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1 Introduction

“Can quantum mechanical description of physical reality be considered complete?”
[1] This is the question that Einstein, Podolsky and Rosen raised in their famous
publication of the so-called EPR-paradox in 1935. In order to find an answer to
this question they assumed two fundamental concepts to be true. First the con-
cept of locality which says that it is possible to separate two particles such that a
measurement on one particle cannot influence a measurement on the other particle.
And second the paradigm of realism. This sates that every quantity that can be
measured at a physical system has a predefined value already before the measure-
ment is performed. Starting from these assumptions they derived that the quantum
mechanical description of reality is incomplete. As many physicists of their time
Einstein, Podolsky and Rosen were shaped by the classical deterministic theories of
physics such as Newtonian mechanics and Maxwell’s electrodynamics. They there-
fore doubted that quantum mechanics with its probabilistic nature should be the
final theory to describe the physical world. “We believe, however, that such a [com-
plete and deterministic] theory is possible.”[1] they closed their considerations. This
idea inspired so-called local hidden variable (LHV) theories. These theories suppose
that additional parameters exist which are unaccessible in experiment but which
predetermine the outcomes of measurements on quantum mechanical systems.

The argumentation in the EPR-paradox was based on a gedanken experiment
with two particles that are entangled in their position- and momentum degrees of
freedom. Einstein, Podolsky and Rosen exploited the non-classical correlations that
arise between the outcomes of simultaneous measurements on such entangled parti-
cles, even if they are space-like separated. A realization of this gedanken experiment
seemed impossible until Bohm proposed an equivalent experiment using two entan-
gled spin-1

2
particles [2]. In 1964 J.S. Bell discovered [3] how such an experiment

can help to decide the question whether quantum mechanics already gives a com-
plete description of nature or whether there exist additional local hidden variables.
He formulated an inequality for the measurement outcomes on an entangled two-
particle system that should always hold if local hidden variables existed, but which
is violated by quantum mechanical predictions. In the following decades experiments
reproduced the predictions of quantum mechanics [4, 5, 6, 7] and thus gave an indi-
cation that LHV theories might be wrong.

However, all of these experiments left open so-called loopholes that still allow
for a local realistic description of nature. First, the measurements on the entangled
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1 Introduction

particles were not space-like separated. Thus, it was not guaranteed that the mea-
surements were causally independent from each other. This locality loophole could be
closed by using entangled pairs of photons that were first separated by a sufficiently
long distance before the measurements were performed [8]. Second, it is necessary to
detect a certain minimal fraction of the whole ensemble of entangled pairs that are
created during such an experiment. Otherwise it must be assumed that the detected
pairs are representative for the whole ensemble. In experiments with photons this
could not be achieved due to the low quantum efficiencies of photon detectors. In
contrast, experiments with entangled ions [9, 10] were able to close this detection
loophole due to the high detection efficiency for massive particles. Here, however,
the measurements were again not spacelike separated.

The aim of our group is to build a system that is capable of closing both loop-
holes simultaneously. Its major building blocks are two neutral 87Rb atoms that are
trapped at remote locations separated by 300 m. Entanglement between the atoms
can be established by using the entanglement swapping protocol [11]. For this each
of the atoms is first entangled with a photon. The photons are then brought together
and a Bell-state measurement is performed on the two-photon state by interference
of the photons on a beamsplitter. By this procedure the entangled photon state is
transfered onto the atoms. Given a method to perform a projection measurement
on both atoms within less than 300m

c
= 1 µs, a violation of Bell’s inequality with

spacelike separated measurements becomes possible. In this scheme the detection
of the photons in the Bell-state measurement “heralds” each entangled atom-atom
pair. Therefore our approach allows the so-called “even-ready scheme”[12] that -
combined with the high detection efficiency of massive particles - allows to read out
every entangled atom-atom pair. Hence, it is possible to close the detection loophole
as well.

Atom-photon entanglement is the key technique for realizing this test of Bell’s
inequality. Such a hybrid entangled system between particles of different species al-
lows to exploit the advantages of atoms and photons at the same time.

Hybrid entangled systems also find applications in the field of quantum infor-
mation. Trapped neutral atoms or ions with their relatively long coherence times
of several µs up to ms are candidates for quantum memories to store quantum in-
formation. At the same time photons are able to transmit quantum information
between different locations. In this context atom-photon entanglement can serve as
an interface between atomic quantum memories and photonic quantum channels.
In particular, a system of two remotely trapped atoms entangled by means of the
entanglement swapping protocol as described above forms one of the necessary com-
ponents for so-called quantum repeaters [13]. These are the major building blocks
to perform quantum communication over long distances.
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As a first step towards an entangled pair of atoms at remote locations, atom-
photon entanglement has already been realized in our group [14]. The single 87Rb atom
was stored in an optical dipole trap. In a spontaneous decay its Zeeman state was
entangled with the polarization state of a single photon that was emitted during
the decay process. Moreover, it was demonstrated that the emitted photon can be
distributed over a 300 m long optical fiber without loss of entanglement between the
atom and the photon [15].

Meanwhile a second single atom trap has been constructed in a laboratory at
about 30 m distance from the first setup [16, 17, 18]. Subject of the present work is
to generate and verify entanglement between the trapped atom and a single photon
in this second trap setup.

Overview
At the beginning of this work the notions for describing two level systems are intro-
duced together with the basic properties of entangled states of two level systems.
Thereafter the process of generating the entangled atom-photon state in a spon-
taneous decay of the atom is explained. Afterwards a brief overview of atom-atom
entanglement via entanglement swapping will be given. It will be addressed which
technical requirements the setups for atom-photon entanglement have to fulfill in
order to perform the envisaged loophole-free Bell-test.

The main chapter of this work presents the experimental realization of the steps
that are necessary to create an entangled atom-photon pair and to verify the entan-
glement of the two-particle state. This involves trapping of a single 87Rb atom in an
optical dipole trap, readout of the atomic Zeeman state as well as stabilization of
the atomic state against external magnetic fields. Besides, an efficient preparation
of the atom in the excited state from where the sponaneous decay takes place is
crucial in order to achieve a high generation rate of entangled atom-photon pairs. It
will be demonstrated that it is possible to switch off the trapping potential during
this excitation process. By these means it can be achieved that the photons emitted
from the two remote atoms are spectrally indentical - a necessary condition for an
efficient Bell-state measurement of the two photons. Finally, it will be shown that
measurements on the created atom-photon state yield non-classical correlations that
prove that the two-particle state is entangled.

In the last chapter a method is introduced by which it is possible to measure the
temperature of a single atom in an optical dipole trap. Besides the general interest
in the thermal properties of a single atom, its energy distribution also plays a role
for broadening of the atomic transition lines.

3



1 Introduction

4



2 Concepts of atom-photon and
atom-atom entanglement

This chapter first introduces the theoretical notions which are necessary to de-
scribe quantum mechanical two-level systems and entanglement between them. Af-
terwards it will be explained how entanglement between a single 87Rb atom and
a single photon can be created in a Λ-type spontaneuos decay. The future goal of
the present work is to use atom-photon entanglement as a tool for generating en-
tanglement between remotely trapped 87Rb -atoms via entanglement swapping. The
scheme for realizing this is presented in the third section of this chapter. In the end,
Bell’s inequality will be introduced as a tool for testing local hidden variable theories
and it will be discussed which technical requirements must be fulfilled in order to
be able to perform a loophole free test of Bell’s inequality with a pair of entangled
87Rb atoms.

2.1 Theoretical description

2.1.1 Two-level systems

A two-level system is defined as a physical system that has a 2-dimensional
Hilbert-space. In quantum information and quantum computing science such a sys-
tem is usually referred to as a qubit - the quantum analogon of a classical bit.
Examples are the polarization states of photons or a magnetic spin-1

2
-sytem such as

an electron, a neutron or Ag-atoms as they were used in the original Stern-Gerlach
experiment. In the case of atoms or ions two different energy levels can span a 2-
dimensional Hilbert-space. For our 87Rb -atoms the qubit-space will be given by two
Zeeman-sublevels of the 52S1/2, F = 1 hyperfine ground-state.

In Dirac’s Bra-Ket notation a general representation of the pure state of a two-
level system with eigenstates {|0〉 , |1〉} is given by:

|Ψ(θ, φ)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2.1)

With θ ∈ [0, π], φ ∈ [0, 2π].
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2 Concepts of atom-photon and atom-atom entanglement

The observables for measurements on such a qubit are the Pauli operators σ̂x, σ̂y, σ̂z

with the eigenbases {|0i〉 , |1i〉}(i ∈ {x, y, z}) and eigenvalues ±1. Throughout this
work the qubit states under consideration will be represented in the basis of σ̂z. The
representations of the eigenstates of σ̂x andσ̂y in terms of the basis states of σ̂z are:

|0〉x =
1√
2

(|0〉z + |1〉z) (2.2)

|1〉x =
1√
2

(|0〉z − |1〉z)

|0〉y =
1√
2

(|0〉z + i |1〉z)

|1〉y =
1√
2

(|0〉z − i |1〉z)

The three Pauli operators do not commute with each other. Therfore, if a system
is in the eigenstate of one of the Pauli operators, a measurement on it in a basis of
another Pauli operator gives entirely random outcomes.

Considering the polarization states of photons, the three pairs of eigenstates of the
Pauli operators are, for example, linear horizontal and vertical polarization (H,V ),
linear polarization at ±45◦ and right and left circular polarization (σ+, σ−). Con-
sidering a spin-1

2
system, the three pairs of eigenstates are given by spin orientation

parallel and antiparallel to the three spatial axes. In an experiment one must define a
reference frame for the setup such that the pair of binary measurement outcomes for
each of the three measurement settings is attributed to one of the eigenbases of the
Pauli-operators. This will be done for our case of atoms and photons in section 2.2.2.

Representation on the Bloch-Sphere
An illustrative graphical representation of the state |Ψ〉 of a two-level system is given
by the so called Bloch-sphere (see figure 2.1). Here we take the three dimensional unit
sphere and define the pairs of unit vectors along the directions of the three spatial
axes to be the representation of the three basis pairs of σ̂x, σ̂y and σ̂z, respectively.
The general state |Ψ(θ, φ)〉 (eq. 2.1) represented in the basis of σz is then given by
a vector pointing from the origin to a certain point on the surface of the sphere as
depicted in the figure.

This graphical representation becomes very useful when considering unitary trans-
formations on qubits. In an experiment this can be, for example, the action of bire-
fringent optical elements on the polarization states of photons or the action of a
magnetic field that causes a spin-1

2
system to perform Larmor precessions.
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2.1 Theoretical description

Figure 2.1: Representation of a general two-level state |Ψ(θ, φ)〉 as a vector on the
Bloch shpere

2.1.2 Entanglement of two-qubit systems

In general a state of n qubits |Ψ〉1...n is called entangled if one cannot find a
representation such that |Ψ〉1...n can be separated into a product state of the single
qubits:

|Ψ〉1...n 6= |Ψ〉1 ⊗ ...⊗ |Ψ〉n (2.3)

However, if one can find such a representation the state is called separable. In a
seperable state measurement outcomes on one of the subsystems are totally inde-
pendent of measurements on the other. This is not the case for entangled systems
as can easily be seen at the example of the four Bell-states

∣∣Ψ−〉
=

√
1

2
(|0z〉1 |1z〉2 − |1z〉1 |0z〉2) (2.4)

∣∣Ψ+
〉

=

√
1

2
(|0z〉1 |1z〉2 + |1z〉1 |0z〉2) (2.5)

∣∣Φ−〉
=

√
1

2
(|0z〉1 |0z〉2 − |1z〉1 |1z〉2) (2.6)

∣∣Φ+
〉

=

√
1

2
(|0z〉1 |0z〉2 + |1z〉1 |1z〉2) (2.7)

which we here have written in the basis states of σ̂z. These states also form a complete
set of eigenvectors for the two-qubit Hilbert-space.

Consider now, for example, the state |Ψ−〉. If a projection measurement on par-
ticle 1 in the σ̂z-basis yields the outcome “0”, then a subsequent measurement on
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2 Concepts of atom-photon and atom-atom entanglement

particle 2 in the same basis will always yield the outcome “1” and vice versa. So
the measurement outcomes on such a Bell-state are always anti-correlated as long
as one chooses the same measurement bases. However, these correlations entirely
vanish if the measurements are performed in the bases of different Pauli operators.

Another interesting property of the Bell-states is that a measurement on only one
of the particles always gives totally random outcomes. So no information can be
gained about the state of the two-particle system by such a local measurement on
only one qubit. In order to exactly identify a Bell-state, a state tomography of the
entire 2-qubit system has to be performed that involves simultaneous measurements
on the two particles in all three complementary bases [19].

Finally, the following two properties about entanglement should be mentioned
[13]:

• Starting from a separable state, one can never create an entangled state only
by local transformations on the single qubits. One always needs an interaction
between the qubits (such as the spontaneous decay in our atom-photon en-
tanglement scheme, see 2.2.1) or two particles that originate from a common
source (such as the photons from a parametric down-conversion).

• A maximally entangled state stays maximally entangled under local unitary
transformations of the subsystems since unitary transformations can always
be reversed.

Such local unitary transformations are in our experiment for example given by the
unwanted action of partially birefringent optical elements on the polarization state
of the photon. Due to the invariance of entanglement against these transformations
it is possible in the experiment to compensate these transformations without loss of
the entanglement.

2.1.3 Fidelity

In order to determine the accuracy with which a desired state has been prepared
in an experiment one needs a measure for the overlap between the desired and the
prepared state. One way to do this is to calculate the fidelty F [20]. If the desired
state is a pure state |Ψ〉, then the fidelty is:

F = 〈Ψ| ρ |Ψ〉 (2.8)

where ρ is the density matrix of the experimentally prepared state. For a perfect
preparation of |Ψ〉 F equals one.
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2.1 Theoretical description

For determining ρ a full state tomography of the prepared state has to be per-
formed. As stated above this requires measurements in all the complementary bases.
An easier way to determine F is to suppose that the prepared state is in the state |Ψ〉
with a probablity p and in the entirely mixed state with probabilty (1− p). Where
the density operator of the entirely mixed state is 1

4
1̂. With this rather pessimistic

assumption of white noise, ρ reads:

ρ = p · |Ψ〉 〈Ψ|+ (1− p)

4
· 1̂ (2.9)

The fidelity (2.8) can then be written as:

F =
1 + 3p

4
(2.10)

If the desired state is a maximally entangled state, for example a Bell-state, then a
criterion for deciding if the prepared state is entangled is given by [21]:

F > 0.5 (2.11)

9



2 Concepts of atom-photon and atom-atom entanglement

2.2 Atom-photon entanglement with 87Rb

The aim of the present work is to create entanglement between a single 87Rb atom
and a single photon. As it was stated in the last section, an interaction between those
particles is necessary in order to obtain an entangled state. This section describes
the spontaneous decay process that leads to entanglement between the Zeeman state
of the atom and the polarization state of the emitted photon. Moreover, a reference
frame for our setup will be chosen in order to define the three complementary mea-
surement bases for the photonic and the atomic qubit.

2.2.1 Creation of entanglement

For describing the process that yields the entangled atom-photon pair we consider
the level scheme of 87Rb depicted in figure 2.2. Shown are the two hyperfine levels
F = 1 and F = 2 of the 52S1/2, F = 1 ground state as well as the hyperfine levels
F ′ = 0 and F ′ = 1 of the 52P3/2 excited state.

For creating entanglement we now prepare the atom in the F ′ = 0 excited state.
From there it can spontaneously decay via three decay channels into the three
Zeeman-sublevels mF = ±1, 0 of the F = 1 hyperfine ground state under the emis-
sion of a photon that can be σ± or π-polarized. Here mF = ±1 means that the
atomic angular momentum is oriented parallel or anti-parallel to the quantization
axis and mF = 0 means that it is perpendicular to the quantization axis. In the
case of the photon σ±-polarization means that its spin is parallel or anti-parallel
to the quantization axis and π-polarization means that it is perpendicular to the
quantization axis. Due to conservation of angular momentum the polarization of the
emitted photon depends on the Zeeman state the atom decays into (see figure 2.2).

π

Figure 2.2: Scheme of the spontaneous decay leading to entanglement.

The relative amplitudes and phases between the decay channels are given by the
Clebsch-Gordon coefficients of the respective transitions. In the present case they
are the same for all of the three channels [22]. In the absence of external electric or
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2.2 Atom-photon entanglement with 87Rb

magnetic fields the three states into which the atom can decay are degenerate. Hence,
the only possibility to distinguish the decay channels is given by the polarization
of the photon and the Zeeman-state of the atom. Therefore the two-particle state
after the decay can be written only in terms of the atomic Zeeman states and the
photonic polarization states that result from the different decay channels:

|Ψ〉 =
1√
3
(
∣∣σ+

〉
|1,−1〉+ |π〉 |1, 0〉+

∣∣σ−〉
|1, +1〉) (2.12)

This state is however only valid if one observes the emitted photon under the full
solid angle of 4π around the atom. However, in our experiment we will use an
objective with a certain optical axis and a single mode optical fiber behind it in
order to collect the emitted photon. Therefore, we observe only along one distinct
axis and the relative amplitudes in eq. (2.12) have to be weighted with the directional
characteristic of the respective dipole transitions for σ± and π light. Suppose the
axis of the detection optics encloses an angle θ with the quantization axis. Then the
dependence of the power P radiated into a solid angle Ω around this axis is given
by [23]

dPπ

dΩ
=

3

8π
sin2 θ (2.13)

dPσ

dΩ
=

3

16π
(1 + cos2 θ) (2.14)

for π- and σ-polarized, light respectively. Hence, if the collection optics is installed
with the optical axis along the quantization axis (i.e. θ = 0), the amplitude of π-light
vanishes. As a result the state that is observed is the following Bell-state:∣∣Ψ+

〉
=

1√
2
(
∣∣σ+

〉
|1,−1〉+

∣∣σ−〉
|1, +1〉) (2.15)

2.2.2 Definition of the measurement bases

When working with an entangled system of two physically different particles such
as an atom and a photon, it is not always obvious in which measurement bases one
will see the correlations mentioned in 2.1.2 . It is therefore important to define in
advance a reference frame for the setup and to identify the three complementary
measurement bases for each of the particles.

We define the ~z-axis to be along the quantization axis which in our case is de-
termined by the optical axis of the microscope objective that collects the emitted
photons (figure 2.3(a)). Then a measurement on the photonic qubit in the σ̂z-basis is
a projection onto the two circular polarization states {|σ−〉 , |σ+〉}. The polarization
states that are the eigenstates of σ̂x and σ̂y are now given by the decomposition of
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2 Concepts of atom-photon and atom-atom entanglement

Figure 2.3: a) The quantization-axis ~z is defined by the optical axis of the objective.
b) Definition of polarizations for light traveling along ~z.

the eigenstates of σ̂x and σ̂y in terms of the eigenstates of σ̂z (see eq. (2.2)). They
physically correspond to the linear polarizations {|H〉 , |V 〉} and {|+45〉 , |−45〉}, re-
spectively [24]. The orientations of those polarizations with respect to the surface of
the optical table and the quantization axis are defined as depicted in figure 2.3(b) .
In the case of the atom, a measurement in the σ̂z-basis is a projection onto the Zee-
man states {|1,−1〉 , |1, +1〉}. Table 2.1 summarizes our choice of the measurement
bases.

qubit photonic state atomic state
|0x〉 H 1√

2
(|1, +1〉+ |1,−1〉)

|1x〉 V 1√
2
(|1, +1〉 − |1,−1〉)

|0y〉 +45 1√
2
(|1, +1〉+ i |1,−1〉)

|1y〉 -45 1√
2
(|1, +1〉 − i |1,−1〉)

|0z〉 σ+ |1, +1〉
|1z〉 σ− |1,−1〉

Table 2.1: Bases choice for the photonic and corresponding atomic state-readout
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2.3 Entanglement of two remotely trapped atoms

2.3 Entanglement of two remotely trapped atoms

The long term goal of our work is a system of two entangled atoms that are
trapped at remote locations at a distance of 300 m. Such a configuration would e.g.
allow a loophole-free test of Bell’s inequality as will be outlined in chapter 2.4.

This section presents how entanglement can be established between trapped atoms
at large distances by means of the so-called entanglement swapping protocol. After
a general description of the protocol itself we address two-photon interference as the
central part for realizing this protocol.

2.3.1 Entanglement swapping

The idea of entanglement swapping is to create entanglement between two parti-
cles at remote locations that have never interacted with each other [11]. The usual
notation in quantum information science is to call the owners of those particles Alice
and Bob. We denote Alice’s and Bob’s particles (in our case the atoms) 0 and 3,
respectively (see Figure 2.4). Alice and Bob now entangle these primary particles
with secondary particles 1 and 2 each (in our case this will be photons). Those sec-
ondary particles are then brought together and a Bell-state measurement on their
shared two-particle state is performed (in our case on the polarization state of the
photons, see 2.3.2). By quantum teleportation [11] this projection of the secondary
particles onto an entangled state is then mapped onto the two-particle state of the
primary particles.

Figure 2.4: Scheme of entanglement swapping

This prodedure can be described mathematically in the following way: After we
have created an entangled atom-photon pair in the |Ψ+〉 state (eq. 2.15), the total
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2 Concepts of atom-photon and atom-atom entanglement

four-particle state can be written in the form

|Ψ〉0123 =
∣∣Ψ+

〉
01
⊗

∣∣Ψ+
〉

23
(2.16)

Exploiting the completeness of the four Bell-states as a basis of a two-qubit Hilbert-
space, the unity operator of the photon-subspace can be written in the form
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Multiplication of the right side of (2.16) with this operator yields an expression for
|Ψ〉0123 in the basis of the Bell-states of the photons:

|Ψ〉0123 =
1

2

( ∣∣Ψ+
〉

12

∣∣Ψ+
〉

03
−

∣∣Ψ−〉
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03

+∣∣Φ+
〉

12

∣∣Φ+
〉
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−

∣∣Φ−〉
12

∣∣Φ−〉
03

)
(2.18)

As one can see from this representation, a projection of the photons onto any of
the Bell-states automatically projects the atoms onto the same Bell-state.

2.3.2 Two-photon interference

In our case the Bell-state measurement which is the central part of the entan-
glement swapping protocol shall be realized by interference of the photons on a
beamsplitter. Depending on the two-photon polarization state the photons leave a
beamsplitter either both on the same output port or one at each of the ouputs. A
projection onto the |Ψ−〉 Bell-state can then be achieved by placing a single-photon
detector behind each of the two output ports of the beamsplitter and registering co-
incidence events - i.e. events where one photon is detected at each detector [25, 26].

The characterizing parameter for the quality of the Bell-state measurement is
the probablity p(|Ψ−〉) of having projected onto the |Ψ−〉-state after a coincidence-
detection. This probability decreases with the time delay between the detection
of the two photons if the spectrum of the photons is incoherently broadened with
respect to their natural linewidth [25, 26]. As a consequence only events with a
certain detection time difference can be accepted for incoherently broadened photons
and the rate of created entangled atom-atom pairs decreases.

In our case the photons that are created during the spontaneous decay of the
atom are incoherently broadened due to two effects: First Doppler line broadening
due to the thermal velocity distribution of the atom. And second broadening due
to the thermal distribution of the potential energy of the atom in the trapping
potential. This results in a distribution of the shift of the atomic ground state energy
induced by the optical dipole laser (section 3.2). Thus the central frequency of the
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2.4 Tests of Bell’s inequality

transition of the spontaneous decay is thermally distributed as well. This effect is
called lightshift-broadening. The temperature of the atom in the first trap setup was
measured to be T = 105 µK [27]. For this temperature the lightshift broadening
causes a distribution of the transition frequencies of 4.4 MHz FWHM [27] whereas
the width caused by Doppler broadening is of only 302 kHz.

For these incoherently broadened linewidths detailed calculations have been per-
formed [26] in order to find the necessary detection time window. It was found to
be 14 ns which is significantly shorter than the lifetime of the 52P3/2 exited state of
26 ns (and thus also shorter than the photon duration). Thus a large amount the
coincidence events would have to be rejected. Moreover, since our two dipole traps
have different maximal trap depths, the central frequency of the photons emitted
by the two traps is different. This latter effect would make it impossible to perform
two-photon interference with our two trap setups.

A solution to this problem is to switch off the optical dipole trap during the
time the atom is excited and emits the photon. In this case the photons will only
be Doppler-broadened. Since this effect is one order of magnitude smaller than the
lightshift broadening, the detection-time window can then be extended over the
whole photon duration and no coincidence event has to be rejected. This method
was examined for the first time in the course of the present work. The obtained
results will be presented in section 3.7.

2.4 Tests of Bell’s inequality

Despite the huge success of quantum mechanics in explaining a broad spectrum
of physical phenomena from the microcosmos up to macroscopic objects of our
everyday life there still remain questions about its conceptual foundations and in-
terpretation.

First of all quantum mechanics only makes predictions about the outcome of
measurements and only right after a measurement the real state of a system can be
known with certainty according to this theory. It claims that a system has no definite
real properties between measurements. Instead, the state of a system is described by
a superposition of different possible states of which one is randomly chosen during
the measurement process when the so-called collapse of the wavefunction takes place.
Moreover, quantum mechanics doesn’t seem to allow for a local description of the
wavefunction collapse in the sense that it assumes an instantaneous collapse at any
point of a spatially extended wavefunction during the measurement process.

This abandonment of the two fundamental ideas of reality and locality let Ein-
stein, Podolsky and Rosen doubt that quantum mechanics is complete [1]. As an
alternative local-hidden-variable (LHV) theories have been proposed that assume
that physical systems carry additional parameters that are unaccessible by experi-
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2 Concepts of atom-photon and atom-atom entanglement

ment and that contain the information one would need to predict with certainty the
outcome of any measurement.

Bell’s inequality [3] gives an objective criterion that allows to decide whether such
local hidden variables exist. It is an inequality for the outcomes of measurements on
an entangled system of two spin-1

2
particles that always holds if LHVs exist, but is

violated by quantum mechanical predictions. In the formulation of Clauser, Horne,
Shimony and Holt this equation reads [28]:

S(a, a′, b, b′) := |E(a, b)− E(a, b′)|+ |E(a′, b) + E(a′, b′)| ≤ 2 (2.19)

Where E(a, b) is the expectation value for measurements on particle 1 under the
angle a and particle 2 under the angle b. Quantum mechanics allows a maximal vio-
lation of eq. (2.19) with S = 2

√
2 for maximally entangled states for an appropriate

choice of the measurement angles.

2.4.1 Loopholes

So far, all of the experiments that violated Bell’s inequality left open at least
one of the following loopholes, that still allow for the construction of local realistic
theories:

• Locality loophole: The choice of the measurement basis of particle 1 and the
end of the measurement on particle 2 and vice versa have to be space-like
separated in order to exclude that the measurement outcome on either of
the particles can be influenced by the measurement on the other via classical
communication at the speed of light.

• Detection loophole: If it is not possible to read out the whole sample of entan-
gled pairs due to a limited detection efficiency of the particles one is forced to
make the fair sampling assumption. This presumes that the results obtained
for the detected particles are representative for the whole sample. For an exclu-
sion of LHV-theories a sufficiently high proportion of the entangled pairs have
to be read out [29]. If the used entangled state is a |Ψ+〉-state this proportion
is 83 %.

Up to now, it was possible to close the locality-loophole in experiments with en-
tangled photons, that can easily be separated over large distances without loss of
entanglement [8]. However, the limited efficiency of single photon detectors made it
impossible to close the detection loophole1. In contrary, experiments with entangled

1Modern transition-edge superconducting (TES) photon detectors that show quantum efficiencies
of 95% [30] might become an option in future.
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2.4 Tests of Bell’s inequality

trapped ions [9, 10] closed the detection loophole by exploiting the advantage that
trapped massive particles can always be read out thus yielding an intrinsic detection
efficiency of η = 1. In [10] entanglement between the ions was obtained by entan-
glement swapping via two-photon interference. However, the ions were only a few
meters apart and thus the locality loophole could not be closed.

The aim of the present experiment is to exploit the advantages of photons and
atoms. Recently, our group demonstrated that atom-photon entanglement can be
distributed over long distances [15]. For this the photon was sent through a 300 m
long optical fiber before the state readout was performed. It was shown that the
entanglement can be maintained by appropriately stabilizing the fiber link. By using
the entanglement swapping protocol it would thus be possible to create an entangled
pair of 87Rb atoms at distances that allow to close the locality loophole. Together
with the high detection efficiency of the atoms a loophole-free Bell-test [31] seems
feasible.

2.4.2 Technical requirements for a loophole-free Bell-test with
two 87Rb -atoms

So what are the technical requirements for a loophole-free test of Bell’s inequality?
First in order to close the locality loophole with two atoms at a distance of 300 m the
choice of the measurement bases together with the measurements must be finished
within 300m

c
= 1 µs. This is not possible with our current atomic state detection, but

will become feasible by the implementation of a faster detection scheme based on
state-selective ionization and subsequent detection of the ionization fragments [31].

Second for a clear violation of Bell’s inequality by three standard deviations we
estimate to need about 3470 events [31]. Given a conservatively estimated event rate
of successful entanglement swapping of approximately one per 5 minutes we obtain
a total measurement time of about 12 days. The event rate directly depends on the
following three parameters:

1. loading-rate and lifetime of atoms in the trap

2. repetition rate of the atom-photon entanglement process

3. collection efficiency of the emitted photons

The loading rate and lifetime of the atoms have already been optimized for both
trap setups and in the second trap setup an objective with a higher numerical
aperture of NA = 0.5 has been installed for increasing the collection efficiency
of the spontaneously emitted photons [18]. In the course of the present work the
repetition rate of created atom-photon pairs was partially optimized by reducing
the duration of the optical pumping process of the atomic state preparation (see
section 3.6).
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2 Concepts of atom-photon and atom-atom entanglement

And third the photons used for the two-photon interference must be spectrally
indistinguishable. This becomes possible by switching off the dipole trap during the
excitation and photon emission process. This method was also examined during this
work (see section 3.7).
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3 Experimental realization of
atom-photon entanglement

Atom-photon entanglement is the key technology for being able to perform the
entanglement swapping protocol that shall yield the entangled atom-atom pair de-
scribed in section 2.3. Such a hybrid entangled system consisting of particles of
different species was first realized in 2004 using 111 Cd+-ions stored in a single ion
trap [32]. In our experiment atom-photon entanglement is created in the sponta-
neous decay of a single neutral 87Rb -atom that is stored in an optical dipole trap.
The decay produces a photon of which the polarization state is entangled with the
Zeeman state of the atom. Various laser techniques are necessary for trapping the
single atom, for the preparation of the excited state as well as the readout of the
atomic state. Moreover, it has to be assured that the atomic qubit is sufficiently sta-
ble during the time that passes between the creation of the entangled state. These
experimental steps are going to be presented in the following. At the end of this
chapter, measurements will be presented that show that the prepared atom-photon
state is entangled.

3.1 Technical components

This section briefly presents the technical components necessary for performing
the envisaged experiment:

3.1.1 Laser system

Elaborate laser techniques are used in this experiment for performing manipula-
tions on the Zeeman- and hyperfine-levels of the atom such as laser cooling, optical
dark state pumping and a coherent Zeeman state-selective transfer between two hy-
perfine levels. For this pupose the lasers have to spectrally resolve different atomic
hyperfine transitions that are separated by only 72 MHz (figure3.1). A convenient
method in atom physics to achieve such high precision is to use grating-stabilized
diode lasers of which the frequency is stabilized to the optical transitions of the
desired atomic species by means of Doppler-free saturation spectroscopy [33].

19



3 Experimental realization of atom-photon entanglement

Figure 3.1: Level scheme of 87Rb and the transitions that can be addressed by shift-
ing the frequency of the four diode lasers with AOMs.

In our setup we have four such diode lasers - two for the D1-line of 87Rb and two for
the D2-line (see figure 3.1). The large energy-separation between the |F = 1〉 and
|F = 2〉 ground-states of 6.8 GHz and between the 2P1/2 and 2P3/2 excited states
requires separate diode lasers for each of the four possible transitions. The spectral
linewidth of the created laser beams is about 0.6 Mhz. Distinct hyperfine levels
within the excited states can be addressed by shifting the frequency of the respective
laser with acousto-optical modulators (AOM) by up to ±200 MHz. The AOMs are
also used to switch the laser beams on and off with rise and fall times of ∼ 10−20 ns.
Finally, a fifth diode laser without frequency stabilization is used to produce the light
for the optical dipole trap at 856 nm.

After having passed the AOMs the light is coupled into single-mode optical fibers
and guided them to the atom trap. The fibers also serve as spatial mode filters such
that the beams get a clean Gaussian profile which simplifies their further manipu-
lation.

3.1.2 Pattern generator

For creating laser pulse sequences on the timescale of the atomic decay time
(26 ns) we use an electronic pattern generator [34] whose output signals are used
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to switch the drivers of the AOMs. 16 different pulse patterns for controlling 48
devices simultaneously with a selectable time resolution of optionally 20 ns or 2 µs
can be loaded into the device. Different phases of the experiment such as loading
of the single atom trap, optical pumping and excitation or atomic state readout are
each programmed in a separate pattern. Real-time switching between the patterns
by external signals then allows to react on events like an atom entering the trap,
detection of a single photon etc.

3.1.3 Recording of events

For detection of single photons emitted by the atom we use two actively quenched
avalanche photo-diodes (APD) with a dark count rate of ∼ 70 counts

s
and a quantum

efficiency of 0.6. Event-signals from the APDs are read in by two channels of a
timestamp unit, that tags them with the specific APD-number and a timestamp
with a resolution of 125 ps. Two further channels of the timestamp device are used to
record trigger pulses from the pattern generator. These trigger pulses are generated
to mark the beginning of different experimental phases like excitation of the atom
or the atomic state readout process. Such marks are necessary for the interpretation
of the photon signals during the evaluation of the experimental runs.
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3 Experimental realization of atom-photon entanglement

3.2 Single atom trap

For performing the experiment of atom-photon entanglement one first has to pre-
pare a single atom at a fixed position and well isolated from interactions with the
environment. For this a single-atom trap has been set up [16, 18]. In the following
the three major building blocks that are needed for such a trap will be explained.

3.2.1 Vacuum system

The single atom trap is created in the center of a spectroscopic glass cell (figure
3.2) that allows good optical access to the trap from all spatial directions. This glass
cell is attached to an ultra-high vacuum system. A Rubidium dispenser driven at a
current of ∼ 5− 6 A constantly evaporates a mixture of 87Rb and 85Rb atoms into
the vacuum chamber. At the same time an ion getter pump permanently absorbs
atoms of all species from the gas within the chamber. These two components create
an equlilibrium state in which the major proportion of the gas in the glass cell is
made up of Rubidium atoms at a pressure of 10−9−10−10 mbar. Such a low pressure
is necessary in order to reduce the mean time between two subsequent collisions of
an atom with other atoms from the gas. This is vital for a long lifetime of the single
atom in the trap.

3.2.2 Magneto-optical trap

The single-atom dipole trap described below provides only a conservative trapping
potential that is much shallower than the mean-kinetic energy of atoms in a gas at
room temperature. In order to load atoms into this trap one must thus first create
an ensemble of atoms with an energy well below the depth of the dipole trap. This
is achieved by the means of a magneto-optical trap (MOT) [35]:

It basically consists of three pairs of circularly polarized counterpropagating laser-
beams - one along each of the spatial axes - that intersect at the position of the opti-
cal dipole trap (figure 3.2). The frequency of those beams is red-detuned by 18 MHz
with respect to the atomic 52S 1

2
|F = 2〉 → 52P 3

2
|F ′ = 3〉 transition of 87Rb (see the

level scheme in fig. 3.4). As a consequence, Doppler-cooling effects occur when a
87Rb -atom moves along any direction of the beams. This creates a dissipative force
field that is made position-dependent by the application of a three-dimensional mag-
netic quadrupole-field in such a way that atoms crossing the intersection region of
the beams are slowed down and driven backwards to the trap center when they try
to leave it. The result is a cloud of cold 87Rb -atoms with a size of about 1 mm at
the crossing of the cooling beams.
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3.2 Single atom trap

Figure 3.2: Trap setup: The magneto-optical trap (MOT) is created by three pairs
of counterpropagating beams. The center of the MOT is overlapped with
the focus of the beam that creates the optical dipole trap. Dipole trap
and fluorescence detection are in a confocal configuration. Their optical
paths are overlapped by a dicroic mirror. The blue dashed line indicates
the beam of the ionization laser for the fast atomic state readout (not
yet implemented).

The temperature of the atoms in this cloud can be considered to be on the order of
the Doppler-temperature Tdop = 146 µK [22]. However, since the cooling beams are
circularly polarized, sub-Doppler cooling effects also occur so that even temperatures
below the Doppler-limit are possible [36, 35].
During the cooling process atoms can off-resonantly decay from F ′ = 3 to the F = 1
ground state where they are no more resonant to the cooling light. In order to recycle
them a repump laser that is resonant to the S 1

2
|F = 1〉 → P 3

2
|F ′ = 2〉 transition

pumps them back into F = 2.

3.2.3 Optical dipole trap

The principle of an ODT is based on the AC-Stark effect that induces a shift
of the energy levels of an atom in a light-field that is far detuned from an atomic
resonance. By this an atom in this light field obtains a potential energy U that is
equal to the energy shift of its ground state. For Alkali atoms such as our 87Rb a
red detuning leads to a lowering of the ground state energies. The relation between
the intensity I(~r) of the light field and the resulting energy shift U(~r) of the atomic
ground state is given by [37]:

Udip(~r) =
πc2Γ

2ω0
3

(
2 + PgF mF

∆2,F

+
1− PgF mF

∆1,F

)
I(~r) (3.1)
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Here gF is the Landé factor of the respective hyperfine level F and Γ and ω0 are the
decay rate and transition frequency of the D1-line, respectively. ∆1,F and ∆2,F are
the detunings of the light field with respect to the transition frequencies between
the hyperfine ground state F and the 2P1/2 and 2P3/2 excited state. P finally equals
0 and ±1 for linear and σ± polarized light.

If the light field is created by a Gaussian laser beam, then the atom is attracted
to its focus where the intensity is the highest and the lowering of the ground state
energy is maximal. So a far red-detuned Gaussian beam can serve as a trap for
neutral 87Rb atoms. In our case we use the Gaussian beam of a diode laser with a
wavelength of λ = 856 nm. This wavelength is far red-detuned compared to the D1-
and D2-lines of 87Rb (795 nm and 780 nm, respectively). The beam of vertical linear
polarized light is focused down to a waist of w0 = 1.9 µm [18] which results in a
Rayleigh length of zR = 13.25 µm. For a laser power of 15 mW the maximal trap
depth given by the energy shift at the focus of the beam then is:

U0 = 1.5 mK (3.2)

It has been verified that for the chosen waist and trap depth a blockade effect ensures
that not more than one atom can remain in the trapping potential simultaneously
[18].

The mean lightshift induced by the dipole laser increases the central transition
frequencies of the D1- and D2-lines of the trapped atom by ∼ 28 MHz. The potential
of the trap can be considered approximately harmonic and the oscillation frequencies
in the radial mode (perpendicular to beam axis) and the longitudinal mode (parallel
to beam axis) are:

ωr =
√

4 U0

m w0
2 = 2π · 63, 5 kHz (3.3)

ωl =
√

2 U0

m zR
2 = 2π · 6, 37 kHz (3.4)

Such an optical dipole trap is the best suited instrument for our purpose. The en-
ergy shift between different Zeeman levels is zero for linearly polarized light and due
to the far detuning the scattering rate of the trapping light by the atom is negibly
small. These advantages allow for the control and storage of an atom in a coherent
superposition state of Zeeman levels for sufficiently long times.

Fuorescence detection and loading of the ODT
Figure 3.2 shows the whole trap setup. The ODT-beam is focused down to the
center of the glass cell by a microscope objective with an effective focal length feff

of 13 mm and a numerical aperture of 0.5. such that the focus overlaps with the
MOT-cloud. The same objective is used to collect flurorescence photons from the
atom. Those are coupled into a single-mode optical fiber that guides them to the
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Figure 3.3: Fluorescence signal at the APDs when atoms enter and leave the trap.

APDs. A cold atom from the MOT that crosses the trapping potential of the ODT
is further cooled during that time due to ongoing scattering of cooling light. If it
thereby looses enough energy such that its total energy is less than the depth U0 of
the ODT, it will stay trapped there. As a consequence the count rate at the APDs
rises abruptly due to the fluorescence induced by the cooling beams (figure 3.2.3).
When it exceeds a predefined value, the magnetic field of the MOT is switched off
so that the cloud of cold atoms disperses and a single atom remains inside the ODT.
For a more detailed description of the physics of the loading process see [18].
Due to the red detuning of the cooling beams the atom is not heated while scattering
light from them but rather continues to be cooled. This provides the possibility to
survey the presence of the atom in the trap by detection of its fluorescence over long
periods of time (several seconds).
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3 Experimental realization of atom-photon entanglement

Figure 3.4: Sketch of the geometrical alignment and the polarizations of the lasers
that are used to generate and verify atom-photon entanglement. The
quantization axis ~z is defined by the optical axis of the microscope ob-
jective that collects the spontaneously emitted photons. For clarity, the
MOT- and ODT-beams are not shown here.

3.3 Overview of the experimental procedure

The experimental procedure for creating and verifying atom-photon entanglement
with a single 87Rb -atom consists of the following steps:

1. Optical pumping into the initial ground state |F = 1, mF = 0〉

2. From there, excitation to |F ′ = 0, m′
F = 0〉 in 2P3/2 and collection of the photon

that is emitted in the subsequent sponaneous decay

3. Projection measurement on the polarization state of the photon

4. Conditioned upon the detection of a photon, perform the atomic state-readout

These steps shall now be presented in more detail.

1. Optical pumping In order to allow for a high efficiency of the excitation pro-
cess, the first step is to optically pump the atom into the desired |F = 1, mF = 0〉-
state. For this purpose two continuous π-polarized laser-beams are applied
simultaneously (see figures 3.4 and 3.5(a)): Pump1 that is resonant to the
|F = 2〉 → |F ′ = 1〉 transition of the D2-line and Pump2 that is resonant to
|F = 1〉 → |F ′ = 1〉. Additionally, the cooling beams of the magneto-optical
trap are switched on that couple to the m′

F = ±2 sublevels of the F = 2
hyperfine state. The atom continuously scatters light from those lasers until
it decays into the |F = 1, mF = 0〉-state. In this state the atom is no more
resonant to any of the applied lasers since the transition |F = 1, mF = 0〉 →
|F ′ = 1, m′

F = 0〉 is forbidden by the selection rules for dipole transitions.
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(a) (b)

Figure 3.5: a) Optical pumping into the atomic dark state |F = 1, mF = 0〉. Addi-
tional cooling-light for emptying |F = 2, mF = ±2〉 is not shown here.
b) Excitation to |F ′ = 0, m′

F = 0〉 and subsequent decay to |F = 1〉 that
produces the entangled atom-photon pair.

2. Excitation and spontaneous decay The next step is to excite the atom
to 2P3/2 |F ′ = 0, m′

F = 0〉. This is done by a short π-polarized light pulse as
depicted in figure 3.5(b). As explained in section 2.2.1 the subsequent spon-
taneous decay yields a photon whose polarization-state is entangled with the
Zeeman-state of the atom. This photon is collected by a microscope objective
(figure 3.4) and coupled into a single-mode optical fiber that guides it to the
photonic state analyzer.

3. Analysis of the photonic state The projection measurement of the photonic
polarization state is accomplished by sending the photon onto a polarizing
beam splitter (PBS) and detecting the photon with single-photon detectors
(APD) placed behind the output ports of the PBS (figure 3.6(a)). By rotating
a λ/2- and a λ/4-waveplate that are installed in front of the PBS one can select
any measurement basis on the Bloch-sphere. A detection of the photon at one
of the APDs now projects the atom onto the corresponding superposition of
Zeeman-sublevels as given in table (2.1).

4. Readout of the atomic state The detection of the atomic Zeeman-state
consists of two steps as depicted in figure 3.6(b): First the superposition of
the two Zeeman-states |1,−1〉 and |1, +1〉 is mapped onto a superposition of
the hyperfine-levels |F = 1〉 and |F = 2〉 by means of a so called STIRAP-
technique. Subsequently a push-out pulse is applied that removes the atom
from the trap if it is in the F = 2 hyperfine state. The original Zeeman state
can then be determined by verifying whether the atom is still present in the
trap after the push-out pulse. A detailed description of this readout scheme is
given in the following section.
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(a) (b)

Figure 3.6: a) Setup for the measurement of the photonic polarization state. b)
Atomic state-readout: The STIRAP pulse state-dependently transfers
the atom to |F = 2〉 from where it is heated out of the trap by reso-
nantly scattering light from the push-out laser.

In the experiment not every pump-excitation process is followed by the detection
of a photon. Several effects lower the efficiency of this process: First, the optical
pumping does not lead to a perfect occupation of the |1, 0〉 ground-state. Moreover,
not every excitation pulse leads to the emission of a photon and only a small fraction
of the photons is detected due to the limited numerical aperture of the microscope
objective, coupling losses into the single-mode fiber and the limited detecion effi-
ciency of the APDs. The overall excitation efficiency - i.e. the probability to detect
a photon at one of the APDs after an excitation pulse - is about 2.2 h. Hence, the
pumping-excitation process is repeated many times and the atomic state readout is
only performed conditioned upon the detection of a photon. After every 10th pump-
excitation cycle the atom has to be cooled again for 400 µs in order compensate the
heating induced by the pumping and excitation processes.
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3.4 Readout of the atomic state

For verifying entanglement between the atom and the photon one must be able
to perform a projection measurement on the atomic qubit that is encoded in a
superposition of the mF = ±1 Zeeman sublevels of the F = 1 hyperfine ground state.
In our experiment this is done in a two-step process: First a certain superposition of
the Zeeman sublevels is transfered to the |F = 2〉 hyperfine ground state while the
orthogonal superposition stays in F = 1. Then a projection measurement onto the
two hyperfine levels is performed.
This section begins with a paragraph on the hyperfine state readout. Thereafter a
theoretical description of the STIRAP (stimulated Raman adiabatic passage) is given
for a simple three-level system. In a second step it will be explained how this process
can be made sensitive to different superpositions of Zeeman states. In the end the
setup for its experimental realization is presented together with measurement results
of the accuracy of the state detection.

3.4.1 Hyperfine state detection

Our hyperfine state detection works by state dependently removing the atom
from the trap. This is realized by a 12 µs long laser pulse that is tuned to the
S1/2, F = 2 → P3/2, F

′ = 3 transition (see figure 3.6(b)). This laser is σ+-polarized so
that the atom is optically pumped to the mF = 3 Zeeman level of the F = 2 ground
state within several scattering processes. After it has arrived there, it continuously
scatters light on the closed transition between the F = 2, mF = 3 ground- and
F ′ = 3, m′

F = 4 excited state until the accumulated photon recoil pushes it out of
the trapping potential. The big separation of 6.8 GHz between the two hyperfine
ground states strongly suppresses off-resonant scattering if the atom is in |F = 1〉 .
So in this case the atom stays in the trap. The hyperfine state can then be determined
by verifying the presence of the atom in the trap after the push-out process. This is
done by switching on the cooling and repump light of the magneto-optical trap and
counting fluorescence photons from the atom for 10 ms.

The accuracy of identifying the states correctly is given by the probabilties, that
an atom in |F = 1〉 is redetected after the push-out process and that an atom in
|F = 2〉 is not. The measured accuracies are [17]

|F = 1〉 : 98.3± 1.3 % (3.5)

|F = 2〉 : 97.1± 0.3 %

The efficiency of the push-out process is mainly limited due to polarization errors of
the cycling laser. By this the atom may leave the closed transition and off-resonant
decay into F = 1 can take place from where the atom is no more resonant to the
cycling laser. The limited probability to redetect the atom if it was in F = 1 is due
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3 Experimental realization of atom-photon entanglement

to collisions with atoms from the background gas that remove the atom from the
trap during the relatively long fluorescence detection phase.

3.4.2 STIRAP for a three-level system

The task of the STIRAP-process is to transfer the atom from F = 1 to F = 2
depending on its Zeeman state. In this section we first describe the physics of the
transfer itself. Afterwards it will be explained how this transfer can be made sensitive
to a certain superposition of Zeeman states.

We consider the case of a three-level system with the two ground states |F = 1〉 and
|F = 2〉 and the |F ′ = 1〉 hyperfine level of the 2P1/2 excited state as depicted in
figure 3.7(a). We now couple each of the ground states to the excited state by
two light fields with Rabi-frequencies Ω1 and Ω2. The Hamiltonian for the interac-
tion of the atom with this light-field in the basis of the three atomic eigenstates
{|F = 1〉 , |F = 2〉 , |F ′ = 1〉} then reads:

Ĥint =
~
2

 0 0 Ω1

0 0 eiδΩ2

Ω1 e−iδΩ2 0

 (3.6)

where δ is the relative phase between the two laser-fields. By calculating the eigen-
states of the total Hamiltonian Ĥatom + Ĥint for a given configuration of light fields
Ω1 and Ω2 one obtains the following result. One of the eigenstates is given by:

|Ψ0〉 =
1√

Ω1
2 + Ω2

2

(
Ω2 |F = 1〉 − eiδΩ1 |F = 2〉

)
(3.7)

First of all, this state has the property that it contains no contribution from the
excited state |F ′ = 1〉 which means that the excited state is not populated. Thus it
can be excluded that spontaneous decay happens if the atom is in this eigenstate
of the Hamiltonian. Secondly, the ratio between the populations in the two ground
states depends on the ratio between Ω1 and Ω2 - i.e. the ratio of the two field
intensities. By introducing the angle ϕ via

tan ϕ =
Ω1

Ω2

(3.8)

the state |Ψ0〉 can be written as:

|Ψ0〉 = cos ϕ |F = 1〉 − eiδ sin ϕ |F = 2〉 (3.9)

Suppose now that the atom is initially in the |F = 1〉 hyperfine level. A coherent
transfer of the population from |F = 1〉 into |F = 2〉 can then be performed by
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3.4 Readout of the atomic state

(a) (b)

Figure 3.7: STIRAP in a three level system: a) Light fields Ω1 and Ω2 couple the
initially populated state |F = 1〉 and the desired final state |F = 2〉 to
the excited level |F ′ = 1〉. b) Temporal shape of the light pulses and
resulting evolution of the population in |F = 2〉 (green line).

appling the pulse sequence depicted by the red and blue curves in figure 3.7(b):
Starting with both fields off one first creates a field configuration such that the
atomic eigenstate |F = 1〉 is identical to the eigenstate |Ψ0〉 of Hint (i.e. ϕ = 0).
This is achieved by setting Ω2 À Ω1. Then Ω1 is switched on as well and the
ratio between the field intensities is adiabatically inversed until Ω2 ¿ Ω1. In this
field configuration the eigenstate |Ψ0〉 equals |F = 2〉 . The field Ω1 can then be
turned off and the transfer of the whole population to the desired |F = 2〉 -state is
completed. The temporal evolution of the population in |F = 2〉 during this process
can be seen from the green curve.

This population transfer is based on the adiabatic theorem of quantum mechanics
which states that a system that is initially in an eigenstate of its Hamiltonian stays
in this eigenstate under adiabatic variation of the Hamiltonian - in our case the light
intensities. The criterion for adiabaticity of the STIRAP process can be expressed
by [38] √

Ω1
2 + Ω2

2 · 1

ϕ̇
À 1 (3.10)

This means that the faster the pulses are varied, the higher must be the field in-
tensities. If this criterion is not fulfilled, the atomic state cannot follow the field
variation. It partially leaves the eigenstate |Ψ0〉 and as a result the efficiency of this
process is reduced. Additionally, the phase δ in (3.7) has to be constant in order to
guarantee the adiabaticity of the transfer [18]. For this the two laser fields must have
a fixed phase relation. If these conditions are ideally fulfilled the STIRAP process
allows for a transfer efficiency of one.
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3 Experimental realization of atom-photon entanglement

Figure 3.8: Zeeman state-selective STIRAP: The light fields Ω1, Ω2 can be decom-
posed into a superposition of σ+ and σ−. A certain superposition of
|1,−1〉 and |1, +1〉 then is dark to the STIRAP1 laser field.

3.4.3 Zeeman state-selective STIRAP

In our experiment the STIRAP-transfer shall only take place for a certain superpo-
sition of the |1,±1〉 sublevels of |F = 1〉 while leaving the orthogonal superposition
unaffected. The question which superposition is transfered is decided by the polar-
ization of the STIRAP1 laser. Let us write the polarization state of the STIRAP1
laser as a superposition of σ+ and σ− polarization as depicted in figure 3.8

|P〉 = cos
θ

2

∣∣σ+
〉

+ eiφ sin
θ

2

∣∣σ−〉
(3.11)

As can be shown [39, 35], there is a coherent superposition of Zeeman levels in which
the atom does not couple to a STIRAP1 laser with the above polarization (such a
state is called a coherent dark state). This superposition is:

|ΨD〉 = cos
θ

2
|1, +1〉+ eiφ sin

θ

2
|1,−1〉 (3.12)

where the index D stands for “dark“ state. In contrast, the superposition orthogonal
to (3.12) is a “bright” state to STIRAP1 and is entirely transfered.

One must add here that populations in |1, 0〉 are transfered for any STIRAP po-
larization. For the interpretation of the entire readout sequence of STIRAP and sub-
sequent hyperfine state detection this means the following: If the atom is redetected
after the hyperfine state detection, one can say with certainty that a projection onto
the dark state |ΨD〉 has taken place. If it is not redetected, the atom either was in
the bright state or in |1, 0〉. This will become important when discussing the results
of the Larmor precession measurements in section 3.5 where rotation of the atomic
spin out of the qubit-subspace {|1,−1〉 , |1, 1〉} into the |1, 0〉-state becomes possible.
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3.4 Readout of the atomic state

Suppression of off-resonant transfer via |F′ = 2〉
Up to now the polarization of STIRAP2 did not play a role for the Zeeman state-
selectivity of the transfer process. However, for the high intensities we need in order
to fulfill the adiabticity criterion (3.10) off-resonant coupling to the excited hyperfine
level |F ′ = 2〉 occurs. In this case transitions become possible to which the originally
dark state |ΨD〉 is bright. A transfer can then still be suppressed by an appropriate
choice of the polarization of Ω2 [27]. For a polarization of STIRAP1 given by eq.
(3.11) the polarization of STIRAP2 has to be:

|P〉 = sin
θ

2

∣∣σ+
〉

+ eiφ cos
θ

2

∣∣σ−〉
(3.13)

So for linear polarization (θ = π/2) the two STIRAP fields need to have parallel
polarization, and for circular polarization (θ = 0, π) they need to be orthogonally
polarized.

Summing up one obtains the following table for the relations between a desired
dark state and the necessary STIRAP polarizations:

atomic dark state SITRAP1 STIRAP2
1√
2
(|1, +1〉+ |1,−1〉) H H

1√
2
(|1, +1〉 − |1,−1〉) V V

1√
2
(|1, +1〉+ i |1,−1〉) +45 +45

1√
2
(|1, +1〉 − i |1,−1〉) -45 -45

|1, +1〉 σ+ σ−

|1,−1〉 σ− σ+

3.4.4 Experimental realization of STIRAP

For the creation of the STIRAP pulses Ω1 and Ω2 we use light from two separate
diode lasers, each of which is stabilized to the corresponding transition. The relative
time delay between the pulses as well as their duration can be adjusted by electronic
delay circuits. The rising and falling edges of the pulses created by the pattern
generator would be too steep to fufill the adiabaticity criterion. In order to smoothen
them, low-pass filters with a cut-off frequency of 14 MHz are inserted at the inputs
of the AOM-drivers.
Another condition for an adiabatic transfer is that the phase stability between the
two lasers STIRAP1 and 2 must be guaranteed. Their phase fluctuation dδ

dt
has been

measured to be about 2π · 170 kHz [18], so over a time of 1
170 kHz

= 5.9 µs the phase
turns by 2π. The transfer then has to be finished in a considerably shorter time.
This limits the duration of the pulses and thus gives a lower bound for the speed of
the field variation ϕ̇. Figure 3.9 shows a plot of the pulse sequence we use measured
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Figure 3.9: The STIRAP-pulses measured with the fast photodiode. Red line:
STIRA1, blue line: STIRAP2. The pulse duration T is ∼ 55 ns FWHM.

with a fast photodiode. The pulse length is 55ns FWHM for both pulses.

After having passed the AOMs, the lasers are overlaped at a beamsplitter and
coupled into a single-mode fiber that guides them to the trap setup. This guaran-
tees a perfect spatial overlap of the two beams. Figure 3.10 shows the optical setup
before the trap. In order to be able to choose arbitrary measurement bases (i.e. po-
larizations) the STIRAP beam has to be oriented parallel to the quantization axis.
We send it into the glass cell in opposite direction of the beam of the optical dipole
trap. The beam is first widened in a 10:1 telescope and then focused down to the
trap center by an achromatic lens of focal length f = 100 mm to a waist of 6 µm.
For selecting the atomic measurement basis the polarization of the STIRAP lasers
can be turned by a λ/4- and a λ/2-waveplate that are mounted on stepermotors.

Compensation of the birefringence of the glass cell
It has turned out that the walls of the glass cell show substantial birefringence.
They induce a phase shift between the H- and V -polarized components of light that
crosses them and thus considerably turn the polarization state of ±45◦-polarized
light. In order to compensate this we have installed a highly birefringent YVO4-
Yttrium-Orthovanadat crystal (no = 1.94, ne = 2.15, thickness: 200 µm) behind the
λ-waveplates. Its ordinary and extraordinary axes are oriented parallel to H and V .
Tilting the crystal with respect to the beam axis as despicted in figure 3.10 allows
to reverse the phase-shift between horizontally and vertically polarized electric field
components that is induced by the glass cell.

Pulse intensities
For an efficient transfer the speed of the pulse variation ϕ̇ (i.e. their duration) and the
Rabi frequencies Ω1, Ω2 have to be chosen such that the adiabaticity criterion (3.10)
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3.4 Readout of the atomic state

Figure 3.10: Optical setup for focusing the STIRAP beams onto the atom. λ-
waveplates choose the atomic measurement basis. The YVO crystal
behind them serves as phase compensation plate. A movable mirror
can deflect the lasers onto a fast photodiode (PD) for recording the
pulse form and intensity. The light from the dipole trap travels in the
opposite direction. Behind the telescope a dicroic mirror reflects it onto
the photodiode that is used to electronically stabilize its intensity.

is fulfilled. Since the pulse duration is limited by the phase stability of the two lasers,
the fulfillment of this criterion now depends on Ω1, Ω2 and thus the intensity of the
pulses. For the given pulse durations the peak intensities of the pulses must be of
the order of a few hundred saturation intensities Isat [27, 18], where Isat 1 = 5.98 mW

cm2

and Isat 2 = 17.95 mW
cm2 , respectively (see A.2). The pulse heights at the photodiode

(figure 3.9) are chosen such that the resulting Rabi-frequencies Ω1 and Ω2 are equal
at the pulse maxima.

In order to find the optimal intensity, the atom is first prepared in the superpo-
sitions 1√

2
(|1, +1〉 ± |1,−1〉). This is done by entangling the atom with a photon

and performing a projection measurement on the photon in the H, V -basis. Then
a V -polarized STIRAP pulse is applied for which the dark and bright states are
|ΨDV

〉 = 1√
2
(|1, +1〉 − |1,−1〉) and |ΨBV

〉 = 1√
2
(|1, +1〉+ |1,−1〉), respectively. The

transfer efficiencies for |ΨDV
〉 and |ΨBV

〉 can then be derived from the probabilities
to redetect the atom after the subsequent hyperfine state readout. The optimal in-
tensity is found by scanning the pulse intensities and observing these probabilities.
Figure 3.11 shows the result of such a scan. The x-axis denotes the intensity of the
STIRAP lasers given in their respective saturation intensities Isat. The blue and
red lines give the redetection probabilities if the atom was in the bright and dark
state, respectively. We are interested in the intensity where the contrast between
the redetection probabilities of |ΨDV

〉 and |ΨDB
〉 is maximal. As one sees this is the

case at about 120− 140 Isat. At 400 Isat the transfer efficiency of the bright state is
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Figure 3.11: Dependence of the STIRAP transfer efficiency on the intensity of the
laser pulses. Shown are the probabilities to redetect the atom after the
hyperfine state detection if the atom was prepared in the dark state of
STIRAP (red line) or the bright state (blue line), respectively.

even higher, but here also the dark state starts to be considerably transfered due to
off-resonant coupling to F ′ = 2. For this optimal value the redetection probabilities
are:

dark state : 94.9± 0.9 % (3.14)

bright state : 15.7± 1.4 %

It must be considered that these probabilities also contain the errors caused by the
limited accuracy of the hyperfine state detection given in (3.5). In order to obtain
the accuracy of the STIRAP process alone - i.e. the probability that the bright state
is transfered to F = 2 and the dark state not - one must correct (3.14) for these
errors. One obtains:

dark state : 96.5 % (3.15)

bright state : 86.8 %

The transfer efficiency of the bright state is not yet satisfactory for our purposes
if compared with what has been achieved in the first trap setup [19]. It cannot be
improved by increasing the intensity of the STIRAP lasers due to the off-resonant
coupling to F ′ = 2. However, it is possible that further fine-tuning of the temporal
shape of the pulses and their time-delay might lead to a better transfer efficiency [38].
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3.5 Stabilization of the atomic qubit

Summary
This section described how the Zeeman state of the atom can be read out by state de-
pendently removing the atom from the trap. With this method it is possible perform
measurements on the atomic qubit in arbitrary measurement bases by selecting the
appropriate polarization of the STIRAP beam. In particular, it became clear that
this readout scheme is to be interpreted as a projection of the atomic qubit onto the
coherent dark state of the chosen STIRAP polarization.

3.5 Stabilization of the atomic qubit

Our atomic qubit is encoded in a coherent superposition of the Zeeman sublevels
mF = ±1 of the F = 1 ground state. If this state is subject to effects that couple
to the quantum number mF , the coherent phase relation between the Zeeman state
becomes time-dependent. These mechanisms of dephasing decrease the correlations
for measurements on the entangled atom-photon pairs. In order to preserve the cor-
relations the atomic qubit must be stabilized for the time that passes between the
creation of the entangled state and the end of the Zeeman state-selective STIRAP
process. In total this is a time of about 500 ns. For the envisaged atom-atom entan-
glement experiment with a distance of 300 m the atomic state has to be stable for
at least 1.5 µs.

This section first describes the two main sources of perturbation of the atomic
qubit. Then our method of stabilizing the atomic qubit against these external per-
turbations is presented.

3.5.1 Mechanisms of dephasing

In our experiment there are mainly two mechanisms that couple to the magnetic
quantum number of the atomic state:

• There is an external magnetic field ~B created by e.g. the permanent magnet
of the ion getter pump, the 50 Hz of the electric power line, other electric
devices as well as the strong currents of the adjacent subway tracks. The
static field of the ion getter pump is of the order of 102...103 mG whereas the
other sources create field fluctuations of 1...102 mG [19]. Since the sources are
far away from the optical dipole trap compared to its size, the fields can be
considered spatially constant over the trapping potential.
According to the Zeeman effect such fields couple to the magnetic moment
µ = µB ·gF ·mF of the atom. Where µB = 2π~·1.4 MHz/G is the Bohr magneton
and gF is the Landé factor which equals −1/2 for the F = 1 hyperfine level.
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3 Experimental realization of atom-photon entanglement

This coupling leads to an energy splitting of the Zeeman levels. For a field
along the quantization axis it is given by:

∆EZeeman = µ ·Bz = µB · gF ·mF ·Bz (3.16)

• The light of the dipole trap is not exactly linearly polarized mainly due to
birefringence of the vacuum glass cell. The induced lightshift Udip(~r) from
equation (3.1) then also becomes linearly dependent on gF ·mF . This has the
same effect as a space-dependent magnetic field along the quantization axis of
the order of 1...10 mG for our polarization errors of 1% and below [19].

All in all these two effects can be summarized in a single time- and space- depen-
dent effective magnetic field ~Beff :

~Beff (~r, t) = ~B(t) + P · 1

µB

πc2Γ

2ω0
3

(
− 1

∆2,F

+
1

∆1,F

)
Iσ(~r) · ~ez (3.17)

where Iσ denotes the intensity of the circularly polarized fraction of the dipole trap
light and P = ±1 for σ+- and σ−- polarization, respectively. This effective magnetic
field acts on the atomic qubit during the time after the emission of the sponta-
neously emitted photon until the termination of the STIRAP process and causes
it to perform Larmor precessions in the three-dimensional Hilbertspace spanned by
{|1,−1〉 , |1, 0〉 |1, +1〉}. The aim of the work described in this section is to reduce
the perturbation induced by this effective magnetic field to a minimum. We will try
to achieve this by artificially creating a second magnetic field ~Bcomp = − ~Beff that
shall cancel out the original perturbative field.

Classification of the perturbations
Before we start with the compensation procedure we first try to further classify the
above mentioned perturbations. For this we have to note that the effective magnetic
field has contributions on three different timescales:

1. Constant contributions as for example the field created by the permanent
magnet of the ion getter pump. These lead to a coherent rotation of the atomic
qubit that stays the same during each realization of one experiment of atom-
photon entanglement.

2. Contributions that vary for each individual realization of the experiment but
stay approximately constant over the duration of one single experiment (“shot-
to-shot noise”). These contributions are on the one hand given by fluctuations
of the magnetic field that have such a low frequency that they are constant
over the duration of one single experiment. On the other hand the contribu-
tion of the vector-lightshift induced by the dipole laser varies randomly from
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experiment to experiment since it depends on the position of the atom in the
trap. These contributions lead to a random rotation of the atomic state for
different realizations of the experiment. This kind of perturbation is called
dephasing.

3. Perturbations that vary within the duration of a single experiment. These are
given by fluctuations of the external magnetic field at high frequencies. It has
been shown that the amplitude of these fluctuations is negligible for our case
[19].

The dynamics of the atomic state in the presence of these contributions can now be
divided into two components: A coherent rotation of the atomic spin in the constant
field and dephasing due to fluctuations of the field and the effect of the dipole trap.
Given a sufficient bandwidth of the compensation mechanism it is in experiment
possible to create a compensation field that cancels out the constant contribution of
the magnetic field as well as its shot-to-shot fluctuations. It is however impossible
to compensate for the contribution of the optical dipole trap.

3.5.2 Method for compensation of external magnetic fields

The mechanism for compensating the external magnetic field works in the follow-
ing way:

The first step is to stabilize the magnetic field in the vicinity of the atom to a
fixed value over many repetitions of the experiment. For this the field fluctuations
are measured with a magnetic field sensor. This sensor produces three voltage signals
that are proportional to the components of the magnetic field in the three spatial
directions. It has a resolution of below one mG and is installed at a distance of about
3 cm from the atom at the exterior of the glass cell. Moreover, three pairs of magnetic
coils are installed around the trap - one along each of the spatial axes. These are used
to produce the compensation field ~Bcomp. The signals from the magnetic field sensor
are now fed into a feedback loop [19] in which they are compared to three voltages
that can be manually chosen by a potentiomenter. The feedback loop controls the
currents of the magnetic coils such that the signals of the field sensor constantly equal
the voltages chosen by the potentiometers. The residual fluctuations of the stabilized
field can be monitored by observing the sensor signal. It shows fluctuations with
frequencies above 200 Hz and a standard deviation of the peak-to-peak amplitude
of 2 mG.

The signals of the magnetic field sensor do not give information about the absolute
value of the magnetic field, but only of its variations. In order to find the configura-
tion of the compensation field that exactly cancels the external field it is necessary
to try different control voltages chosen by the potentiometers and to observe the
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Larmor precessions of the atom in the residual magnetic field. The optimal value is
then found if the frequency of the Larmor precessions has been minimized.

3.5.3 Evolution of a spin-1 system in a constant magnetic field

In order to enable a better understanding of the measured Larmor precessions
we now give a theoretical description of the behaviour of the atomic spin in the
presence of a constant effective magnetic field ~Beff . The Hamiltonian for an atom

in the hyperfine state F interacting with ~Beff is given by:

Ĥ = ~Beff ·
µB gF

~
~̂F (3.18)

~̂F being the vector operator of the angular momentum for the F = 1 space with
components F̂x, F̂y, F̂z. This operator measures the projection of the atomic angular
momentum onto the x, y and z-axis, respectively, and has eigenvalues ±1, 0. We now
write the magnetic field as

~Beff = Beff

(√
1− bz

2 cos φ · ~ex +
√

1− bz
2 sin φ · ~ey + bz · ~ez

)
(3.19)

with φ ∈ [0, 2π]. A calculation of the eigenstates of Ĥ represented in the eigenbasis
{|1, +1〉 , |1, 0〉 , |1,−1〉} of Fz yields [19]:

|Φ+1〉 =

 1
2
(1 + bz)e

−iφ

1√
2

√
1− bz

2

1
2
(1− bz)e

iφ



|Φ0〉 =

 − 1√
2

√
1− bz

2e−iφ

bz

1√
2

√
1− bz

2eiφ


|Φ−1〉 =

 1
2
(1− bz)e

−iφ

− 1√
2

√
1− bz

2

1
2
(1 + bz)e

iφ

 (3.20)

With the respective eigenvalues −~ωL, 0, +~ωL. Where ωL := 1
~ µB gF Beff is the

Larmor frequency. With this the time evolution of an arbitrary state |Ψ〉 in the
Schrödinger picture can be written as:

|Ψ(t)〉 = c−1e
iωLt |Φ−1〉+ c0 |Φ0〉+ c+1e

−iωLt |Φ+1〉 (3.21)

So the time evolution of |Ψ〉 is periodic with the Larmor frequency ωL. This allows

to determine the abolute magnitude of the magnetic field ~Beff experimentally by
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measuring the time T it takes the atom to perform one Larmor rotation. For a given
T , Beff can be calculated from the following formula:

| ~Beff | =
2π ~
µB gF

· 1

T
(3.22)

For measurements of the Larmor precession we normally prepare the atom in the
dark and bright states |ΨDV

〉 and |ΨBV
〉 of V -polarized STIRAP. The dynamics of

the atomic state are then analysed by reading out the atomic state after a waiting
time t with a V -polarized STIRAP pulse. It might be instructive to know in ad-
vance what the behaviour of the dynamics of theses states look like under different
magnetic fields. Let us consider two special cases:

(i) ~Beff ‖ ~z, so bz = 1

(ii) ~Beff ⊥ ~z, so bz = 0

We now search the representation of |ΨDV
(t)〉 and |ΨBV

(t)〉 in the basis (3.20). For
this we use their definitions in terms of |1,±1〉 from table 2.1.

For case (i) the eigenstates (3.20) equal {|1, +1〉 , |1, 0〉 , |1,−1〉} and we obtain:

|ΨBV
(t)〉 =

1√
2
e−iωLt

(
|1, +1〉+ ei2ωLt |1,−1〉

)
(3.23)

|ΨDV
(t)〉 =

1√
2
e−iωLt

(
|1, +1〉 − ei2ωLt |1,−1〉

)
(3.24)

From these equations one can see, that except for a global phase e−iωLt both states
already return into their initial state after half a Larmor period since the relative
phase between |1, +1〉 and |1,−1〉 rotates with 2ωL. Moreover, they do not leave the
qubit space {|1, +1〉 , |1,−1〉}. For example |ΨBV

〉 first rotates into
∣∣ΨD+45◦

〉
after

T
8

and then into |ΨDV
〉 and

∣∣ΨD−45◦

〉
after T

4
and 3

8
T , respectively. In the picture

of the Bloch-sphere this is a rotation of the atomic spin in the equatorial plane
perpendicular to the eigenstates of σ̂z.

For case (ii) the situation is more complicated:

|ΨBV
(t)〉 =

1√
2

(
cos φ e−iωLt |Φ+1〉 − sin φ i

√
2 |Φ0〉+ cos φ eiωLt |Φ−1〉

)
(3.25)

|ΨDV
(t)〉 =

1√
2

(
sin φ i e−iωLt |Φ+1〉 − cos φ

√
2 |Φ0〉+ sin φ ieiωLt |Φ−1〉

)
(3.26)

Here population of |1, 0〉 becomes possible and the qubit becomes a “qutrit”.
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What can be measured in an experiment, is the projection of states (3.23) - (3.26)
onto the dark state of the chosen STIRAP polarization. For V -polarization one finds
for case (i):

|〈ΨDV
|ΨBV

(t)〉|2 = sin2 ωLt (3.27)

|〈ΨDV
|ΨDV

(t)〉|2 = cos2 ωLt (3.28)

And for case (ii):

|〈ΨDV
|ΨBV

(t)〉|2 = sin2 φ cos2 φ
(
cos2 ωLt− 2 cos ωLt + 1

)
(3.29)

|〈ΨDV
|ΨDV

(t)〉|2 = sin4 φ cos2 ωLt + 2 sin2 φ cos2 φ cos ωLt + cos4 φ (3.30)

Figure 3.12 shows plots of these functions. For a field of 200 mG parallel to the
quantization axis ~z (top left) one finds the pure sinusoidal oscillations given by
equations (3.27) and (3.28). After ∼ 3.5 µs = T

2
the states have performed an entire

rotation and have returned to their initial state. In contrast, for a field of same
strength along ~y, i.e. φ = π

2
, (top right) the situation becomes not symmetric. The

state |ΦBV
(t)〉 from eq. (3.25) is constant in time because it equals the eigenstate

|Φ0〉. At the same time |ΨDV
(t)〉 oscillates with 2 · ωL and also populates |1, 0〉 (see

eqns (3.25) and (3.20)). The bottom left plot shows a more general situation with
field components along all three spatial axes. The curves are very unsymmetric and
it now takes a whole Larmor period until |ΨBV

(t)〉 and |ΨDV
(t)〉 have returned into

their original state.
Finally, the situation in the bottom right demonstrates that sometimes it is not
sufficient to analyse Larmor precessions by projecting onto only one dark state: If
the field is along the x-axis (φ = 0) the projections of |ΨDV

(t)〉 and |ΨDH
(t)〉 onto the

STIRAP dark state are constant in time and one might suspect that the magnetic
field is zero. However, as we can see from eqs 3.25 and 3.26, only |ΨDV

(t)〉 is constant
in time. It is the eigenstate |Φ0〉 of this field configuration. Whereas |ΨBV

(t)〉 still
oscillates in the {|Φ−1〉 , |Φ+1〉} subspace. This subspace is orthogonal to the state
on which we project. The state projection then always is zero and the dynamics are
not visible. This example shows us that for verifying that the magnetic field is zero
along all spatial directions, it is necessary to perform a full state tomography of the
atomic qubit [19].
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Figure 3.12: Temporal evolution of |ΨDV
(t)〉 (red line) and |ΨBV

(t)〉 (blue line) given
by their projection onto |ΨDV

〉 for different field configurations. The
specific durations T = 2π

ωL
of one Larmor period are indicated above

each plot.
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3 Experimental realization of atom-photon entanglement

3.5.4 Measurements of Larmor precessions

The theoretical model presented in the previous section can help to interpret mea-
surements of Larmor precessions and allows to decide along which axis the magnetic
field has to be compensated. But still several iterations are necessary to obtain a
satisfactory compensation. In our case, the aim is that the duration of one Lar-
mor precession should be considerably longer than the time that passes between
the emission of the decay photon and the end of the STIRAP transfer. Because of
delays in the electronics that create the STIRAP laser pulses the STIRAP transfer
is performed about 400− 500 ns after the detection of a photon.

For measuring the Larmor precessions the atom is prepared in the dark and bright
state |ΨDV

〉 and |ΨBV
〉 of V -polarized STIRAP. This is done by entangling the atom

with a photon and performing a projection measurement on the photon in the σ̂x-
basis. After the detection of the photon a waiting time t is introduced before the
creation of the STIRAP pulse. By varying t one observes an oscillation of the prob-
ability to redetect the atom after the atomic state detection which is a clear sign
that the population of the dark state for the chosen STIRAP polarization oscillates.
The results of such measurements with V - polarized STIRAP are shown in figure

3.13. Figure a) shows the situation before compensation of the magnetic fields. The
atomic qubit considerably rotates out of its initial state within less than 500 ns. This
can be seen from the fact that already for t = 0 the redetection probablitiy for atoms
in |ΨDV

〉 (red line) has decreased to 0.5. The duration T of one Larmor period is
∼ 2 · 4µs from which we conclude that the magnetic field is of about 180 mG.
Figure 3.13(b) shows the situation after the compensation. Now T is about 2 · 60µs
which gives Beff ≈ 12mG. Due to the symetry between oscillations of |ΨDV

〉 and
|ΨBV

〉 one can conclude that the residual field is along the quantization axis. After
about 200 µs the amplitude of the oscillations decreases to zero and the redetec-
tion probabilities approach 0.5. This can be explained by dephasing due to residual
fluctuations of the magnetic field and the Zeeman-state dependent lightshift of the
dipole trap. On long timescales of several 100 µs this leads to random rotations of
the atomic angular momentum and thus to an entirely mixed state [19].
Finally, figure 3.13(c) shows the behaviour of the atom on short timescales for com-
pensated fields. One sees that for t = 0 no rotation out of the original state takes
place.

Summary
In this section it was demonstrated that the atomic qubit can be stabilized over
a sufficiently long time for performing the atom-photon entanglement experiment.
With regard to the envisaged atom-atom entanglement the compensation of the
magnetic fields needs further optimization. For this experiment the atomic qubit
must be stable for about 3 µs which also is possible with the presented method.
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Figure 3.13: Larmor precessions of the atomic states |ΨDV
(t)〉 (red line) and |ΨBV

(t)〉
(blue line) measured by their projection onto the dark state of V -
polarized STIRAP as a function of the waiting time t. a) Before compen-
sation of the magnetic fields. The atomic qubit performs a full preces-
sion back into its initial state within 4 µs. b) and c) After compensation:
T = 2 · 60 µs. The atomic state is stable for the time that is needed to
perform the state readout.
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3 Experimental realization of atom-photon entanglement

3.6 Optimization of the optical pumping duration

In order to allow for a higher efficiency of the excitation process the atom is first
optically pumped into the desired intitial state 52S1/2, F = 0, mF = 0 before every
excitation (see figure 3.5(a)). Hence, the duration of the optical pumping process is
one of the limiting factors for the creation rate of entangled atom-photon pairs. It
is therefore necessary to find the minimial pumping duration with which one still
obtains a maximal occupation of the desired |1, 0〉 ground-state.

As a measure for the efficiency of the pumping process one can take the excitation
efficiency i.e. the probability to detect a photon after an excitation of the atom.
Figure 3.14 shows the results of a measurement, where the dependency of the ex-
citation efficiency on the pumping duration was examined. The pumping duration
was varied from 0.5 to 2.9 µs. One observes that the maximal excitation efficieny
can be achieved for a pumping duration of about 2 µs. This is less than the 4 µs that
were supposed for the calculation of the repetition rate of atom-atom entanglement
in [31] and may help increasing the rate of created atom-atom pairs. Besides, the
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Figure 3.14: Dependence of the excitation efficiency on the duration of the optical
pumping period. About 2 µs of optical pumping are necessary in order
to achieve the maximal excitation efficiency.

determined optimal pumping duration is by far shorter than the cycle duration of
an atomic Larmor precession after compensation of the ambient magnetic field (see
previous section). This means that spin rotation out of |1, 0〉 into |1,±1〉 does not
occur on the timescale of the optical pumping. This would reduce the efficiency
of the optical pumping and thus also the excitation efficiency. Moreover, it would
make the atom again resonant to the pump lasers and consequently lead to more
scattering events and thus more heating than necessary.
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3.7 Creation of entanglement

In our experiment the entangled atom-photon pair is created during the sponta-
neuos decay of the atom from the 52P3/2, F

′ = 0, m′
F = 0 excited state as described

in section 2.2.1. For preparing the atom in this state, a laser pulse is applied that
is resonant to the transition S1/2, F = 1, mF = 0 → P3/2, F

′ = 0, m′
F = 0 (see the

figure below).

Figure 3.15: Creation of the entangled atom-photon pair. A laser pulse excites the
atom to P3/2, F

′ = 0, m′
F = 0 from where the spontaneous decay takes

place.

In the following it will be explained how the pulse duration and intensity of the
excitation pulse have to be chosen. The following aspects must be considered in this
context:

• The preparation of the excited state must be efficient in order to optimize
creation-rate of entangled atom-photon pairs.

• Due to imperfect preparation of the initial |1, 0〉 ground-state, off-resonant
excitation from |1,±1〉 to |F ′ = 1, m′

F = ±1〉 is possible1. The resulting decay
does not lead to the desired entangled state from eq. (2.15) and thus lowers
the fidelity of the prepared state.

• For the two-photon interference experiment the photons must be spectrally
indistinguishable. The excitation and decay process must thus happen under
identical conditions in both trap setups.

1Off-resonant excitation via |1, 0〉 → |F ′ = 1, m′
F = 0〉 is forbidden by selection-rules

47



3 Experimental realization of atom-photon entanglement

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Time HnsL

In
te

ns
ity

Ha
.u

.L

(a)

0 50 100 150
0

100
200
300
400
500
600
700

Time HnsL

C
ou

nt
s

(b)

Figure 3.16: a) Temporal shape of the intensity of the excitation pulse (green line).
A gaussian fit of the pulse (black line) gives a duration of 21ns FWHM.
b) Time distribution of the photon arrival times at the detectors.

3.7.1 Temporal shape of the excitation pulse and the emitted
photons

The choice of the temporal shape of the excitation pulse is determined by two
factors. On the one hand, one must guarantee that the atom can only scatter one
photon over the whole pulse duration. For this, the pulse must be shorter than
the lifetime of the 2P3/2 excited state of 26.2 ns[22]. On the other hand, for short
pulse durations Fourier broadening of the spectral width of the pulse occurs. This
increases the probability for off-resonant excitation to neighbouring atomic levels.
The relation between the linewidth ∆ν of a Fourier-transform limited Gaussian pulse
and its pulse duration ∆τ is given by

∆ν =
2 ln 2

π ∆τ
(3.31)

where ∆ν and ∆τ are the spectral and temporal full-widths at half maximum
(FWHM). Our pulse has a duration of 21 ns FWHM and is of approximately gaussian
shape as can be seen from figure 3.16(a). The spectrum caused by Fourier broad-
ening is then also given by a Gaussian function. Using equation (3.31) its spectral
width is calculated to be 21 MHz FWHM. The distance of the F ′ = 0 excited state
to the neighbouring F ′ = 1 state is 72 MHz. This is seven times half of the linewidth
caused by Fourier broadening. So for the chosen pulse length this effect does not
lead to off-resonant excitation.

Figure 3.16(b) shows a histogram of the arrival times of the emitted photons at
the single photon detectors. This measurement graph is directly proportional to the
temporal evolution of the occupation of the excited state [40]. The time evolution
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3.7 Creation of entanglement

in the beginning of the histogram is determined by the interaction with the exciting
laser pulse. After 50 ns - when the pulse is off - the evolution is determined by the
exponential decay of the excited state. The red line in figure 3.16(b) is an exponen-
tial fit that gives a lifetime of the excited state of 27.6 ns which is in good agreement
with the theoretical lifetime of 26.2 ns.

3.7.2 Optimal pulse intensity

The aim during the excitation process is to maximize the excitation efficiency.
This is achieved if the excitation-pulse leads to a maximal occupation probability
of the excited state. In the picture of a two-level atom this corresponds to half of
a Rabi oscillation from the ground to the excited state - such a pulse is called a π-
pulse. In the following the dynamics of such a Rabi oscillation will be qualitatively
inllustrated with the help of a simplified model in order to explain the role of the
pulse intensity in the excitation process.

Simplified model of a rectangular pulse shape
Let us illustrate the effect of Rabi oscillations in two-level atoms at the simplified
model of a rectangular pulse shape. As an additional simplification we neglect the
influence of spontanteous decay. Consider that the atom is initially in the ground
state. If the pulse is switched on at time t = 0 the temporal evolution of the occu-
pation probability pexc(t) of the excited state is given by [39]

pexc(t) = sin2

(
ΩRabi

2
t

)
(3.32)

where ΩRabi is the Rabi frequency. Since in our case the pulse duration is limited
by the lifetime of the excited state the Rabi frequency is the only parameter that
can be varied in order to maximize pexc. It is determined by the intensity I of the
incident light field. For I = const the relation between the intensity and the Rabi
frequency is given by [22]

I

ISat

= 2

(
ΩRabi

Γ

)2

(3.33)

where Γ = 2π · 6.07 MHz is the decay rate of the 2P3/2 excited state.
Although the model of a rectangular pulse cannot exactly be applied to our case of

a Gaussian pulse, it still allows for a good qualitative understanding of the relation
between the pulse intensity and pexc. As one can see from the above equations, for
increasing intensity the population of the excited state increases until it reaches its
maximum for ΩRabi ·t = π - hence the name π-pulse. Here the occupation probability
of the excited state is 1. For higher intensities more than half of a Rabi-period is
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3 Experimental realization of atom-photon entanglement

performed and pexc decreases again. Using equation (3.33) one can derive that for a
pulse duration t a π-pulse is obtained for

I = 2π2

(
1

t · Γ

)2

· Isat = 2π2
(τ

t

)2

· Isat (3.34)

Where Γ has been replaced by the lifetime of the excited state τ = 1
Γ
. In our case

the pulse is 21 ns long. For this duration equation (3.34) yields that an intensity

I ≈ 30 · Isat (3.35)

would be necessary to perform a π-pulse. For our gaussian pulse the exact form
of the temporal evolution of pexc will differ from the sinusoidal behaviour of equa-
tion (3.32) and also the necessary peak pulse intensity will differ from the value
determined above. Moreover, in the presence of spontaneous decay the maximal oc-
cupation of the excited state is never 1 as in the ideal situation without spontaneous
decay. However, the model gives already an idea of the order of magnitude of the
necessary intensity.

Experimental determination of the optimal pulse intensity
Besides the fact that our pulse is not rectangular there is the problem that the exact
intensity of the pulse at the position of the atom is unknown due to uncertainties in
the beam adjustment. Thus the optimum pulse intensity has to be found experimen-
tally. Therefore the laser power is scanned and the resulting excitation efficiency is
measured. Figure 3.17 shows the result of such a measurement. The indicated inten-
sities are the peak intensities of the pulse given in terms of the saturation intensity
Isat of the S1/2 |F = 1, mF = 0〉 → P3/2 |F ′ = 0〉-transition, where Isat = 5.008 mW

cm2

(see A.2). As one can see from the figure about fourty saturation intensities are
needed in order to achieve the maximal excitation efficiency of 2.2− 2.4 h. This is
of the same order of magnitude as what was calculated with the model of a rectan-
gular pulse.
Moreover, one observes in figure 3.17 that above the optimal intensitiy the excita-

tion efficiency decreases again. This is because for higher laser powers one performs
more than a π pulse and the atom partially rotates back into the ground state before
spontaneuos decay takes place.

The presented measurement was performed with stabilized compensated mag-
netic fields that allow for a higher efficiency of the preparation of the inital ground
state F = 1, mF = 0 by the optical pumping process (see last section). Before the
fields had been compensated, the excitation efficiency was considerably lower and
showed strong variations in time. Moreover, this measurement was already performed
with the dipole trap switched off during the excitation and spontaneous decay. This
scheme is going to be presented in the following.
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Figure 3.17: Dependence of the excitation efficiency on the laser intensity. About
fourty saturation intensities are necessary in order to obtain the maxi-
mal excitation efficieny.

3.7.3 Creating spectrally indistinguishable photons

We now follow the proposal from 2.3.2 to switch off the dipole trap during the
excitation and spontaneous emission of the photon. This shall help to eliminate the
spectral broadening of the emitted photons due to the thermally distributed light-
shift in the potential of the dipole trap. The only mechanism that leads to incoherent
broadening of the photons in then Doppler broadening, which is due to the thermal
velocity distribution of the atom.
For creating the spectrally indistinguishable photons the trap is switched off 30 ns
before the excitation pulse reaches the atom. The trap then stays turned off for
∼ 200 ns until the emission of the photon is completed.

In the previously used scheme in which the trap is on during the excitation, the
frequency of the laser is detuned with respect to the S1/2 |F = 1〉 → P3/2 |F ′ = 0〉-
transition in order to correct for the average lightshift of 28 MHz that is induced
by the dipole laser. However, if the trap is switched off during the excitation, this
is no more the case and the frequency has to be adjusted accordingly. In order
to get a better picture of the dependence of the excitation process on the laser
frequency, scans of the laser frequency were performed and the resulting excitation
efficiency was measured. The results can be seen in figure 3.18. The x-axis values
are the detuning of the laser frequency with respect to the transition frequency of
|F = 1〉 → |F ′ = 0〉 for an atom in free space - i.e. without lightshift.
With the dipole trap off (blue curve) there is a maximum of the excitation efficiency
for zero detuning which corresponds to resonant excitation to |F ′ = 0〉. A second
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3 Experimental realization of atom-photon entanglement

Figure 3.18: Dependence of the excitation efficiency on the laser frequency with the
dipole trap off and on during the excitation. The two resonances can be
attributed to excitation to |F ′ = 0〉 and |F ′ = 1〉, respectively. For the
case “trap on” the resonances are displaced by the lightshift of 28 MHz
with respect to the case “trap off”.

maximum appears for a detuning of∼ 70−75 MHz. At this point the laser is resonant
to |F ′ = 1〉. The measured distance between the lines is in good agreement with the
theoretical energy distance of 72 MHz.
A similar curve is obtained for excitation with the dipole trap on (red curve). Here,
however, the maxima are shifted to higher frequencies due to the lighshift of 28 MHz.

During these frequency scans the atomic hyperfine state detection (section 3.4.1)
was performed after every photon detection in order to determine the fraction of
atoms which decay into the F = 2 ground state. Due to selection rules such a decay
is only possible if the atom has been excited to the F ′ = 1 level. So the probability
to redetect the atom after the hyperfine state readout can serve as a measure for
excitation to F ′ = 1. Figure 3.19 shows the probability of the atom to be redetected
in the trap after the hyperfine state readout as a function of the excitation laser
frequency. On resonance with the transition to |F ′ = 0〉 the probabilities are almost
1 for the case of trap on as well as trap off. On resonance with the transition to
F ′ = 1 the probability is considerably smaller - at about 80 ± 2 %. So apparently
after 80 ± 3 % of the decays from F ′ = 1 the atom ends up in F = 2. This value
can be explained with the branching ratio between the decays from F ′ = 1 into
the two hyperfine ground states. The Clebsch-Gordon coefficients for decay from

F ′ = 1, m′
F = ±1 into F = 1 and F = 2 are

√
5
24

and
√

1
24

, respectively [22]. The
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Figure 3.19: Redetection probabilities of the atom after the atomic hyperfine state
readout as a function of the excitation laser detuning. On resonance
with the |F ′ = 1〉-level the redetection probablities are lower because
decay into |F = 2〉 occurs.

ratio of the photons that decay into F = 1 or F = 2 is then given by

F = 1 :
5
24

5
24

+ 1
24

≈ 83.3 %

F = 2 :
1
24

5
24

+ 1
24

≈ 16.7 % (3.36)

since the proportion of photons that decay via a given channel is proportional to
the square of the respective Clebsch-Gordon coefficient. One sees that the measured
branching ratio is in good agreement with the theoretically expected value.

Width of the resonance lines and hints for off-resonant excitation
As we see from figure 3.18, the width of the resonances for excitation to |F ′ = 0〉
and |F ′ = 1〉 is of about ∼ 35−40 MHz FWHM. This is about six times the natural
linewidth of the D2-line of 6.07 MHz. As it was stated in the last section this cannot
be explained by spectral Fourier broadening of the excitation laser pulse. By the
fact that the resonances are also broad for the case “trap off” , lightshift broadening
can be excluded as well. It could be shown in numerical calculations [41] for a
pulsed excitation with the pulse shape from fig. 3.16(a) that the linewidth strongly
dependens on the laser intensity. The measured linewidths could be reproduced
with this program for the intensities we use in experiment (see measurement in
figure 3.17). It thus can be concluded, that the measured linewidths are caused by
saturation broadening.

There is a considerable overlap of the two lines so that off-resonant excitation
to |F ′ = 1〉 cannot be excluded even on resonance with the transition to |F ′ = 0〉.
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As described above a reduced probability to redetect the atom after the hyperfine
state readout could serve as a measure for off-resonant excitation. It can be seen
in figure 3.19 that the probability is not exactly 1 on resonance with F ′ = 0 but
only 98.4± 0.5%. However, due to the errors of the detection accuracy of the F = 1
hyperfine ground state of 98.3 ± 1.3% (see eq. (3.5)), no definite conclusion can be
drawn from the reduced redetection probabilties.

Atom losses by switching the trap off
In principle there is a possibility that the atom moves out of the region of the trap-
ping potential during the time the trap is switched off and that it is not recaptured
when the trap is switched on again. This is however very unlikely which becomes
evident if one compares the trap-off time of 200 ns with the cycle duration of one
oscillation of the atom in the trapping potential: Even for oscillations along the ra-
dial direction (where the trap frequency is the highest - see section 3.2) the cycle
duration is 1

65.3 kHz
= 15.3 µs. This is almost two orders of magnitude larger than the

trap-off time. Hence, it can be assumed that the atom is recaptured at almost the
same place at which it was released.
This is confirmed by the measurement in figure 3.19. Here it can be seen that within
the errors the redetection probablities at resonance with the |F ′ = 0〉 level are the
same for the cases trap on and trap off.

Summary
This section explained the dependency of the excitation process on the two charac-
terizing parameters of the excitation pulse given by the pulse duration and the pulse
intensity. We also presented a scheme for creating spectrally indistinguishable pho-
tons by switching the dipole trap off during the excitation and spontaneous decay
of the atom. It was shown, that with an optimized pulse intensity of about 40 · Isat

excitation efficiencies of 2.2 − 2.4 h can be reached with this scheme. This is the
same efficiency that has been reached without switching of the trap. Moreover, it
was proven that there are no atom losses due to the switching of the dipole trap.

In measurements of the linewidth of the transitions F = 1, mF = 0 → F ′ =
0, m′

F = 0 and F = 1, mF = ±1 → F ′ = 1, m′
F = ±1 it was observed that there is

a considerable overlap between the lines. Numerical calculations showed that this is
due to saturation broadening caused by the high intensities of the excitation pulse.
This makes off-resonant excitation to F ′ = 1, m′

F = ± possible which would lead
to a reduction of the fidelity of the entangled atom-photon state. A method was
presented with which the amount of off-resonant excitation can be measured via the
occupation of the F = 1-state after the spontaneous decay. However, in order to
apply this method the detection accuracy of the F = 1 hyperfine state has to be
optimized first.
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3.8 Measurement of atom-photon correlations

All the necessary experimental steps for creating and verifying entanglement be-
tween the Zeeman-state of a single 87Rb -atom and the polarization state of a single
photon have been introduced in the course of this chapter. With these tools at hand
it is now possible to perform measurements on the two-particle system that reveal
the correlations that are the characterizing property of entangled states. In order to
test whether the atom-photon pair is entangled, the fidelity of the entangled state
will be determined from these measurements.

3.8.1 Choice of the measurement bases and expected
correlations

In order to prove entanglement of the atom-photon pair it is necessary to perform
measurements on the photon and the atom in two complementary measurement
bases. For our setup the experimentally easiest way is to analyze the atom and the
photon in the equatorial plane of the Bloch sphere. The representation of a pair of
orthogonal states in this plane in the σ̂z-basis is given by:

|0α〉 =
1√
2

(
|0〉z + ei2α |1〉z

)
(3.37)

|1α〉 =
1√
2

(
|0〉z − ei2α |1〉z

)
(3.38)

In the picture of the Bloch sphere 2α is the phase angle between |0〉x and |0α〉
and |1α〉, respectively (see figure 2.1). For the photon α can be varied by turning
a λ/2-plate in front of the PBS (see figure 3.6(a)). The PBS transmits H-polarized
photons and reflects V -polarized photons. If the ordinary and extraordinary axes of
the λ/2-plate are turned by an angle α

2
with respect to H and V then a detection of

the photon at APD1 or APD 2 projects it onto state (3.37) or (3.38), respectively.
The atomic measurement basis is given by the polarization of the STIRAP lasers.
According to equations (3.11) and (3.12) the beams must be linearly polarized at
an angle α with respect to the horizontal plane (see figure 2.3(b)) if one wants to
project onto the STIRAP dark-state (3.37). The polarization is set with a rotatable
λ/2-plate (see figure 3.10). We call a measurement in this basis a measurement un-
der the angle α because in real space (i.e. not on the Bloch sphere) α is the angle
between the photon- and STRIAP-polarization with respect to the horizontal plane.

Expected correlation curves
We now derive the correlations between the measurement results that are to be
expected for the entangled state given in equation (2.15). For this one must rewrite
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3 Experimental realization of atom-photon entanglement

the entangled state in the basis states (3.37) and (3.38):∣∣Ψ+
〉

= 1
2

[(∣∣σ+
〉

+ ei2α
∣∣σ−〉) (

|1, +1〉 − ei2α |1,−1〉
)

+(∣∣σ+
〉
− ei2α

∣∣σ−〉) (
|1, +1〉+ ei2α |1,−1〉

)]
(3.39)

We are interested in the probability that the atom is in the STIRAP dark state
|0β〉At if the photon has been projected onto |0α〉Ph or |0α〉Ph, respectively. These
probabilities are given by∣∣(

At 〈0β| Ph 〈0α|
) ∣∣Ψ+

〉∣∣2 = sin2 ∆φ (3.40)∣∣(
At 〈0β| Ph 〈1α|

) ∣∣Ψ+
〉∣∣2 = cos2 ∆φ (3.41)

Where ∆φ = β − α is the angle between the STIRAP and photon polarization.
According to these equations the measurement outcomes for atom and photon are
strictly anti-correlated for parallel measurement bases. This means that if the photon
is found in |1α〉 the atom is always found in |0α〉 and vice versa. If the photon-basis
is rotated and the atom-basis is fixed the dark state population of the atom and thus
its probablitiy to be redetected after the atomic state readout oscillate between 0
and 1.

The peak-to-peak amplitude of these oscillations is called the visibility v of the
correlation curves. Ideally it is 1 for a maximally entangled state such as our Bell-
state. In experiment it is however reduced. Reasons for this are imperfections in the
state readout of the particles but also errors during the creation of the entangled
state which in our case arise for examle from off-resonant excitation to the excited
hyperfine level 52P3/2F

′ = 1.

3.8.2 Experimental sequence

Figure 3.20 depicts the laser sequence that is used to experimentally create and
verify atom-photon entanglement. This pattern uses the optimized pumping dura-
tion of 2 µs. After ten pump-excitation cycles the atom is cooled for 400 µs. During
the excitation and subsequent spontaneous decay the dipole trap is switched off for
a time window of 200 ns. Conditioned upon the detection of a photon at the APDs
the atomic state readout is initialized. On average the atom is removed from the
trap by the atomic state detection in 50 % of the cases. Thus the loading rate of
the trap is the dominating factor for the repetition rate of the atom-photon entan-
glement experiment. Under ideal conditions about 80 to 100 entangled atom-photon
pairs per minute can be generated and analyzed. At this rate error bars on the order
of 1 to 5 percent at the points of maximal visibility can be achieved for measurement
times of about 3 to 15 minutes per basis setting.
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3.8 Measurement of atom-photon correlations

Figure 3.20: The three patterns of laser sequences for performing the atom-photon
entanglement experiment with compensated magnetic fields and their
respective durations. After an atom has been loaded into the ODT
repeated optical pumping and excitation are performed. Conditioned
upon the detection of a photon from the spontaneous decay the atomic
state readout is initialized.

3.8.3 Results

In the following we present results of measurements of atom-photon correlations.
During all measurements the atomic measurement basis was kept fix. The photonic
λ/2-plate was rotated from α/2 = 0 to α/2 = 90◦ in steps of 11.25◦ (i.e. in the pic-
ture of the Bloch sphere the basis was rotated by 2π in the equatorial plane). The
measurement setting is changed after one minute so that long term drifts of exper-
imental parameters are distributed equally among all settings of a measurement run.

Measurements without compensated magnetic fields
First correlation measurements were performed without actively stabilized magnetic
fields. Therefore it was necessary that the STIRAP transfer happens very shortly
after the excitation process. In order to achieve this the STIRAP process was not
conditioned upon the detection of a photon since this retards the STIRAP laser
pulse by 400 − 500 ns due to electronic delays of its AOM-drivers etc. Instead, the
pattern generator produced a STIRAP pulse during every pump-excitation cycle.
The time delay was chosen such that the STIRAP laser pulse reaches the atom
within ∼ 30 ns after the atom has completely decayed. The subsequent hyperfine
state detection can still be carried out conditioned upon the detection of a photon
since the hyperfine levels after the STIRAP process are stable against mixing due to
magnetic fields. With this method it was possible to calibrate the STIRAP intensity
given in section 3.4.4 and to compensate the birefringence of the glass cell by tilting
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3 Experimental realization of atom-photon entanglement

the YVO-crystal in the STIRAP setup.

Figure 3.21 presents results of these measurements. Shown are the probabilites
that the atom is redetected after the atomic state readout when the angle of the
photonic state detection is rotated. The blue and red lines correspond to events
where the photon was detected at APD1 or at APD2, respectively. Figure a) shows
correlations for V -polarized STIRAP. One observes the sinusoidal behaviour pre-
dicted by equations (3.40) and (3.41). The visibility is 74 % and 79 % for the blue
and red data set, respectively. Due to the birefringence of the glass cell the visibility
is considerably worse for a STIRAP-polarization of +45◦ - see figure b). Here the
YVO crystal is in a neutral position where it does not induce a phase shift between
H and V . Figures c) and d) show correlations where the crystal was tilted by an
angle of 10 and 12 degrees with respect to the neutral position. One observes that
the visibility of the correlations is very sensitive to the tilting angle. But the mea-
surement in figure d) proves that it is possible to achieve similar visibility for both
complementary atomic measurement bases by correctly tilting the YVO crystal.

Measurements with compensated magnetic fields
By performing the STIRAP transfer very shortly after the atomic decay (as it was
described in the preceeding paragraph) it was possible to optimize the STIRAP
intensities such that the two orthogonal dark and bright states of STIRAP can be
distinguished best. The resulting good transfer efficiency of the STIRAP process
was necessary for the Larmor measurements presented in section 3.5. With the
compensated magnetic fields it is now possible to carry out the STIRAP process
only if the excitation was followed by the detection of a photon. This has several
advantages compared to an unconditioned STIRAP. With unconditioned STIRAP
the atom is transfered to the |F = 2〉 hyperfine level in on average 50% of the cases
where no photon has been detected after the excitation. In these cases the transfer
is unnecessary and leads to the problem that during the next optical pumping phase
more scattering events are needed in order to pump the atom back into the desired
|1, 0〉-state. Therefore a longer duration of the optical pumping is necessary in order
to achieve the maximal excitation efficiency. Another problem is that the additional
scattering events lead to a stronger heating of the atom and thus more cooling phases
between the pump-excitation cycles are necessary to allow for long lifetimes of the
atom.

The atom-photon correlations that were measured with conditioned STIRAP are
shown in figure 3.22. The visibilities are 71% and 65% for V and +45◦-polarized
STIRAP, respectively. This is less compared to figures 3.21 a) and d) which can be
explained by a less optimal STIRAP transfer efficiency during this experimental run
and less optimized birefringence of the glass cell. It is not caused by the instability
of the atomic qubit due to residual magnetic fields.
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Figure 3.21: Atom-photon correlations without compensated magnetic fields. Shown
are the probabilites that the atom is redetected after the atomic state
readout when the angle of the photonic state detection is rotated in
the equatorial plane of the Bloch sphere. Blue and red lines correspond
to events where the photon was detected at APD1 and APD 2, re-
spectively. One observes the predicted sinusoidal dependence. In figure
a) STIRAP was V -polarized. Figures b) - d) show measurements for
+45◦-polarized STIRAP. The low contrast in figure b) is due to the
birefringence of the glass cell. In figures c) and d) the birefringence
could be compensated by tilting the YVO crystal with respect to its
neutral position by 10◦ and 12◦, respectiveley.
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Figure 3.22: Atom-photon correlations with compensated magnetic fields in the two
complementary atomic measurement bases V and +45◦.

Fidelity of the entangled atom-photon state
As a proof that the atom-photon pair is entangled one can estimate the fidelity of
the prepared state with respect to the desired |Ψ+〉-state and apply the criterion for
entanglement presented in equation (2.11). For this we write the density matrix of
the prepared state in the form (2.9):

ρ = p ·
∣∣Ψ+

〉 〈
Ψ+

∣∣ +
(1− p)

4
· 1̂ (3.42)

The probabilty p that the atom is in the desired |Ψ+〉-state can be derived from the
visibility of the correlation curves in the following way: Consider two pure atom-
photon states |φ1〉 and |φ2〉 with:

|φ1〉 = |a〉At |b〉Ph

|φ2〉 = |a〉At |c〉Ph

where the photonic states |b〉Ph and |c〉Ph shall be orthogonal. The overlap of these
states with the prepared state ρ is given by 〈φ1| ρ |φ1〉 and 〈φ2| ρ |φ2〉. It corresponds
to the probablity of finding the atom in state |a〉At if the photon has been projected
onto |b〉Ph or |c〉Ph, respectively. These are the two redetection probabilities in the
correlation measurements for the specific photonic basis |b〉Ph , |c〉Ph and STIRAP
dark state |a〉At. If the photonic and atomic measurement bases are parallel, then
the difference between these overlaps equals the visibility v:

〈φ1| ρ |φ1〉 − 〈φ2| ρ |φ2〉 = v (3.43)

On the other hand, inserting (3.42) into (3.43) gives:

p
∣∣〈φ1|Ψ+〉

∣∣2 − p
∣∣〈φ2|Ψ+〉

∣∣2 = p · 1− p · 0 = p (3.44)
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3.8 Measurement of atom-photon correlations

due to the strict correlations for measurements on a maximally entangled system in
parralel bases. So we have:

p = v (3.45)

With this (2.10) can be written as:

F =
1 + 3v

4
(3.46)

For the mean visibility of 66 % from the measurement with compensated magnetic
fields we obtain a fidelity of F=0.745 which is larger than 0.5. So the prepared atom-
photon state is clearly entangled.

Summary
It was shown in this section that with the current trap setup it is possible to generate
an entangled pair of a single atom and a single photon. The theoretically expected
correlations for the |Ψ+〉-state have been reproduced in two complementary bases.
However, the visibilities of the measured correlations still need further optimization.
In the first trap setup visibilites of ∼ 90% were achieved [19]. Currently the transfer
efficiency of the STIRAP process is clearly the limiting factor for the visibility.
Polarization errors are apparently small, otherwise the projection onto the dark
state would be less accurate.
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4 Temperature measurement of a
single trapped atom

The energy of the single atom in the dipole trap is an important parameter in sev-
eral parts of the atom-photon experiment. For higher temperatures the linewidth of
atomic transitions is increasingly broadened due to the lighshift broadening induced
by the dipole laser beam. By this, unwanted off-resonant excitation to neighbouring
atomic levels becomes more probable. Moreover, also photons that are emitted by
the atom are spectrally broadened, which can be a problem for realizing two-photon
interference experiments with photons from two trapped atoms [42, 43, 26].

In the context of other single-atom experiments [44, 45] the mean energy of an
atom, which has been loaded from a mangeto-optical trap into an optical dipole trap
and which is cooled there by means of Doppler cooling techniques, has already been
examined. It was shown that the energy distribution of the single atom follows the
one of an ensemble of classic three dimensional harmonic oscillators at temperature
T . Thus it is justified to speak of the “temperature of a single atom” - a term that
is usually used for ensembles of many particles.

This chapter presents a method for determining the temperature of a single atom
trapped in an optical dipole trap. This is achieved by measuring its energy distri-
bution by instantaneously lowering the trap potential and observing how often the
atom can be redetected after the trap has been raised to its initial depth. By com-
paring the measurement with theoretical predictions the temperature of the atom
can be derived.

4.1 Method

Our method for measuring the temperature of the atom is the following: After a
single atom has been loaded into the ODT as described in section 3.2, the cooling and
repump lasers of the MOT are switched off. The maximal trap depth U0 = 1.5 mK of
the ODT is then instantaneously lowered from its standard value U0 to x ·U0, where
0 ≤ x ≤ 1 (see figure 4.1). This is achieved by appropriately decreasing the intensity
of the dipole laser. Instantaneously means in this context that the time needed for
lowering the trap must be shorter than the period of one harmonic oscillation in the
trapping potential. This is necessary to avoid adiabatic cooling as it would occur for
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4 Temperature measurement of a single trapped atom

Figure 4.1: Scheme of the temperature measurement of a single atom: The maximal
trap depth U0 = 1.5 mK is instantaneously reduced to U ′

0 = x · U0 and
the atom looses (1−x) of its original potential energy. If its total energy
E ′ after the lowering of the trap is larger than U ′

0 it leaves the trapping
potential.

a slow lowering of the potential [44]. During this process the potential energy U of
the atom is instantaneously reduced to the fraction x of its original value, whereas
its kinetic energy Ekin stays constant.

U ′ = x · U
E ′

kin = Ekin

The total energy E ′ shortly after the lowering is then

E ′ = U ′ + E ′
kin = x · U + Ekin

During the time the trap is lowered, the atom has the possibility to escape from the
trap if its total energy E ′ is larger than the trap depth U ′

0. However, if it is smaller,
it will stay in the trap. In order to give the atom the time to leave the trap it is
necessary to keep the trap depth at its low level for a time t that is considerably
longer than one oscillation period in the trapping potential. After the time t the trap
depth is raised back to its initial value U0. Then the lasers of the magneto-optical
trap are switched on and the presence of the atom in the trap is verified by detection
of its fluorescence.

This experimental sequence is repeated many times for a given U ′
0 and the prob-

ability pdet(U
′
0) to redetect the atom after the trap depth has been raised back to

U0 is determined. This probability equals the probability that the total energy E ′

of the atom after the lowering of the trap is smaller than U ′
0:

pdet(U
′
0) = p(E ′ ≤ U ′

0) (4.1)

By repeating this for different values of U ′
0 it is possible to deduce from these mea-

surements the temperature T of the atom. For that one needs a theoretical model
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for the dependence of p(E ′ ≤ U ′
0) on U ′

0 for a given T . The temperature of the
atom can then be determined by using T as a fit parameter to fit p(E ′ ≤ U ′

0) to the
experimentally measured distribution pdet(U

′
0).

4.2 Theoretical model

In the following calculations the single atom in the optical dipole trap shall be
treated as a classical three dimensional harmonic oscillator. For this it has to be
assumed that

(i) The potential of the optical dipole trap is approximately harmonic.

(ii) The atom follows classical trajectories in the potential and must not be treated
as a quantum mechanical oscillator.

The first assumption is justified since the expected temperatures of the atom are on
the order of the Doppler temperature TDop ≈ 146 µK [22]. This is ten times lower
than the maximal trap depth UO = 1.5 mK so that the atom always remains at the
bottom of the trap where the harmonic approximation is valid. For verifying that
the second assumption is valid one must compare the eigenenergies of the quantum
mechanical oscillator to the thermal energy of the atom. Since the degrees of freedom
along the three spatial axes are uncoupled in a three dimensional harmonic oscillator,
one can do this for each degree of freedom separately. According to Virial’s theorem
the mean potential and kinetic energy of a particle in the potential of a harmonic
oscillator are the same [46]. For a particle of temperature T with one degree of
freedom, Eth

pot and Eth
kin are

Eth
pot = Eth

kin =
1

2
kBT (4.2)

So the total energy Eth in each degree of freedom for a temperature T = TDop is

Eth = 2 · 1

2
kBT = 2.02 · 10−27 J (4.3)

The eigenenergies En = ~ω(n+ 1
2
) of a quantum mechanical oscillator are separated

by ~ω, where ω is the eigenfrequency of the oscillator. With the eigenfrequencies for
the oscillations in the radial and longitudinal mode from equations (3.3) and (3.4)
one obtains:

~ωr = 42.08 · 10−30 J

~ωl = 42.20 · 10−31 J

So at the Doppler temperature the atom is in the Eth

~ωr
≈ 48th excited state of the

radial oscillator and the Eth

~ωl
≈ 495th excited state of the longitudinal oscillator,
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4 Temperature measurement of a single trapped atom

respectively. This is sufficient to treat the atom as a classical harmonic oscillator.

We now come to the calculation of p(E ′ ≤ U ′
0) and start with the probability

distributions of the potential and kinetic energy U and Ekin of the atom before
the trap is lowered. Assuming a classic three-dimensional harmonic oscillator with
Boltzmann distribution of the total energy E in each of the three degrees of freedom,
the probablity distribution of the potential energy is given by [19]

p(U) =
2√

π(kB T )3/2

√
U exp

(
− U

kBT

)
(4.4)

where kB is the Boltzmann constant. For a harmonic oscillator the distribution of
the kinetic energy Ekin = E − U is given by the same distribution [19]

p(E − U) =
2√

π(kB T )3/2

√
E − U exp

(
−E − U

kBT

)
(4.5)

Immediately after the lowering of the trap the situation is the following. Since the
lowering happens instantaneuosly the kinetic energy after the lowering is the same
as before, so E ′

kin = Ekin. Hence, the distribution of the kinetic energy stays the
same as well:

p(E ′ − U ′) =
2√

π(kB T )3/2

√
E ′ − U ′ exp

(
−E ′ − U ′

kBT

)
(4.6)

However, the potential energy is reduced to U ′ = x ·U . Thus the distribution of the
potential energy is different. It is scaled by a factor of x to lower energies as depicted
in figure 4.2. The distribution then is given by

p(U ′) = x−1 2√
π(kB T )3/2

√
x−1U ′ exp

(
−x−1U ′

kBT

)
(4.7)

where the multiplicative factor x−1 is necessary to keep the distribution normalized.
With equations (4.6) and (4.7) it is possible to calculate the probability distribu-

tion of the total energy E ′ immediately after the trap has been lowered. It is given
by the convolution of the distributions of U ′ and E ′

kin

p(E ′) =

∫ E′

0

p(U ′) p(E ′ − U ′) dU ′

= x−1 4

π(kBT )3

∫ E′

0

√
x−1U ′(E ′ − U ′) exp

(
−x−1U ′ + E ′ − U ′

kBT

)
(4.8)

Analytic integration yields:

p(E ′) =
2√

x(x− 1)(kBT )2
E ′ exp

(
−E ′(x + 1)

2x kBT

)
I1

(
(x− 1)E ′

2x kBT

)
(4.9)
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Figure 4.2: Behaviour of the potential energy distribution when the trap depth is
instantaneously lowered. The distribution shifts to lower energies.

Where I1 is the first-order modified Bessel function. The probability that E ′ ≤ U ′
0

can now be calculated from:

p(E ′ ≤ U ′
0) =

∫ U ′0

0

p(E ′) dE ′ (4.10)

It was not possible to solve the integral analytically but this is not absolutely
necessary. One can also integrate p(E ′ ≤ U ′

0) numerically for different temperatures
T . The best fitting parameter T can then be found by graphically comparing plots
of p(E ′ ≤ U ′

0) with the measured curve of pdet(U
′
0).

Figure 4.3 shows plots of p(E ′ ≤ U ′
0) as a function of U ′

0 for different temperatures.
One can see that for temperatures below the Doppler temperature TDop = 146 µK
the trap has to be lowered below half of its original depth if one wants to observe
considerable atom losses. These plots can now be compared to experimental data.

4.3 Results

Switching of the laser intensity
For lowering and raising the trap depth the intensity of the dipole laser has to be
varied. This is realized by adding a negative voltage ∆UAOM to the constant voltage
UConst that is applied at the input of the AOM-driver of the dipole laser. A pulse
from our pattern generator switches ∆UAOM between 0V and the value for which
the desired trap depth is obtained. The bandwidth of the electronic circuit that adds
∆UAOM to UConst allows to ramp the trap depth within less than 1µs. This has to be
compared to the cycle durations of one oscillation in the trapping potential. From
equations (3.3) and (3.4) one obtains that Tr ≈ 16 µs and Tl ≈ 157 µs for the radial
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4 Temperature measurement of a single trapped atom

Figure 4.3: Plots of p(E ′ ≤ U ′
0) as a function of the lowered trap depth U ′

0 for
different temperatures.

and longitudinal direction, respectively. So the trap depth can be ramped within a
time that is shorter than the shortest possible oscillation period Tr in the trap.

Measurement results and discussion
For measuring the energy distribution of the atoms in the lowered trap potential we
scanned the lowered trap depth U ′

0 from 0 to 0.3 U0 and determined the probability
to redetect the atom after the trap potential has been raised to its original depth.
The result can be seen in figure 4.4.

The black line shows the measurement result and the red, blue and green lines
are theoretical predictions from the model presented in the last section. The red line
was calculated for a temperature T = 57 µK and the blue and green lines correspond
to 52 µK and 62 µK, respectively. The maximal probability to redetect the atom has
been measured to be about 97.5% even if the trap is not lowered at all. This is due
to collisions with atoms from the backgound gas that remove the atom from the
trap. The theoretical model has been corrected for this effect.

Above U ′
0 = 0.05 U0 the measured curve is in perfect agreement with the the-

oretical prediction. For lower values the measured curve deviates towards higher
redetection probabilities. The explanation for this lies in the time t for which the
trap was lowered in this measurement run. It was chosen to be 400 µs which is
about 2.5 times the period Tl of a longitudinal oscillation for the normal trap depth
U0. However, when the trap is lowered the periods Tl and Tr increase with 1√

x
(see

equations (3.3) and (3.4)). For x = 0.03 the periods are already Tl ≥ 906 µs and
Tr ≥ 90 µs, respectively. So the criterion that the trap must be lowered for more
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Figure 4.4: Measurement of the total energy distribution of the atom after lowering
the maximal trap depth from U0 = 1.5 mK to U ′

0 = x · U0. Shown are
the measured probablities pdet(U

′
0) to redetect the atom after the trap

depth has been raised from its lowered depth U ′
0 back to its standard

value as a function of U ′
0 (black line). The red line was calculated with

the theoretical model and yields a temperature of the atom of 57 µK.
The blue and green lines correspond to 52 µK and 62 µK, respectively.

than one oscillation period is no more fulfilled and a proportion of the atoms cannot
leave the potential. This leads to an increased p(E ′).
It is probable that this deviation can be avoided by lowering the trap for a longer
time. If we neglect it for the moment and consider only the measured line above
U ′

0 = 0.05 U0 the errors can be determined to be below ±2 µK.

Summary
This chapter presented a method to measure the temperature of a single neutral
atom stored in an optical dipole trap. Starting from the energy distributions of a
three-dimensional harmonic oscillator a theoretical model was developed to describe
the energy distribution of the atom after the trap potential has been instantaneously
lowered. From this a prediction of the probability that the atom is redetected in the
trap after it has been ramped back to its original depth was obtained. The theoretical
model is in good agreement with the measurement and yields a temperature of the
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atom of
T = 57 µK± 2µK (4.11)

which is about 0.42 · TDop.
The measured temperature is a clear proof of sub-Doppler cooling effects induced

by the cooling beams of the magneto-optical trap. Moreover, the good agreement
between the theoretical prediction and experiment shows that the assumption of a
Boltzmann distribution of the atomic energy seems to be justified. The presented
method is easy to implement compared to methods that are based for example on the
precise measurement of the broadening of atomic transition lines where stabilized
cavities are needed [27]. Besides the general interest in the thermal properties of a
single trapped atom the obtained value of the temperature can also be useful for the
calculation of effects of line broadening that occur due to the thermal energy of the
atom.
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This work describes the generation and detection of entanglement between a single
trapped 87Rb atom and a single photon. Measurements on the atom-photon pair in
two complementary bases yielded the non-classical correlations that are typical for
entangled systems. From these correlations the fidelity F of the prepared state with
respect to the desired |Ψ+〉-state was determined to be 0.745 which is a clear proof
of entanglement.

For the readout of the atomic Zeeman state a two-step detection scheme was
implemented. First the superposition of Zeeman states is mapped onto a superposi-
tion of hyperfine states by means of an adiabatic STIRAP-transfer technique. Then
the atom is removed from the trapping potential depending on its hyperfine state.
Further optimization should be performed on the transfer efficiency of the STIRAP
process that turned out to be the limiting factor for the visibility in the correlation
measurements. In order to assure stability of the atomic spin state against dephas-
ing, external magnetic fields have been compensated by an active field stabilization.
There is a residual field of ∼ 12 mG along the z-axis that shows fluctuations above
200 Hz with a standard deviation of the peak-to-peak amplitude of 2 mG. The atomic
qubit is sufficiently stable against dephasing for the duration between the creation
of the entangled pair and the atomic state readout. Besides, to increase the repe-
tition rate of the experiment the duration of the optical pumping period has been
reduced to 2 µs. Furthermore, the efficiency of the excitation process that creates
the entangled atom-photon pair was optimized. The total probability to detect one
emitted photon per excitation cycle was determined to be 2.2− 2.4 h.

A first step towards the envisaged entanglement swapping experiment was realized
by switching the dipole trap off during the excitation and sponaneous decay of the
atom. Thereby it is ensured that the photons originating from the two traps are
spectrally indistinguishable. This is a necessary condition for performing a Bell-
state measurement by two-photon interference at a beamsplitter.

Apart from realizing atom-photon entanglement a method for measuring the tem-
perature of the single trapped atom was presented. It works by measuring the inte-
grated atomic energy distribution of the atom after the trap depth has been non-
adiabatically lowered. A comparison of the measurement with a theoretical model
yields a temperature of the single atom of 57±2 µK which is well below the Doppler
temperature of 87Rb .

All in all it can be concluded that during this work the second single atom trap
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5 Summary and outlook

has reached a stage similar to the first setup.

Outlook
As a next step towards entanglement swapping between the remotely trapped atoms,
two-photon interference at a beamsplitter must be realized. For this it is necessary
to synchronize the creation of the photons in the two traps such that they arrive at
the beamsplitter simultaneously. Therefore the pattern generators for creating the
laser pulses are clocked by a common frequency generator. This allows to reduce
the time jitter between the excitation pulses that create the photons below 1 ns.
Furthermore, a 30 m optical fiber link between the two laboratories has been set
up that will be used to transmit the photons from the second trap to the first one
where the Bell-state measurement will take place. To avoid random rotations of the
polarization state of the photon propagating in the fiber the optical link has to be
stabilized with the polarization control setup demonstrated in [26, 15].

In order to be able to close the locality loophole in a test of Bell’s inequality a
faster atomic state detection is being developed. Similiar to the current scheme a
STIRAP-transfer first distinguishes between orthogonal superpositions of Zeeman
states. However, the hyperfine state detection which is currently based on fluores-
cence detection will be replaced by a faster scheme based on state selective ionization
of the atom and detection of the ionization fragments. First measurements show that
the atom can be ionized with a probability of 96 % within 350 ns [47]. The ioniza-
tion fragments are then detected with two channel-electron mulitpliers about 400 ns
after the ionization. The probability for detecting either the electron or the ion or
both fragments was determined to be ∼ 95 − 98 % [48]. Moreover, the selection
of the atomic measurement basis will also be replaced by a faster one. Currently
this is done by rotating λ-waveplates that are mounted on steppermotors. In fu-
ture an electro-optical modulator (EOM) will be used that allows to modulate the
polarization of the STIRAP beam with a bandwidth of 100 MHz.

All in all it will be possible to perform the atomic state reaout including the choice
of the measurement basis within less than 1 µs. Together with the aimed distance
between the atoms of 300 m this will allow a test of Bell’s inequality with the locality
loophole as well as the detection loophole closed.
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A Appendix

A.1 Rubidium 87 data

• Atomic mass m: 1.443 · 10−25kg

• Nuclear spin I: 3/2

D2-line data (52S1/2 → 52P3/2)

Frequency ω0 2π · 384.2 THz
Wavelength λ 780.241 nm
Lifetime τ 26.23 ns
Decay Rate/ Γ 38.12 · 106 s−1

Natural linewidth (FWHM) 2π · 6.067 MHz
Dopppler temperature TDop 145.57 µK
Transition Dipole matrix element 〈J = 1/2‖er‖J ′ = 3/2〉 3.584 · 10−29C ·m

D1-line data (52S1/2 → 52P1/2)

Frequency ω0 2π · 377.1 THz
Wavelength λ 794.978 nm
Lifetime τ 27.68 ns
Decay Rate/ Γ 36.129 · 106 s−1

Natural linewidth (FWHM) 2π · 5.75 MHz
Transition Dipole matrix element 〈J = 1/2‖er‖J ′ = 1/2〉 2.538 · 10−29C ·m

73



A Appendix

A.2 Saturation intensities

The saturation intensity Isat of a dipole transition line between the Zeeman ground
state 52S1/2, F, mF and the excited state 52Px/2, F

′, m′
F (x ∈ {1, 3}) is given by [22]:

Isat =
cε0Γ

2~2

4|〈J‖er‖J ′〉 · CGC(F, mF; F′, m′
F)|2

(A.1)

Where ε0 is the permittivity of vacuum. Γ is the decay rate of the respective tran-
sition line (D1 or D2 in our cases). And 〈J‖er‖J ′〉 is the transition dipole matrix ele-
ment of the respective transition line (see tables in A.1). Moreover, CGC(F, mF; F′, m′

F)
is the Clebsch-Gordon coefficient of the considered transition.

From equation (A.1) the saturation intensities of the transitions used in the ex-
periment can be calculated with the Clebsch-Gordon coefficients given in [22]:

Excitation 5.0079 mW
cm2

Pump 1 33.386 mW
cm2

Pump 2 4.0063 mW
cm2

Push-out 1.669 mW
cm2

STIRAP 1 5.983 mW
cm2

STIRAP 2 17.95 mW
cm2

Table A.1: Saturation intensities for the transitions used in experiment
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