95, 97]. M-LOOP uses the squared exponential or radial bases
function (RBF) kernel, which will be discussed in section 3.1.2.
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The main purpose why we are interested in GPs is evidently their ability use
observations ( ~X, ~f) to make predictions about unseen inputs ~X∗ and their corre-
sponding outputs ~f∗, also referred to as test set ( ~X∗, ~f∗). Together they form the
joint prior PDF

P(~f, ~f∗| ~X, ~X∗) ∼ N
([

~m
~m∗

]

,

[

K( ~X, ~X) K( ~X, ~X∗)

K( ~X∗, ~X) K( ~X∗, ~X∗)

])

(3.3)

where we assume a noise-free environment for the moment. This means that
predicting the PDF for ~f∗ corresponds to restricting the joint prior such that it only
contains those function that exactly agree with the training data. Mathematically,
this corresponds to conditioning P(~f, ~f∗| ~X, ~X∗) on the observed output ~f (see [98,
chapter 3] for details), again forming a multivariate normal PDF

P(~f∗|~f, ~X, ~X∗) ∼ N ( ~µ∗,Σ∗) , (3.4)

where the mean and covariance are given by

~µ∗ = ~m∗ +K( ~X∗, ~X)K( ~X, ~X)−1(~f − ~m) (3.5a)
and Σ∗ = K( ~X∗, ~X∗)−K( ~X, ~X∗)K( ~X, ~X)−1K( ~X∗, ~X), (3.5b)

respectively. Figure 3.1 illustrates how adding more observations restrict the

For a more realistic treatment we will assume that we only have access to training
output ~y which is our true function ~f subjected to noise that is independent and
identically drawn from a normal distribution with standard deviation σ2

n (white
noise). While this does not affect our mean function, it changes the covariance
matrix of the training set

K( ~X, ~X) → K( ~X, ~X) + σ2
nI, (3.6)

and thus lead to the new joint probability distribution

P(~y, ~f∗| ~X, ~X∗ ∼ N
([

~m
~m∗

]

,

[

K( ~X, ~X) + σ2
nI K( ~X, ~X∗)

K( ~X∗, ~X) K( ~X∗, ~X∗)

])

. (3.7)

Once again conditioning (3.7) yields the key predictive expressions for the GP

P(~f∗| ~X, ~y, ~X∗) ∼ N
(

E[~f∗|, ~X, ~y, ~X∗], cov(~f∗)
)

, (3.8)
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where

E[~f∗|, ~X, ~y, ~X∗] = ~m∗ +K( ~X∗, ~X)
[

K( ~X, ~X) + σ2
nI
]−1

(~y − ~m) (3.9a)

and cov(~f∗) = K( ~X∗, ~X∗)−K( ~X, ~X∗)
[

K( ~X, ~X) + σ2
nI
]−1

K( ~X∗, ~X).

(3.9b)

M-LOOP only considers white noise as presented here, but generally, GPs can also
treat other noise models. that transform the covariance matrix (3.6) in non-trivial
ways. Some of those are examined in [95, chapter 9].

3.1.2. Kernel Function and Hyperparameters
A kernel (also kernel function or covariance function) is a general function k(~x, ~x′)
mapping two inputs ~x, ~x′ ∈ X, where X is the set of all possible inputs, into R.
Without loss of generality we can assume that X is a region in R

D such that ~x and
~x′ are D-dimensional real vectors. Not any k can serve a valid covariance function
for our GP. First, k should be symmetric such that k(~x, ~x′) = k(~x′, ~x). Second, the
kernel needs to be semi-positive, meaning that the inequality

∫

k(~x, ~x′)f(~x)f(~x′)dµ(~x′)dµ(~x) ≤ 0 (3.10)

holds for all f ∈ L2(X, µ), the set of square-integrable functions. This definition is
equivalent to saying that all eigenvalues for a Gram matrix resulting for k for any
finite subset {~xi ∈ X} are non-negative [95]. Please note, that starting here, we will
use the terms ’covariance function’ and ’kernel’ interchangeably.

Covariance functions fall into several sub-classes. If k is invariant under arbitrary
translations in input space, it is called stationary. A popular stationary kernel is
the squared exponential or radial basis function (RBF) kernel defined by

k
(iso)
RBF(~x, ~x

′) = exp

(

−‖~x− ~x′‖2
2ℓ2

)

, (3.11)

where the free parameter ℓ > 0 defines the characteristic length scale. Equation 3.11
represents an isotropic kernel, as it only depends on the Euclidean distance between
~x and ~x′. Informally speaking, ℓ tells us how far we can move in input space
without affecting the output significantly [95].

Generally, when dealing with multi-dimensional input we would want to assign an
individual length-scale to each dimension. This is also called automatic relevance
determination (ARD) as the the length scale parameters ℓ1, ℓ2, ..., ℓD govern the
relative importance of each dimension [99], under the assumption that all parameters
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have the same or at least similar range. One possible anisotropic generalization of
3.11 is

kRBF(~x, ~x′) = exp

(

−1

2

D
∑

d=1

(xd − x′d)
2

ℓ2d

)

, (3.12)

which is probably the most popular kernel used in GP applications [99]. From a
practical point of view, they have relatively few parameters with clear interpreta-
tion. In addition, they are part of the group of universal kernels, that can be shown
to be capable of approximating any arbitrary continuous function [100].The RBF
kernel is particularly smooth as it indefinitely differentiable.

Taking noise into account can either be done explicitly as in (3.6) or by having
an implicit, local kernel function representing the noise. A kernel describing white
noise (noise level σ2

n) can be achieved by

kWN(~x, ~x′) = σ2
n · δ(D)(~x− ~x′). (3.13)

It is easy to see, that the sum or product of two kernels again form a kernel [95,
chapter 4.2]. For example, the anisotropic RBF kernel can be obtained by multi-
plying one-dimensional RBF kernels. Moreover, we can combine different kernels to
account for different features in our data. The kernel used in M-LOOP in general
is the sum of a (an)isotropic RBF kernel and a white-noise kernel

kM−LOOP(~x, ~x′) = kRBF(~x, ~x′) + λ · kWN(~x, ~x′), (3.14)

where λ ∈ {0, 1} depending on whether we want to incorporate noise into our model.

The collection of all parameters describing a GP’s kernel are called the GP’s
hyperparameters (~θ). Their values greatly affect how well the GP is able to make
predictions for unseen data. This is illustrated in figure 3.2 where we generated
data from f that was randomly drawn from a GP’s prior. The GP had a kernel
as described by (3.14) with length-scale ℓ = 1 and noise variance σn = 0.1. An
estimate for the quality the prediction fpred(~x) is the so called score (1−u/v) where

u =
∑

(f(~x)− fpred(~x))
2 and v =

∑

(f(~x)− E[f(~x)])2 . (3.15)

Ideally, ~x are chosen that are not part of the training set {~xi}. A score close
to the maximum value of 1 indicates that fpred is a good approximation of f .
Figure 3.2a uses the true hyperparameters and has the highest score. In figure 3.2b
the length-scale was chosen too short. Fluctuations are fully explained by the
’signal’ component, while the noise variance is small. We notice how the uncertainty
grows rapidly as we move away from know data points. In contrast, the length
scale in figure 3.2c is too large. A high noise level (σ2

n) is necessary to incorporate
the training data and the score for unseen data is very low.
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(a) Correct hyperparameters.
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(b) Lenght scale too small.
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(c) Length scale too large.

Figure 3.2.: Effect of varying the hyperparameters. The data (red points) sampled
from a function that is drawn from a GP prior with a combined RBF and white
noise kernel as in (3.14). The true hyperparameters are ℓ = 1 and σn = 0.1 as in
(a). The predicted output (black line) and 1σ uncertainty interval (gray area) for
a GP with these hyperparameters that is fitted to the data are superimposed. (b)
and (c) again show the prediction, but for different hyperparameters.

Deciding what values for hyperparameters are appropriate is easy if we know the
true f , which makes an GP unnecessary to begin with. For a real GP regression, we
would be interested in adapting the hyperparameters based on our observations. To
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this end, we will consider the marginal likelihood or evidence of observing outputs
~y given inputs ~X

P(~y| ~X, ~θ) =
∫

P(~y| ~X, ~f) · P(~f | ~X)d~f, (3.16)

where we omitted the explicit dependence on the right-hand-side. Thanks to the
Gaussian nature, we can compute the integral exactly to yield the log-marginal-
likelihood (LML)

log
(

P(~y| ~X, ~θ)
)

= −1

2
~yT (K + σ2

nI)
−1~y − 1

2
log |K|+ const. (3.17)

Numerically, we calculate the LML using Cholesky decomposition instead of direct
matrix inversion, see algorithm 2.1 from [95, page 19] for details. By maximizing
the LML w.r.t. ~θ we find the best hyperparameters given the available data. For M-
LOOP this optimization can be done using the Limited-memory BFGS (L-BFGS)
algorithm, a method approximating the Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [101].

3.2. Differential Evolution
Differential Evolution (DE) is a method for solving global optimization problems
based on stochastic population. It is particularly suited for non-linear and even
non-differential problems. Unlike other direct search approaches such as the the
Nelder-Mead algorithm [102], it does not solely rely on the greedy criterion. While
slowing down it’s convergence it helps to avoid getting trapped in local minima
during the optimization [103]. As their name suggests, DE an other evolutionary
algorithms are inspired by the natural selection process. There are many examples
of their application in quantum optics [32, 104].

During the optimization process the algorithm evolves a set or population of D-
dimensional parameter vectors, {~xi,G}NP

i=0, in order to find the global optimum of
some cost function C. NP denotes the size of the population while D is the number
of parameters to be optimized. The subscript G = 0, 1, ... is the generation number
which is increasing as the optimization progresses. The initial set of vectors (G = 0)
should in general be chosen randomly and distributed uniformly across the entire
parameter space. The evolution from one generation to the next is performed in
three steps: mutation, crossover, and selection which will be briefly described in the
following.

Mutation

Mutation in DE describes the process of generating a set of vectors {~vi,G}NP

i=0 from
the the population of the generation G. In its simplest form this is performed by
adding the weighted difference between two vectors to a third offset vector, all drawn
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current generation G is depicted as circles,
with the target vector ~xi,G, the best vec-
tor of this generation ~xb,G, and two random
vector highlighted in blue and red. The
blue triangle denotes the mutant vector
~xi,G after amplifying the differential vari-

ation by F = 0.7.
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Runiform(4) ≤ pcr
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(b) Crossover: Generic mechanism of com-
bining the target vector ~xi,G and the mu-
tant vector ~vi,G to form the new trial vector
~ui,G+1. The random index is Rindex = 5.

Figure 3.3.: Illustration of the mutation (a) and crossover (b) step of a differential
evolution. In (a) the contour of the Ackley function is superimposed.

from the population of generation G [103] such that

~vi,G = ~xr0,G + F × (~xr1,G − ~xr2,G) , (3.18)

where r0, r1, r2 ∈ {1, ..., NP} are chosen randomly and different from each other and
the running index i. The amplification F > 0 is a real and constant factor that
weights the differential variation (~xr1,G − ~xr1,G). Other mutation strategies invole
more vectors and therefore determine minimal population size. Table 3.1 gives an
overview of the mutation strategies available in M-LOOP.

Crossover

Crossover is DE’s strategy of parameter mixing, a procedure introduced to increase
the diversity of the parameter vectors in the next generation G+1. From the target
vector ~xi,G and the mutant vector ~vi,G+1 the trial vector ~ui,G+1 = (u1i,G+1, ..., u

D
i,G+1)
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strategy offset vector differential variation minimal population size
rand1 ~xr0,G ~xr1,G − ~xr2,G 4
best1 ~xb,G ~xr1,G − ~xr2,G 4
rand2 ~xr0,G ~xr1,G − ~xr2,G + ~xr3,G − ~xr4,G 6
best2 ~xb,G ~xr1,G − ~xr2,G + ~xr3,G − ~xr4,G 6

Table 3.1.: Different mutation strategies for calculating the mutated vector ~vi,G+1

available in M-LOOP. r0, r1, r2, r3, r4 ∈ {1, ..., NP} are chosen randomly and differ-
ent from each other and from i. ~xb,G is the best parameter vector for the current
generation.

is formed, where the components uji,G+1 (j = 1, ..., D) satisfy

uji,G+1 =

{

vji,G+1 if Runiform(j) ≤ pcr or j = Rindex(i)

xji,G if Runiform(j) > pcr and j 6= Rindex(i)
(3.19)

where Runiform(j) ∈ [0, 1] is the jth evaluation of a uniform random number
generator, pcr ∈ [0, 1] the predefined crossover probability and Rindex ∈ {1, ..., D} is
randomly chosen index, ensuring that at least one parameter from the the mutated
vector is used.

Selection

The trial vector is now compared to the target vector with respect to the cost
function. If the trial vector has a smaller cost than the target vector, it is accepted
and becomes the new target vector ~xi,G+1 in the next generation; otherwise, ~xi,G is
moved to the next generation.

Figure 3.5 shows how DE can used for finding the global minimum of the Ackley
function

fackley(~x) = −A ·exp
(

−B
√

1

2
|~x|2
)

−exp

(

1

2

(

cos
(

C · x(1)
)

+ cos
(

C · x(2)
))

)

+A+e,

whose minimum occurs at ~x = (0, 0)T . This function can be used for bench-marking
optimizers and illustrates the advantages of global optimizers. While local optimizers
would likely get trapped in local minima, DE will find the global minimum within
∼ 11 generations.
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Figure 3.4.: 3D representation of the fackley(~x). Finding the global minimum using
gradient descent would be very challenging.
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Figure 3.5.: Finding the minimum of the Ackley function using DE.
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3.3. M-LOOP Optimization Routine
After introducing the key concepts of GPR and DE, we now describe how they are
employed in an optimization routine. Optimization routine refers to the process of
iteratively generating new trial parameter vectors in order to achieve some optimal
performance.

Let us first clarify a few terms related to the API. In M-LOOP, a controller
handles the different threads of the program and determines which strategy to use
for generating new trial parameters learner and trainer. Available strategies are

• for the learner: random1, Neural Net (NN)2, Gaussian Process, Nelder-Mead2,
and Differential Evolution

• for the trainer: random1, Nelder-Mead2, and Differential Evolution.

The controller is connected to the physical experiment via the interface.

Generally one has to differentiate between two cases. In the first case, no machine
learner is used, making the program acts as regular optimizer only using one of the
three available training strategies.

If a NN or GP learner is being used, the optimization routine primarily draws
new points from the predictions of the machine learner. Nevertheless an initial
training is necessary to seed the first iteration of the learner cycle. After this,
the controller can be configured only use the machine learner to generate new
parameters. Here one should note, that over time the effective training data for
our ML models increases as the experiment is run over and over again. Therefore,
the time needed to fit the model does as well. It is possible that this time exceeds
the duration of one experiment. M-LOOP therefore offers the option to perform
training runs (using one of the available strategies) while the learner is fitting the
model. Figure 3.6 illustrates a typical optimization routine, where one sees that
the number of training runs increases towards the end of the optimization.

Using M-LOOP over the course of this thesis, we have identified several problems
related to the design of the software that partially have been discussed and solved
together with developers of M-LOOP. Two other possible improvements of the API
have been identified and will be brought to the attention of the lead developers.
First, the treatment of ”bad” iterations might be improved. Bad here refers to runs
where no appropriate cost could be returned. At the moment, this solely attributed
to a wrong parameter choice, and bad runs are included in the Gaussian fits and
contribute to the parameters selection. As we will see in the following chapter, this

1 generate random parameters for each run
2this learner/trainer was not considered for this thesis
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pass all previous pa-
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uncertainties*

initial training trainerlearner cycle

time

Figure 3.6.: Graphical depiction of a typical optimization routine.

can greatly affect the optimizers ability to develop an appropriate statistical model
for the problem. An option to exclude all or certain bad runs from the Gaussian fit
might improve the overall performance of the optimizer.

Second, M-LOOP currently only considers uncorrelated, white noise on top of
the correlated changes to the cost arising from changing the parameters. Long-
term drifts in the cost, that would exhibit some correlation in time cannot be taken
into account accurately. Using a GPR with an additional kernel that could describe
correlated changes in the cost that cannot be attributed to changes in the parameters
might help to improve M-LOOP’s performance in an experimental setting.
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4. Online Optimization in a
Single-Atom Trap Experiment

The problem of finding the best way to use resources to steer a system is known
as optimal control, where we call the measure for how good the control over
the system is as cost (C). Generally we can differentiate between two categories
of optimizations: open-loop and closed-loop. For open-loop optimizations the
inputs or parameters are determined beforehand by minimizing some model of the
expected cost Cmod. In contrast, closed-loop optimizations use the output of the sys-
tem itself as feedback for the optimization. Both schemes are illustrated in figure 4.1.

In our concrete case the ”system” to be optimized can be either a initial state
preparation or a state readout process. One major aspect of the control of these
systems, as described in sections 2.4.1a and 2.4.3, are the applied laser fields.
Those, in turn, are controlled by modulating the RF input of several acousto-optical
modulators (AOM).

For this thesis we have developed several optimizers based on the open source
M-LOOP API(sec. 3.3), implementing both (unsuccessful) open-loop optimization
on simulation data and closed-loop optimization with feedback from the experiment
itself.

This chapter is structured as follows: First, we briefly introduce the arbitrary
waveform generator (AWG), which provides the RF inputs to the AOMs. Using an
AWG allows for a more flexible temporal and spectral form the of the applied laser
pulses. Second, we will give a short overview of how the optimizer was interfaced
with the experiment and the DAQ. Lastly, the remaining two sections present the
experimental results of our optimizations for the state preparation and readout
processes.

Convention for Denoting Error Tolerance and Notation

Error tolerances will be denoted as follows, unless explicitly stated otherwise:
measured data in section 4.2 is displayed with errorbars corresponding to three
standard deviations (3σ), while in section 4.3 only one standard deviation (1σ)
is displayed. Data for fits in both section has either no error tolerance (e.g. for
the hyperparameters returned by M-LOOP) or a 1σ error-band (e.g. for the
cross-sections).

In addition, for plots in section 4.2 the simplified notation pumpi→j ≡ pumpij
was used. To prevent ambiguity, references to the ”best” or ”optimal” parameters
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Control SystemOptimizer
min(Cmod) ~xopt C(~xopt)

(a) Open-loop optimization.

Optimizer

Control System
~x

C(~x)

min(C)

(b) Closed-loop optimization.

Figure 4.1.: Difference between open-loop (a) and closed-loop (b) optimization.
The goal is to optimize the control of some system such that the cost C is mini-
mized. In (a) the optimizer optimizes the cost of some model Cmod. It uses some
information from the control and the system, indicated by dashed arrows. It predicts
some optimimal parameters ~xopt = argmin(Cmod) which then are passed through the
control into the system, yielding some C(~xopt). In (b) the control and system are
part of the optimization process. They exchange parameters ~x and the resulting
cost C(~x) until some optimal set of parameters argmin(C) are found.

mean the best predicted parameters of the optimization. In general, those are close
to the actually best observed parameters.

4.1. Technical Implementation of a Closed-Loop
Optimization

For running the closed-loop configuration and implementing the results from the
open-loop optimizations, several ingredients are necessary:

1. Output from the Experiment
automatized evaluation of the performance of the state preparation (see
sec. 2.4.1a) and readout process (see sec. 2.4.3)

2. Inputs to the Experiment
control of the laser fields via the RF input of the AOMs (see sec. 2.5)

3. Optimization Routine
developed based on M-LOOP (see sec. 3.3)

4. Interfacing
replacing the human generate input by machine (see sec. 4.1.2)

4.1.1. Arbitrary Waveform Generator
The AOMs used in our experiments RF input in the range of roughly
60MHz ∼ 400MHz. Generally, the RF input is generated by a voltage-controlled
oscillator (VCO) whose output is attenuated to a given value Uin. Both, the input
voltage of the VCO (UVCO) and Uin, can be set internally or externally. In our setup
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RF driver
VCO attenuator AOM

UinUVCO mask

(a) Operation of an AOM using a RF driver.
A VCO generates a sinusoidal signal with
a frequency depending on the input volt-
age UVCO. This signal is attenuated to Uin,
which is masked square pulses. The result-
ing waveform is fed into the AOM through
a amplifier.

AWG
digital

waveform DAC AOM

trigger

(b) Operation of an AOM using a AWG.
A digital waveform is generated and loaded
to the buffer of the AWG. Upon receiving
a trigger the waveform is fed directly into
the amplifier for amplification before being
passed to the AOM.

Figure 4.2.: Operating an AOM with a RF driver (a) and an AWG (b). With the
AWG a greater variety of waveforms can be fed into the AOM. Both the mask in
(a) and the trigger in (b) are provided by the same pattern generator.

the input of Uin is an external logic signal, producing a sequence of square pulses
with fixed amplitude that are multiples of 20 ns or 2 µs,. Finally, the attenuated
VCO signal is amplified before being fed into the AOM (fig. 4.2a).

To allow for more freedom in the applied RF pulses and hence in the laser pulses,
the decision was made to acquire two arbitrary waveform generators (AWGs)1.
AWGs are electronic devices capable of generating analog voltage outputs from
digital waveforms. Unlike traditional function generators, whose output is generally
restricted to certain types of waveforms, AWGs are capable to generate, in principle,
any shape of output, hence their name. In practice, their operating range is mainly
limited by the maximum output voltage, the output amplitude resolution, the
sampling rate and bandwidth, and, depending on the operation mode, the memory
depth.

In the experiment the trigger will be provided by the same logic pattern generator
that is used for masking the input voltage of the RF drivers. The output of the
AWG can easily be shifted relative to the time the trigger was received by analog
or digital means. A schematic block diagram contrasting the operation of an AOM
using an AWG or the RF driver can be found in figure 4.2b.

1Spectrum Instrumentation (short: Spectrum) M4i.6622 (4 channels, bandwidth 200MHz) and
M4i.6631 (2 channels, bandwidth 400MHz)
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Optimizer

AWG

AOMExp. Control

Trap Setup

waveform RF signal

laser pulsesresults/cost

trigger

Figure 4.3.: Simplified block diagram of the optimization loop. The optimizer gen-
erates waveforms that are loaded to the AWG and replayed upon receiving a trigger
from the pattern generator. The RF signal is fed into an AOM which determines the
resulting laser pulse sequence that is steering the trap setup. Finally, the output of
one iteration is used by the optimizer to generate new waveforms. The experimental
control is responsible for various settings and starts and stops a measurement; thus
communication between the optimizer and the experimental control is necessary.

4.1.2. Interfacing M-LOOP and the Experimental
Infrastructure

In both labs the experiments are controlled from a single computer (atom or atom2
in lab 1 and 2, respectively), whereby a master-slave configuration is used for
atom-atom experiments. Additional computers that are needed for tasks like the
regular calibration of the magnetometers or the polarization in the long optical
fibers are also present in the labs.

A specifically designed program (countersuite) allows to control everything that
needs to be set up to ms timescales2, including the voltages of a digital output
board3 that are fed into the RF drivers of the AOMs as Uin. While simple,
discrete scans that are used for optimizations are possible using the current
software framework, more complex optimizations using external programs made
some changes necessary. In principle the optimization is implemented as shown in
figure 4.3. The optimizer generates a waveform which is loaded to the AWG, upon
which the measurement is started by countersuite. The AWG is repeatedly triggered
through the pattern generator, to output the waveform through the DAC. The
resulting laser pulse sequence steers the experiment in the trap setup. Eventually,
the measurement is stopped by countersuite and the output is evaluated and used
to generate new waveforms.

The technical implementation called for setting up an additional computer, jupiter ,
2For settings that change at even faster timescales, down to 20 ns a logic pattern generator is

used.
3Data Translation DT330
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in lab 2, both due to the need for an additional PCIe slot for the AWG and the
potential risk of slowing down atom2 with the intensive calculations needed for fitting
the GP. Moreover, an extension to countersuite was developed (scheduler). It enables
automatized execution of “task”, sets of instructions about which settings to use for
and when to start and stop a measurement. The execution of the task and the end
of the run are communicated through a signal file on a hard drive accessible to both
computers. Additionally, scheduler can be used to “schedule” tasks at specific times
which can be used to for example switch between measurements without human
input.

4.2. Optimizations in the Pumping Process
One area of the experiment where the possibility for improvements was identified was
the optical pumping process (sec. 2.4.1c). At the moment, only in about ηprep . 80%
of the cases the desired state |1, 0〉 can be prepared within the ∼ 2.3 µs of optical
pumping, which has a significant effect on the event rate and entanglement fidelity.

4.2.1. Model for Determining the Pumping Efficiency
As mentioned before, optimization on the state preparation efficiency (ηprep) itself,
which involves three (destructive) measurements, is very time-consuming and hence
slows down the feedback loop. The Event rate for an ionization-based measurement
scheme such as the one used here (see sec. 2.4.1b) are limited by the time that
is needed to trap an atom (O(1Hz)). Instead, we will optimize a closely related
quantity that describes the probability of detecting a single photon in a given
excitation try, ηdet. Hereby, the event rate is limited by the repetition rate times the
success rate of the single photon collection (typically ∼ 50 kHz and ∼ 5h resulting
in O(250Hz)). Simulations based on a quantum jump model [53], performed in [45]
and discussed in more detail below, show that the detection of a photon after an ex-
citation try is >28 times more probable when the atom is in the desired state relative
to the other states, which makes the photon detection efficiency an ideal quan-
tity to optimize on. We will briefly show how we arrive at this figure in the following.

After the optical pumping the atom is in a mixed state of the Zeeman-substates
of 52S1/2, described by the density matrix

ρprep = ηprep |1, 0〉〈1, 0|+ (1− ηprep)×

×
(

A |1,+1〉〈1,+1|+B |1,−1〉〈1,−1|+
∑

m

Cm |2,m〉〈2,m|
)

,
(4.1)

where A,B, and Cm (m = {−2, ...,+2}) describe the relative populations in the
other Zeeman-substates and trivially sum to 1.
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F ′′ = 0 and F ′′ = 1 are only separated by 72MHz while the separation between
F = 1 and F = 2 is 6.8GHz. Thus, applying the excitation pulse that is intended
to be π-polarized and resonant to the F = 1 ↔ F ′′ = 0 transition only affects the
populations in F = 1. We can identify three different effects, each described by an
individual excitation efficiency:

η
(r)
exc resonant excitation from |1, 0〉 to |F ′′ = 0,mF = 0〉

η
(σ)
exc resonant excitation from |1,±1〉 to |F ′′ = 0,mF = 0〉 due to residual cir-

cular polarization of the excitation laser

η
(o)
exc off-resonant excitations with π-polarized light from |1,±1〉

to |F ′′ = 1,mF = ±1〉4

Furthermore, there is a finite number of events where two photons are emitted for
one excitation try. Of these two-photon events only those where the first excitation
was resonant have a significant branching ratio. In a two-photon event either the
first or the second photon can be detected with non-vanishing probability. Thus,
there are in total eight relevant excitation processes with different effect on the
final atom-photon state [45]. However, for the purpose of optimizing the pumping
efficiency, only the state of the atom before the excitation is of interest. We can
write the probability to emit a σ±-polarized photon for a given excitation try

Prdet =



ηprep ·



Pr(r)det +
∑

i∈{r,σ,o}
Pr(r,i)det



+ (1− ηprep) · (A+B) ·
(

Pr(o)det + Pr(σ)det

)



 ,

(4.2)
where Pr(...)det is the excitation efficiency of the corresponding process, conditioned
our ability to detect it. We assumed that unwanted processes where equally likely
for atoms initially in either mF = ±1 state. Pr(r,i)det describes two-photon events
the second excitation was resonant (r, r), off-resonant (r, o), or due to σ-polarized
light (r, σ). If both excitations were resonant, the first photon was π-polarized and
therefore not detectable.

The misalignment of the polarization χexc = cosα · V + sinα ·H of the excitation
laser was set to α = 5◦. The temporal shape of the excitation pulse determines
the prevalence of off-resonant excitations. Its finite duration (FWHM=20.35 ns)
leads to a significant spectral broadening (∆Γ = 21.6MHz) of the otherwise narrow
laser frequency. As higher excitations powers Pexc also increase the probability
for off-resonant excitations, Pexc is set at around 80% of the power yielding
the largest number of emitted photons (maxηdet(Pexc). A simulation considering
ηprep = 80% and all remaining population split amongst the other two F = 1
substates (A+B = 100%) is shown in figure 4.4a.

4Off-resonant excitation |1, 0〉 to |F ′′ = 1,mF = 0〉 are dipole forbidden.
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The simulations show that emitting a detectable photon is about 28.3 times more
likely if the atom is initially in |F = 1,mF = 0〉 ≡ |Ψ0〉 compared to events where the
atom was in either |F = 1,mF = ±1〉. We can also infer the conditional probability
that the pumping was successful given a detectable photon was emitted

Pr(Ψ0|D) =
Pr(Ψ0) · Pr(D|Ψ0)

Pr(D)
=
ηprep ·

∫

(

Pr(r)det +
∑

i∈{r,σ,o} Pr(r,i)det

)

dt
∫

Prdetdt
(4.3)

as a function of the state preparation efficiency ηprep = Pr(Ψ0) for different values
of A + B (figures 4.4b). We see that increasing ηprep will increase the number of
detected photons and conversely, that an increased number of detected photons can
almost exclusively be attributed to an increased ηprep. Finally, figure 4.4c shows the
ratio of Prdet between those events where the atom is prepared in |1, 0〉 and those
where it was in any other Zeeman substate as a function of ηprep and different A+B.
We can directly read off the value for

Pr(D|Ψ0)

Pr(D|Ψ0)
=

ηprep
1− ηprep

·
∫

Prdet(Ψ0)dt
∫

Prdet(Ψ0)dt
=

ηprep
1− ηprep

· 28.3 · (A+B)−1 (4.4)

from figure 4.4c at ηprep = 1− ηprep = 0.5. We should, however, note that changing
the excitation power would significantly change the above calculations as further
increasing Pexc will lead to more excitations from |1, 0〉 as well as from |1,±1〉, thus
lowering this factor.

Only a fraction ηcol of all emitted (correctly polarized) photons can be actually
detected on the APDs. ηcol describes the photon collection efficiency that is much
smaller than 1 due to finite angular acceptance, imperfect detectors, or losses in
the fiber leading to the APDs. Therefore we can express the number of photons we
detect on the APDs, nph, as

nph = ηcol · Prdet · ntries + ndark. (4.5)

where ntries is the (known) number of excitation attempts and ndark is the num-
ber of dark counts of the APDs, which can largely be neglected as it is only O(10Hz).

The probability to detect a photon for a given excitation try is identical to and
independent from all other excitation tries, giving us a constant mean photon de-
tection rate nph/ntries. This allows us to model the process by a Poisson distribution
yielding the probability to observe exactly k photons

Pr(k) =
nk
ph · e−k

k!
. (4.6)

The mean as well as the variance of this PDF are given by nph. Therefore we will

55



4. Online Optimization in a Single-Atom Trap Experiment

700 725 750 775 800 825 850 875 900

time (ns)

0

5

10

15

20

p
h
ot
on

d
et
.
p
ro
b
.
η d

e
t
(‰

) excitation pulse

observed data

|Ψ〉 = |Ψ0〉 = |1, 0〉

|Ψ〉 6= |Ψ0〉 (× 10)
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any other Zeeman substate (green). The excitation pulse (black, a.u.) is superimposed to
visualize the relative timing. Data is identical to what is presented in [45]. It is displayed
only for illustration, thus without any associated error.
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Figure 4.4.: Simulated photon detection possibilities (a) from [45]. From them it
is possible to calculate the conditional probability that the atom was initially in
|F = 1,mF = 0〉 after the pumping given we detect a photon.
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define cost and uncertainty for the pumping optimizer as

Cpump = 1− α · nph

ntries

(4.7a)

and Upump = α ·
√
nph

ntries

. (4.7b)

where α is just an arbitrary scaling parameter, typically 100, which is just used for
computational reasons.

4.2.2. Experimental Setup for Optimizing the Initial State
Preparation

To optimize the initial state preparation, two output channels of the AWG are
used to manipulate the pump1→1 and pump2→1 laser fields via the respective
AOMs which are operated at around 200MHz and 75MHz. After finding the
optimal settings by maximizing ηdet at fixed excitation power, these may be tested
by performing an excitation-power-scan and by determining ηprep according to
section 2.4.1b. Optimizing based on ηdet enables fast iterations of the optimizer,
about one minute per parameter set. By scanning the excitation power it is possible
to eliminate fluctuations in ηdet that arise from changes in in the excitation power
occurring over time. Lastly, we want to circle back and motivate the performance
physically.

The experimental sequence for the optimization and the excitation-power-scan
is depicted in figure 4.5a. It is started once a waveform has been loaded to the
buffer of the AWG. The pattern generator triggers the AWG such that the loaded
waveform is executed in the pumping window of ≥ 2.3 µs. To verify the timings the
light pulses are monitored with fast photodiodes. Roughly 300 ns after the end of
the pumping window, a short excitation pulse is applied. This might lead to the
emission of a photon which can be registered by either single-photon APD within the
200 ns photon detection window. This window is delayed by 700 ns relative to the
excitation pulse. The excitation process is repeated 40 times before the atom needs
to be cooled again. The fluorescence trace (fig. 2.8) is continuously recorded and the
control program switches back to trapping once the atom is lost. The experimental
sequence is repeated for 60 seconds before the output is evaluated. This output
will be used to generate new waveforms to load to the AWG during the optimization.

For determining ηprep the experimental sequence will be modified as shown in fig-
ure 4.5b. The state preparation efficiency is determined as described in section 2.4.1,
inferring the population in |F = 1,mF = 0〉 as described in 2.28. After the pumping
window, instead of the excitation pulse as before, the cycling, ionization, and pos-
sibly readout lasers are applied. In the following 60ms the presence of the atom in
the trap is checked, returning the sequence to the cooling or trapping depending on
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Trapping
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350 µs

Pumping

Tpump ≥ 2.3 µs ∼ 300 ns

Excitation

700 ns 200 ns

Single Photon
Detection

atom lost?

NoYes 40×

AWG trigger

(a) Determining ηdet: After the atom has been trapped and cooled (red), the AWG is
triggered (red triangle) such that the waveform is replayed during the pumping window
(blue). Waiting times (gray) before and after the excitation (orange) are necessary such
that the photons can be detected during the acceptance window (magenta). After 40
preparation-excitation attempts, the atom is additionally cooled (red) to assure a low
atom temperature is maintained. Loosing the atom results in starting the sequence from
at the trapping.

Trapping

∼ 1 s

Cooling

350 µs

Pumping

Tpump ≥ 2.3(+2)µs

Readout

150 ns 60ms

Fluorescene
Collection

atom lost?

NoYes

AWG trigger

(b) Determining ηprep: The pumping window is followed by the atomic state readout
(green) as described in the text. By collecting the fluorescence for 60ms (yellow) we
determine if the atom was ionized. Depending on the outcome of this test, the sequence
is restarted at the trapping or cooling.

Figure 4.5.: Timing schemes the experimental sequences used for determine ηdet
(top) and ηprep (bottom).

the outcome. If the readout laser was not used, the probability of ionizing the atom
is equal to the remaining population in F = 2. In case the readout laser is used with
polarization χro = V (χro = H) we ionize the atom if it is in either |2,mF 〉, |1, 0〉 or
i√
2
(|1,+1〉+ |1,−1〉) ( i√

2
(|1,+1〉 − |1,−1〉)). Therefore, we can determine ηprep as

ηprep = 1−
[

Prred(χro = V ) + Prred(χro = H) +
[

1− Prred(Pro = 0)
]

]

. (4.8)
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4.2.3. Measurements for Optimizing the Initial State
Preparation

The following section will summarize some of the optimizations performed for the
pumping, along with an analysis of the results and a meta-analysis of the opti-
mization itself. Several problems, mostly concerning parameter choice, have been
identified. Unfortunately, due to technical difficulties with the experiment, we were
not able to repeat the optimizations after fixing those issues. However, with the
infrastructure put in place for this thesis, doing so in the future should not pose
major problems.

4.2.3a. Verification of the Optimization Process

In the current experimental setup, the pumping is optimized by a series of inde-
pendent scans over the frequency and amplitude of both pump1→1 and pump2→1.
Within one scan, one parameter singled out and varied in discrete steps while
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Figure 4.6.: Overview for the optimization laid out in sec. 4.2.3a where the four
parameters are the frequencies and amplitudes of both pumping lasers. Note that in
(a) the uncertainties are smaller than the markers and the different colors correspond
to the optimizer that provided the parameters for the corresponding run, either the
GP or the DE. (b) show how the hyper-parameters that were fitted during the
optimization evolve as more data becomes available. For convenience the logarithm
of the length-scale (log10(ℓ)) has been used. The square root of the noise level for
each fit is indicated on the secondary axis.
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Figure 4.7.: One dimensional cross-sections centered around the best predicted
parameters for the pumping optimization with four free parameters.

keeping all other parameters fixed. Rather than exploring the entire four dimen-
sional parameter scan, we concentrate on several points along one dimensional
cross-sections that, together with experience and knowledge of the experiment, let
us estimate a set of optimal parameters. Using a ML optimizer, in particular on
capable of global optimization such as M-LOOP, can relax this requirement for
prior knowledge while also offering a more quantitative approach for estimating the
optimal parameters.

To verify the optimization process we started by replicating the current pumping
sequence. The RF pulse going into the pump1→1 AOM is rectangular in shape and
has fixed frequency and amplitude. The corresponding waveform for pump2→1 is a
series of identical square pulses (width ∼ 200 ns, fixed amplitude and frequency)
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Figure 4.8.: Two dimensional cross-sections centered at the best predicted parame-
ters for the pumping optimization using four free parameters. The predicted cost as
a function of two parameters is plotted, with the cross-section-lines corresponding
to the best predicted parameters (fig. 4.7) indicated by white lines.

with a duty cycle of 80%. We had several goals with this optimization. First, we
wanted to test the hardware, software and their interplay. Second, the advantages
of using a Gaussian process for the optimization should be demonstrated. Finally,
the obtained optimal waveform was supposed to stand in as benchmark facilitating
the comparison of different optimizations.

With only four parameters the optimizer was able to find an optimum of Cpump

within a few runs (fig. 4.6a), considering the large parameter space. The evolution
of the hyper-parameters (fig. 4.6b), in particular the length scales, indicate
that M-LOOP is able to successfully learn the underlying landscape. For each
parameter, the length scale seems to stabilize after the sixth fit. Post-processing
of the obtained data found comparable values. The length scale for each param-
eter is O(1), indicating that all four parameters have similar relevance in this
parameterization. The noise variance σn (fig. 4.6b) has not settled but is fluctuat-
ing at a level that is does not greatly affect the overall uncertainty of the Gaussian fit.

The predicted best parameters lie well within the parameter boundaries, and
correspond to a predicted cost of Cpump = 4.9(4)h, which is compatible with the
best observed cost of 5.1. The one dimensional predicted cost and uncertainty
landscapes, centered at the predicted best parameters, for each parameter are on
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Figure 4.9.: Scanning the excitation power with either the RF drivers or the AWG.
For better visibility, errorbars indicate three standard deviations. The bottom panel
shows the relative different between the two curves. We find that the performance
of the pumping when using the RF drivers or the AWG is indeed comparable. It is
thus possible to use the waveform generated by the AWG as benchmark.

display in figure 4.7. Even greater insight can be obtained by projecting the cost
landscape onto a two dimensional surface spanned by two parameters of choice as
in figure 4.8, where the center was once again the best predicted parameters. The
aforementioned feature of having more than one optimal value for the pump1→1

frequency could not be inferred by M-LOOP. It should be noted, that due to finite
sampling and the inherent inability to properly visualize a four dimensional pa-
rameter space more features such as local or even global optima could remain hidden.

After having established that by using M-LOOP it is possible to find some local
or global optimum for the excitation efficiency, we next set out to investigate how
this optimum compares to the performance we can achieve when using the RF
driver instead of the AWG. The figure or merit that determines the cost used for
optimization is the single photon efficiency, ηdet, which in turn is dependent on the
excitation pulse. Therefore, we performed an excitation-power-scan, measuring ηdet
as a function of the excitation power5, for both cases. The results in figure 4.9
imply that the AWG performs similarly well as the RF driver, motivating the use
of the optimal waveforms obtained here for bench-marking later optimizations.

Please note that the optimal frequencies and amplitudes change over time and are
dependent on the alignment of various optical elements. References to the optimal
waveform in this section that will occur in the following sections always imply that

5the measured maximum of the excitation pulse on an oscilloscope
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Figure 4.10.: Optimizations for varying the total pumping time.

the parameters have been re-optimized around the same time as the measurement
they are compared to.

4.2.3b. Varying the Pumping Time

By varying the total time allocated to the pumping, Tpump, we wanted to investigate
if ηprep could be increased by simply pumping longer and potentially with less optical
power. We performed two optimizations (fig. 4.10) varying Tpump from 1.5 µs to
14.5 µs and from 14.5 µs to 39.5 µs, respectively. We fixed the frequencies of both
pumping beams at the frequencies we had found for 2.3 µs and used a single square
pulse for pump1→1 and sequence of square pulses with (∆T, β) = (200 ns, 80%) for
pump2→1. For these measurements, we extended the period in which pumping could
take place from 2.325 µs to 39.5 µs and increased the cooling time to 600 µs every 40
pumping-excitation tries. The resulting repetition rate, that can be estimated as

40 tries
40 · Tpumping + Tcooling

= 18 kHz (4.9)

was smaller than the repetition rate for the other pumping optimizations by almost a
factor 10, yet still significantly higher than the rate for a direct measurement of ηprep.

Both optimizations found an optimum, yet the optimization with the smaller
values of Tpump (fig. 4.10a) spent more time exploring other regions of parameter
space. While the optimal amplitude for pump1→1 lays around the value that had
been found in the optimization with fixed pumping time, the landscapes for the
amplitude of pump2→1 and Tpump differ notably. The landscape for shorter available
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Figure 4.11.: Two dimensional cross-section for the predicted cost as a function
of total pumping time Tpump and amplitude of pump2→1. Tpump is measured from
the back of the pumping window, hence the negative values. The landscape in (a)
appears to be richer than the landscape in (b). Hence, as both optimization had the
same number of iterations, the larger predicted uncertainty in (a) is to be expected.

pumping times (fig. 4.11a) has clear optimum at the value of A that corresponds
to the maximum efficiency of the AOM and thus the maximum available power in
the pump2→1 beam path. For longer available Tpump it appears as if the amplitude
for pump2→1 is less relevant but Tpump should be chosen as short as possible
(Tpump = 14.5 µs) to yield the optimal cost.

Performing an excitation power scan (fig. 4.12) found that indeed this predicted
minima corresponded to higher ηdet than for the case of fixed pumping time. The
relative excess (fig. 4.12, bottom panel) grows as the excitation power is increased,
indicating that both the population of the target state and |1,±1〉 are increased.
For Pexc ≈ 80% ·maxηdet(Pexc) the largest excess is observed for the optimum found
by the optimization with shorter available pumping times.

In fact, when we measure ηprep directly (fig. 4.13) we see that the best state
preparation efficiency can be reached for Tpump = 11.0 µs as for even longer Tpump

the population |1,±1〉 is further increased. However, it should be noted that
the large errors on the population of |1,±1〉 make a definite decision challenging.
Each data-point for

∑

Pr(|1,±1〉) corresponds 60min of data acquisition, longer
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measurements times were not feasible. Figure 4.13 also illustrates the importance
of adding 2 µs to Tpump after cooling.
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Figure 4.12.: Excitation power scan for varying the pumping time. Each data-set
corresponds to the predicted best parameters of the optimization where Tpump was
fixed at 2.325 µs (sec. 4.2.3a, green) or could be varied from 1.5 µs to 14.5 µs (blue)
or from 14.5 µs to 39.5 µs (orange), respectively.
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Figure 4.13.: Population of |2, 0〉 (blue), the sum of |1,±1〉 (red) and |1, 0〉 ≡ ηprep
(black) with optimized parameters for Tpump = {2.3, 11.0, 14.5}µs. The optimal
state preparation efficiency seems to be achieved for Tpump = 11.0 µs, however the
large uncertainties make a definite decision challenging. Triangles denote the data
for F = 2 where no extra puming time of 2 µs was added.
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(a) Rectangular pulse with variable length for the pump1→1.
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(b) Sequence of square pulses with variable period T and duty cycle β for the pump1→1.

Figure 4.14.: Obtained cost per run (left) and hyperparameters per fit (right) for
the pumping schemes laid out in section 4.2.3c. In (a) the cost seems to jump around
run 75 which impairs the quality of the fit which manifests in a sudden jump of the
length scale of the pump1→1 amplitude. Solutions to this problem are offered in the
text.
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4.2.3c. Temporarily Turing Off pump1→1

As we have seen the atom ends up in either F = 2 substate in a not insignificant
number of pumping attempts. Redistributing occupation probabilities of these
substates amongst the F = 1 substates should improve ηprep. To this end we
investigated two pumping schemes: one where the pump1→1 would be turned off
prior to the pump2→1 and one where the pump1→1 would consist of a sequence of
square pulses, similar to the pump2→1. Both of these pumping schemes emerged as
particularly useful in the simulations that only considered resonant excitations. In
the simulations, the former scheme would allow moving the remaining population
in F = 2 to F = 1 without the chance of subsequent re-excitation while the latter
would almost step-like lower the population in F = 2.

In both schemes, amplitude and frequency of both pumping beams would be the
same for the entire waveform, with one or two additional parameters describing the
envelop of the pump1→1. In one case (fig. 4.14a) the additional parameter is the
length of the pump1→1 pulse which can be varied up to Tpump = 2.325 µs. For the
other case the pump1→1 waveform consists of a series of square pulses, characterized
by a period length T and a duty-cycle β.

Optimization with both schemes were possible, with all parameters being relevant
to the problem. The measurements suggest that neither reducing the length of
the square pulse nor sequencing the pump1→1 was favourable. While the former
optimization predicted the best pulse length T to be T = Tpump (fig. 4.15a), the
latter predicted the optimum at (∆T, β) ≈ (25 ns, 75%) (fig. 4.15b). Taking the
technical limitations set by the AOM into account the finite switching time of the
AOM, this also points towards an optimum that corresponds to pump1→1 always
being present.
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(a) pump1→1 square pulse with variable length. M-LOOP predicts that the optimal
pumping efficiency can be achieved if the pump1→1 beam is present during the entire
pumping sequence.

500 1000 1500 2000

time (ns)

-5.1

-5.0

-4.9

-4.8

-4.7

-4.6

-4.5

-4.4

p
re
d
ic
te
d
co
st

−
η
d
e
t
(×

10
−
3
) pump11 ∆T

0 20 40 60 80 100

percentage (%)

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

p
re
d
ic
te
d
co
st

−
η
d
e
t
(×

10
−
3
) pump11 β

(b) Sequenced pump1→1 with varying period length (left) and duty-cycle (right). While
the predicted optimum is achieved for a duty-cycle β ∼ 75%, having the pump1→1 always
present (duty-cycle 100%) is well within the 1σ error bounds, in particular if one also takes
the sequence length and the technical limitation set by the AOM into account.

Figure 4.15.: Cross-sections for selected parameters of the two optimizations in
section 4.2.3c.

4.2.3d. Varying the Spectral Profile for pump2→1

The initial tests (sec. 4.2.3a) seemed to indicate that there existed multiple local
optima or at least a wide range of suitable frequencies for the pump2→1. Using the
AWG, it is easy to vary the frequency throughout the pumping or even use multiple
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frequencies at once. In particular, we looked at three different schemes implementing
a wider spectral profile for pump2→1:

scheme 1: frequency modulation (FM) with single-tone modulation

scheme 2: feeding multiple frequencies at once into the AOM

Frequency modulation is a technique most notably known from FM radio broad-
casting. Here we will restrict ourselves to single-tone modulation,

A(t) = Ac · cos [2πfct+ h · sin(2πfmt)] , (4.10)

where the carrier amplitude Ac and frequency fc, and the modulation index h and
frequency fm fully characterize the time dependence of the signal. h and fm are
related to the peak deviation ∆f := hḟm, the maximum difference between the in-
stantaneous frequency and fc. To understand the spectral properties of such signals
we first express (4.10) in terms of the Bessel functions of the first kind Jk as

A(t) =
∑

k∈Z
Jk(h) · cos [2π(fc + kfm)t] .

We see that increasing h raises the number of side-bands that carry a non-
negligible amount of power. Finite size effects further spread out the power, also
over the intermediate regions as shown in figure 4.16.
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Figure 4.16.: Spectrum of pump2→1 for the best predicted parameters. The discrete
Fourier transform (DFT, blue) is obtained finite length pulse at a sampling rate of
1.25GHz while the components of the exact Fourier transform (FT, black crosses)
are found by evaluating the Bessel functions of first kind Jk at the modulation index
h (k here is (fc − f)/fm).
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The results of the optimization found similar values for the frequency and
amplitude of pump1→1 the corresponding optimization from sec. 4.2.3a. Likewise,
the optimal carrier frequency and amplitude of pump2→1 do not differ significantly
from the values for f and A in sec. 4.2.3a. The predicted minimum for the cost was
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Figure 4.17.: Optimization with single-tone frequency modulated pump2→1.
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Figure 4.18.: Two-dimensional cost landscapes of the fm versus h (left) and ∆T
versus β (right).
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found for modulation index h = 3.9 and frequency fm = 3.9MHz which leads to
a broad spectrum. In particular, M-LOOP predicts that this optimum is superior
to the quasi-monochromatic extremum6 at h = 0.0 as evident in figure 4.18. We
should however take into account that thought the short pulses (160 ns in lab 2)
the spectrum of pump2→1 is already broadened.

Using frequency modulation would in theory also be possible with the RF drivers
by modulating UVCO ( fig. 4.2a) as the required signal still has a single instantaneous
frequency for any given time. On the contrary, the AWG can also produce a signal
that consists of multiple frequencies components according to

A(t) =
1

N
·

N
∑

k=1

Ak · cos(2πfkt+ φk), (4.11)

where Ak > 0 and φk are the amplitude and phase associated with each frequency
fk. In a first optimization using this scheme we considered two distinct frequency
components and additionally sequenced the square pulses (sequence length ∆T
and duty-cycle β). We thus fixed φ1 = 0 and φ2 = φ1 + ∆φ. Finally, we let the
optimizer also control frequency and amplitude for pump1→1.

Similar as before, the optimizer found the same values for pump1→1 as in
sec. 4.2.3a. Unfortunately, bad runs during the optimization prevented accurate
predictions during the optimization. The post-processing of the data (fig. 4.20)

6evidently finite sampling and pulse width broaden the spectrum
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Figure 4.19.: Optimization using two overlaid frequencies for the pump2→1.
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Figure 4.20.: Results for the optimization with two ovelaid frequencies for
pump2→1: Two-dimensional cost landscapes of the two frequencies (left) and ampli-
tudes (right) of pump1→1.

reveals that the optimizer preferred a waveform with a single frequency over the
overlaying two frequencies.

Performing an excitation power scan with the two schemes discussed in this section
(fig. 4.21) indeed show a small excess in ηprep for the pumping scheme where pump2→1

is modulated. While a direct measurement of the state preparation was possible
due to technical problems and time constraints, we were able to verify that the
frequency modulation helped to reduce population of F = 2 (Table 4.1). However,
the measurement did not take extra pumping time into account.

reference with overlaid frequency frequency modulation
Pr(|F = 2〉) 22.24(96)% 21.72(92)% 15.41(71)%

Table 4.1.: Remaining population in F = 2 after 2.325 µs of pumping with pumping
schemes where the spectral profile of pump2→1 was modified (sec. 4.2.3d). The
reference was the pumping sequence from sec. 4.2.3a. The best value can be achieved
for single tone frequency modulation (right).

.
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Figure 4.21.: Excitation power scan for the optimizations with a more complex
spectral profile for pump2→1 as described in sec. 4.2.3d.

4.2.3e. Modulating the pump1→1 amplitude

As we have seen in section 2.4.1c off-resonant Rabi oscillations can be a factor
that substantially reduces the pumping efficiency. While the complete description
of the time evolution is complicated we can generally observe that lower optical
powers decrease the amplitude of the off-resonant Rabi oscillations. Since always
using low powers would drastically increase the required pumping time, we wanted
to investigate if a non-uniform Rabi frequency would be able to improve ηprep. In
practise, we implemented two different schemes of modifying the amplitude by
interpolating between a finite number of points, either linearly or by step-wise
changing the amplitude.

Our minimal approach used a linear interpolation between two points n · T and
n · (T + β ·∆T ) (n ∈ N), where the sequence-length ∆T and the duty-cycle β can
be varied by M-LOOP. Additional parameters are the frequencies of pump1→1 and
pump2→1 as well as the amount of time Tend by which the waveform should be
offset from the end of the pumping sequence. Post-processing indicate that 90 runs
might have just been sufficient for optimization.
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Figure 4.22.: Optimization of the amplitude modulation of pump1→1 with linear
interpolation, two variable time points T and T + β · ∆T that repeat after the
sequence-length ∆T . Additionally, the waveform is offset from the end by δt (post-
time). The remaining parameters are the frequencies of pump1→1 and pump2→1.
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Figure 4.23.: Optimization of the amplitude modulation of pump1→1 with linear
interpolation, two variable time points T and T + β · ∆T that repeats after the
sequence-length ∆T . Additionally, the waveform is offset from the end by δt (post-
time). The remaining parameters are the frequencies of pump1→1 and pump2→1.
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Figure 4.24.: Optimization of the step-wise amplitude modulation of pump1→1,
with three equidistant steps at Tk = {0.33, 0.67, 1.00} · Tpump. The three Ak are the
parameters with the largest length scale in this optimization.

The short sequence length of 25 ns together with the large duty-cycle of 96.4%
mean pump1→1 is effectively always on. The fact that the optimum for the two
amplitudes are almost identical (A1, A2 = 392mV, 343mV) indicates that indeed
the preferred pulse shape is a simple square pulse. Interestingly, the landscape for
Tend has a preference for small values but is overall rather shallow which raises the
question if the overall pumping time could be reduced.

We further investigated the step-wise amplitude modulation

A(t) =

(

N
∑

k=1

χ(t;Tk−1, Tk) · Ak

)

· cos(2πf) (4.12)

with three equidistant time steps between T0 = 0 and T3 = Tpump, also varying
the frequency of pump1→1, and amplitude and frequency of pump2→1. The three
amplitudes for pump1→1 had the largest length-scales. Notably, the landscape for
the amplitude of the middle segment (A2) was the flattest (fig. 4.25) pointing at the
fact that the largest change in the population of |1,±1〉 occurs at the beginning of
the pumping sequence.
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Figure 4.25.: Optimization of the step-wise amplitude modulation of pump1→1:
The amplitude of the middle segment (A2, y-axis) is less relevant than the amplitude
at the beginning (A1) and end (A3).

Excitation power scans reveal that neither scheme resulted in a pulse-form that
could significantly increase ηprep. Using more points and thus more complex pulse-
shapes might be able to produce better ηprep, yet due to time constraints this was
not attempted.
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Figure 4.26.: Excitation scans comparing the best predicted parameters for ampli-
tude modulation of pump1→1 with linear (a) 4.22 or step-wise interpolation (b) 4.24.
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4.2.3f. Varying the Spectral Profile for pump1→1

Similar to subsection 4.2.3d we implemented different schemes of varying the fre-
quency, now for pump1→1. First, we investigated single-tone frequency modulation.
During the optimization (fig. 4.27) in 9 out of 200 runs trapping an atom was
not possible. The M-LOOP API unfortunately does not offer a straight-forward
way of excluding those runs during the optimization, therefore the quality of
the hyper-parameter fits is seriously impaired. Post-processing revealed lower
noise-level and length-scales, reducing the best predicted cost and uncertainty from
4.97± 0.68h to 4.67± 0.28h.

The optimization revealed similar landscaped as before for amplitude and
frequency of pump2→1. The predicted best modulation frequency for pump1→1 was
fm = 0.0MHz, showing a clear preference for a monochromatic approach to the
problem.

The optimization where we overlaid frequencies for pump1→1 according to 4.11
(fig. 4.29), once again using two distinct frequency components, found an optimum
where most optical power was put into the second frequency component (fig. 4.30),
indicating again that using more than frequency for pump1→1 was not beneficial.

Lastly, we tried a waveform where the pump1→1 consisted of a sequence of square
pulses with alternating frequency,

A(t) = χ(t; 0, β1T1) · A1 cos(2πf1t) + χ(t;T1, T1 + β2T2) · A2 cos(2πf2t) + ... (4.13)

Here χ(t;T, T ′) is the characteristic function which is one for the time interval
[T, T ′] and zero otherwise. The signal is periodic with period length

∑

Tk. Ak, fk,
and βk are the respective amplitude, frequency, and duty-cycle as before. Using two
different frequencies we once again found that waveforms with a single frequency
and amplitude could correspond to the optimum (fig. 4.32).

The idea of using a richer spectrum for pump1→1 originated from observing multi-
ple optima for the pump1→1 frequency when scanning the frequency for optimizations
that had been done prior to this writing. However, using the AWG, we were not
able to reproduce those observations. The optimizations presented in this section
all point to the fact that indeed using multiple frequencies for the pump1→1, at
least within the range of the AOMs, does not significantly improve ηdet. A direct
comparison due to a sudden technical failure that prevented us from producing an
appropriate reference excitation power scan.
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Figure 4.27.: Optimization using single-tone frequency modulation for the
pump1→1, with variable sequence length and duty-cycle. Amplitude and frequency
of pump2→1 completed the seven parameters.
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Figure 4.28.: 2D landscapes depicting the relation between fm and fc (left) and h
(right). Please note that the best predicted fm is 0.0MHz. We see that the cost is
also low for small h, regardless of fm, further pointing towards the mono-chromatic
extremum for pump1→1.
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Figure 4.29.: Optimization with overlaying two distinct frequency components for
pump1→1.
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Figure 4.30.: Two dimensional cross-sections for the two frequencies (left) and
amplitudes (right). Most optical power should be carried by one frequency (f2) that
is approximately equal to the frequency found in sec. 4.2.3a.
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Figure 4.31.: Optimization with alternating frequencies for pump1→1: cost per run
(left) and hyper-parameters per fit(right).
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Figure 4.32.: Optimization with alternating frequencies for pump1→1: Two dimen-
sional cross-sections for the two frequencies (left) and amplitudes (right). Taking the
uncertainty into account it appears possible that a waveform with a single frequency
and amplitude corresponds to same cost as the optimum.
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4.3. Optimization in the Readout Process
The current readout scheme via cycling-ionization has been subject to modifications
and optimizations [73, 87]. In this section it will be investigating if and to what
extend the greater flexibility offered by the AWG could make improvements of this
aspect of the experiment possible.

4.3.1. Model for Determining the Contrast
After a successful excitation, the atom will spontaneously decay back to the ground
level, generating the entangled state from 2.17. Collecting the photon along the
quantization axis leaves the maximally entangled state (2.19)

|Ψ〉AP =
1√
2

(∣

∣σ+
〉

P
|1,−1〉A +

∣

∣σ−〉
P
|1,+1〉A

)

,

where the Zeeman substate of the atom is entangled with the circular polarization
of the photon. After appropriate unitary transformations and a polarization
measurement on the photon, the atom is projected onto a superposition of |1,±1〉.
A readout laser with polarization χro will only interact with a certain superposition
defining the dark and bright states |D〉ro (2.30b) and |B〉ro (2.30a). The correspond-
ing contrast K(χro) then is the difference between the probabilities of successfully
ionizing |B〉ro and |D〉ro.

Experimentally we have access to four quantities that allow us to measure the
contrast. First, we know the total number of events that herald the projection onto
the dark or bright state, ntries(|D/B〉ro). Second, we can observe the number of
tries after which the atom was still present in the trap after the readout for each of
the two cases, nred(|D/B〉ro) = ntries(|D/B〉ro)− nion(|D/B〉ro). Technically the atom
can also be lost due to other reasons, but the fraction of these events is both small
and constant, thus we will ignore it here. This allow to calculate the redetection
probabilities

Prred(|D/B〉ro) = 1− Prion(|D/B〉ro) =
nred(|D/B〉ro)
ntries(|D/B〉ro)

. (4.14)

Statistically, this will be treated as a sequence of ntries Bernoulli trials, as each
readout attempt is independent of all other attempts and yields a binary result..
The resulting PDF for the number of redetection events is a binomial distribution.
The probability to have exactly k redetection events in ntries is

Prbinomial(X = k) =

(

ntries

k

)

(Prred)
k(1− Prred)

ntries−k, (4.15)

The mean and variance of 4.15 are given by E[X] = nred and Var[X] = nred ·
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nion/ntries. We can now define the figure of merit for the optimization of the readout
process as

Cro = 1− |Prred(|B〉ro)− Prred(|D〉ro)| = 1− |K(χro)| (4.16a)

that has an uncertainty of

Uro =

√

Prred(|B〉ro) · Prion(|B〉ro)
ntries(|B〉ro)

+
Prred(|D〉ro) · Prion(|D〉ro)

ntries(|D〉ro)
. (4.16b)

4.3.2. Experimental Setup for Evaluating the Readout
Process

One output channel of the AWG will be connected the amplifier of the AOM
that controls the path of the readout laser. Originally, this AOM operates
at a frequency of ∼ 403MHz which is slightly above the bandwidth of the
M4i.6631. While earlier tests on the M4i.6622 showed that decent operation at
frequencies above the nominal bandwidth were still possible to a lesser degree, it
was desirable to modify all AOMs in the path to allow operation at roughly 390MHz.

For this optimization the entire experimental sequence from sections 2.3 and 2.2.2
is necessary (fig. 4.33). After trapping and cooling the atom, the optical pumping
(using the RF drivers) is initiated. Subsequently, we try to excite the atom using a
short laser pulse. We collect the photon along the quantization axis and guide them

Trapping

∼ 1 s

Cooling

350 µs

Pumping

Tpump = 2.3(+2)µs Exc. 200 ns

Single Photon
Detection

Readout

150 ns 60ms

Fluorescene
Collection

atom lost?

no photon40×NoYes

AWG trigger

Figure 4.33.: Experimental sequence for determining the contrast: After trapping
and cooling (red), the state preparation (blue) and excitation (orange) are per-
formed. Projection of the atomic state is heralded by registering a photon during
the single-photon-detection window (magenta). In this case, the AWG is triggered
(red triangle) to replay the readout waveform. Simultaneously, cycling and ioniza-
tion are turned on. Otherwise, preparation and excitation are repeated 40 times
before additional cooling is necessary. After the readout window, we check if the
atom was ionized by collecting fluorescence for 60ms. In case the atom is lost, the
sequence starts at the trapping.
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through appropriate waveplates that transform the photons polarization state from
|σ±〉P to |V/H〉P, onto a PBS. Behind each of the two output ports of the PBS we
place a APD capable of detecting single photons. By detecting a photon on either
of the APDs we have performed the aforementioned projection of the atomic state.
We now apply the readout pulse, whose polarization is set such that the atomic
state heralded by a detection event with APD 1 or 2 exactly corresponds to the
dark and bright state, |D〉ro and |B〉ro. The cycling and ionization laser are turned
on during the entire readout window. Finally, after turning off readout, cycling,
and ionization, we determine whether the atom was lost from the trap by checking
the fluorescence counts after turning the dipole trap back on.

The repetition rate is strongly limited by the destructive ionization-based readout
scheme. If the atom is still present in the trap, we can restart the experimental
sequence at the cooling. However, if we loose the atom, we need to trap a new atom
before we can enter this stage. The number of events where the dark and bright
state is prepared is roughly equal, meaning that the atom is lost in about half of the
cases, at least if the contrast we seek to optimize is good. The time scale for trapping
alone is O(1 s), meaning we only except a low event rate of few Hz, which greatly
affects the statistical error (eq. 4.16b). Weighing those disadvantages against the
necessity of generating a sufficient amount of data for the optimizer, we decided on
measurement duration of several minutes which would leave us with a few hundred
events for each data point used in the optimization.

4.3.3. Measurements for Optimizing the Readout Process
4.3.3a. Rectangular Readout Pulse

In similar fashion to the optimization of the pumping process, the first optimization
of the pumping process sought to replicate the waveform that is currently used in
the experiment. To this end, we generated a rectangular pulse defined by four free
parameters: its frequency f , amplitude A, length ∆T and some adjustable offset
Tstart from the beginning of the readout window.

The optimization (fig. 4.34) predicts the best achievable cost at 1.3 ± 7.4%
(contrast 98.7%). The large uncertainty mostly stems from the noise whose fit
converges to σn = 5.2%. Of the parameters, whose cross-sections are displayed
in figure 4.35, the offset that is added before the square pulse is irrelevant to the
problem. This confirms our intuition for the readout process: Both the ionization
and cycling laser fields are approximately uniform during the readout process and
transitions out of the F = 1 level can only happen through the readout laser.
Therefore it should indeed not matter when we turn on the readout laser field,
as long as it does not affect the overall overlap between the three fields. This
also illustrates M-LOOP’s ability to differentiate between relevant and irrelevant
parameters. The optimization, in particular the best predicted pulse length of
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Figure 4.34.: Optimization of the readout pulse using four free parameters. The
uncertainty displayed here corresponds to 1σ, not 3σ as in sec. 4.2.

143.6 ns, connect well to the results presented in [87].

While maximizing the contrast is the objective of the optimization and dictates
how M-LOOP selects new parameters, the data collected also allows us to make
predictions about the ionization probabilities of dark and bright state. This helps
us interpreting the results of the optimization. We create a new GP from the
parameters that M-LOOP has tested during the optimization and the two sets of
redetection probabilities and their respective errors. The hyper-parameters are
adjusted using the L-BGFS-B algorithm as before. The GP predicts (fig. 4.36) that
the ionization probabilities both states in the beginning rise approximately linearly
as a function of pulse length, indicating a constant ionization rate. As ionization of
the dark state requires off-resonant excitations via the F ′ = 2 level, whose detuning
of δ = 816.656(30)MHz [64] is much larger than the resonant Rabi frequency, we
expect that the rate and thus the slope is much larger for the bright state. While
the ionization rate of the bright state decreases as the population of the bright
state is depleted, it stays almost constant for the dark state, whose population
does not change as much. The GP for the dark state is significantly more certain
about its prediction, as the ionization probability for the dark state appears rather
insensitive to changes in the parameters.

Examining how the cost depends on the pulse amplitude A we consider the
following: As the detuning between F ′ = 1 and F ′ = 2 in 52P1/2 is large,
off-resonant excitation from the dark state only increase slowly as a function of
the RF amplitude. In contrast, the ionization probability of the bright state rises
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Figure 4.35.: Cross-sections for the parameters used in the optimization of the
readout process using a single rectangular pulse. Of the parameters the offset of the
square pulse relative to the beginning of the readout window is the least important.

rapidly before reaching a local maximum. For large RF amplitudes both ionization
probabilities decrease which might be associated with lower transmissions of the
AOM. Together, this leads to the contrast reaching its maximum at A = 312.3mV
when the ionization probability for the bright state is almost maximized while it is
still low for the dark state.

Independently fitting the redetection probabilities for dark and bright state gives
us some intuition about the underlying physics, however, both GP make unphysical
predictions. Better results might be obtained by constraining the GP to the physical
boundaries of the problem [105, 106], namely redetection probabilities and contrast
between 0 and 1. Additionally, the GPs suffer from limited data, large uncertainties
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Figure 4.36.: Predicted redetection probabilities for the bright (red) and dark
(blue) state, as well as the predicted contrast (black) as a function of the readout
square pulse amplitude (bottom) and duration (top), respectively. Each prediction
results from an independent GP with four parameters. For each cross-section, all
other parameters are fixed at the value that yields the best predicted contrast.
Dashed lines indicate the physical bounds, 0 and 100 %, which are unbeknown to
the GP.

in the provided data and the presence of irrelevant parameters. Nonetheless, we
have shown a straight-forward way of using GPs in the experiment outside the
context of online optimization, where data is produced by the optimizer itself. In
the future, they could find application in the analysis by helping to post-process
experimental data or for adjusting parameters like magnetic fields or laser powers
based on observations collected from the normal operation of the experiment.
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4.3.3b. Modulating the Pulse Amplitude

We have seen previously that the ionization probability of the bright state is very
sensitive to the RF amplitude, while the dark state only exhibits a slow ascent.
We wanted to investigate whether modulating said amplitude could improve the
contrast. Once again we planned on using two different schemes to interpolate
the amplitude between several fixed points. The two optimizations that used two
(four) equidistant base points (fig. 4.37) with step-wise interpolation alongside
the frequency and variable cutoffs at the start and end (Tstart and Tend) of the
optimization, remained inconclusive. While M-LOOP once found a similar optimal
frequency as before, the overall predictions are poor, which might have several
reasons:

First, we realized that the parameter choice might have been flawed, in particular
the use of two independent cut-offs. The previous optimization using a rectangular
pulse had show that the landscape of the cost is relatively flat around the optimum
and additionally that there is little to no dependence on the offset. While the idea
of having two independent cut-offs was to decouple the offset and pulse-length,
effectively combined one irrelevant and one relevant parameter, yielding two pa-
rameters we could have expected to be hardly relevant and additionally degenerate.
Future optimization keeping this in mind would likely be more successful.

Second, it appears as if both optimizations suffered from underestimating the
noise level, that is very low compared to the previous optimization despite similar
observed uncertainties in all three measurements. Fixing this would have required
either more events per data point, or a larger number of data points for the
respective optimization, or both. Evidently, that would have prolonged the overall
measurement times, that already took 16.3 h and 11.0 h for the optimization with
seven and five parameters, respectively.

Unfortunately, due to technical difficulties that already occurred after five days
of measurements for the readout and that have not been fully resolved by the time
of this writing, none of these ideas were implemented.

88



4. Online Optimization in a Single-Atom Trap Experiment

5 10 15

fit number

-4

-2

0

2

4

lo
g
le
n
gt
h
-s
ca
le

lo
g
(ℓ
)

frequency

A1

A2

A3

A4

Tstart

Tend

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n
oi
se

st
an

d
ar
d
d
ev
ia
ti
on

σ
n

375 380 385 390 395 400 405

frequency (MHz)

8

10

12

14

16

18

p
re
d
ic
te
d
co
st

(%
)

frequency
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Figure 4.37.: Optimization of the readout pulse using amplitude modulation with
step-wise interpolation between four (a) and two (b) points. Additional parameters
are the readout frequency and two independent cut-offs, Tstart and Tend.
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4.4. Conclusions from the Optimizations
We have demonstrated a way of integrating AWGs into the existing experimental
infrastructure. We have seen that they are able to fully replace the currently
employed combination of RF driver and pulse-shaper for operating the AOMs in
the experiment without loss of performance (sec. 4.2.3a and 4.3.3a). The necessary
adaptation of the experimental software framework, in particular the scheduler,
have been thoroughly tested throughout the period in which the optimizations have
been performed. Possible issues have been eliminated to the best of our ability and
knowledge.

Furthermore, we have shown that automatized online optimizations is a valuable
addition to other techniques aimed at maintaining a high experimental perfor-
mance. By employing ML algorithms, in particular DE and GPR, we were first
able to replicate the results of previous manual optimizations of the initial state
preparation and the readout process. New laser sequences for the two processes
were developed and investigated. While to this point, no significant improvement
beyond what would be possible and expected without using ML for either of the
two processes was achieved, implementing novel pulse sequences in the future could
be facilitated using the machine learner, with or without an AWG.

The optimizations of the initial state preparation showed that in lab 2 improve-
ments could be achieved, mostly by depopulating the F = 2 level. The easiest
option to achieve this is to extend the overall pumping time to roughly ∼ 11.0 µs
(sec. 4.2.3b), which would not require any changes to the current experimental
infrastructure. Experimentally we observed a relative increase in single photon
detection efficiency of ∼ 20% (fig. 4.12) and and an improvement of the initial
state preparation efficiency from 76.2(9)% with 2.3 + 2µs to 82.6(9)%(fig. 4.13).
While extending the total pumping time would approximately half the repetition
rate at intermediate distances where this time would be larger than the time
it takes the heralding signal to travel between the setups and the BSM (7.6 µs
for 700m optical fiber), this effect is substantially smaller at larger distances
(O(10 km)). Smaller improvements were also possible for pumping schemes
where pump2→1 was single-tone frequency modulated (sec. 4.2.3d) with a relative
increase of ηdet by ∼ 2% (fig. 4.21). Using this scheme, the population of F = 2
after 2.3 µs of pumping could be decreased from 22.24(96)% to 15.4(7)% (Ta-
ble 4.1). Alternatively, it is possible that increasing the amount of power available to
pump2→1 would already be sufficient. Similar tests in lab 1 have not been performed.

The optimizations of the readout process once again confirmed previous exper-
imental results while also demonstrating how our parameter choice can influence
the GP’s ability to optimize. The destructive ionization-based measurement
scheme required for determining the contrast resulted in lower statistics and larger
uncertainty compared to the optimizations of the initial state preparation. While
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significantly increasing the time per iteration would have been able to combat this
issue, this approach would have been prohibitively time-consuming, in particular
if more parameters were to be used. Alternatively, open-loop optimizations using
simulated data for the readout process might be more convenient. The changes
outlined in section 2.4.1c could be applied to modify the simulations from [73, 87].

Lastly, we have demonstrated possible applications of GPs that do not require
performing closed-loop online optimization, where GPs were employed to develop
statistical models from independently collected data. This might help to understand
experimental observations and could enhance the experimental operation and data
post-processing.
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5. Conclusion and Outlook
In this work, we have discussed how to realize a long-distance entanglement between
two individually trapped 87Rb atoms, which is used to perform a loophole-free Bell
test. Long-distance entanglement distribution is a key ingredient for future quantum
networks, that enable distributed quantum computing and quantum communica-
tion. We identified two crucial processes, the initial state preparation and atomic
state readout, that could be improved to yield even better performance of the setup.

We have seen that integration of an arbitrary waveform generator (AWG)
into the existing experimental framework is possible without losing experimental
performance, allowing for quick modification of the employed laser pulse sequences.
Automatized online optimization using machine learning (ML) techniques, in
particular Gaussian process (GP) regression and differential evolution, has been
demonstrated to be an efficient tool within the experimental setup. The changes to
the experimental software framework that were necessary for the implementation
can also help to improve the overall experimental performance and reduce workload
for the people involved in the experiment, for example by automatically scanning
and re-adjusting parameters on a regular basis.

We were able to improve the initial state preparation, in particular by extending
the total pumping time to ∼ 11 µs, which would be a viable option in experiments
with larger spatial separation of the two laboratories. However, it was not possible
to find pumping schemes that would lower populations in |1,±1〉, which could be
related to the prevalence of off-resonant excitations from |1, 0〉 to 52P3/2 during
the optical pumping. We propose to investigate whether an optical pumping
scheme utilising the D1 instead of D2 transition for pump1→1 could improve ηprep
(sec. 2.4.1c). Technically, implementing this proposal should be feasible as there
is already a laser locked to the D1 transition, with optical power available that is
currently not used in the experiment. Schemes where a combination of 780 nm and
795 nm light fields for pump1→1 are used could be optimized with regard to ηprep
and the total pumping time using M-LOOP.

Optimizations of the atomic state readout process were not able to produce
schemes that would increase the contrast. The optimizations suffered from high
noise levels and long measurement times. In the future, conducting simulation
studies could help to improve the understanding and performance of the process.
However, we were able to demonstrate the use of GPs outside the context of online
optimization.

Lastly, we have identified modification to M-LOOP itself that could potentially
improve the performance of the optimizers in scientific experiments.
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A. Laser Setup
Different laser beams with frequencies matching the atomic transitions (fig. A.1)
are used for control and manipulation of the atomic quantum system. Three diode
lasers whose frequency is stabilized using Doppler-free saturation spectroscopy can
be split into several beams using PBSs. The individual powers in each beam is set
by rotating a HWP in front of the PBS. Then, the laser frequency is fine-tuned to
match the desired atomic atomic transition using AOMs, which also switch on and
off the respective beam. Currently three beams each are extracted from the cooling
and repump laser:

cooling: cooling, cycling, and pump1→1

repump: repump, excitation, and pump2→1

There are also two free running laser diodes, the optical dipole trap (ODT) and
the ionization laser.
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