
Femtosecond pulsed enhancement cavity
for mutli-photon entanglement

studies

Author:
Patrick Steffen Michelberger

Diplomarbeit an der Fakultät für Physik
der Technischen Universität München

durchgeführt am
Max-Planck-Institut für Quantenoptik

München

02.12.2009

MPQ



2





Für meine Mutter.



Contents

1 Introduction 5

2 Cavity design 7
2.1 Choice of cavity mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Cavity mirror radii of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Loss inside cavity and cavity Finesse . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Power-enhancement and input coupler choice . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Coupling conditions into cavity by frequency comb matching . . . . . . . . . . . . 25
2.1.5 Higher order dispersion in resonator . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Cavity of doubled repetition rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Cavity mirror radii of curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Power enhancement, implication on available pumping powers and expected count

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Power enhancement and dispersion for a cavity of half length . . . . . . . . . . . . 38

3 Cavity operation 43
3.1 Pumping-beam preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Laser system and frequency conversion . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Transverse mode matching of pump and cavity . . . . . . . . . . . . . . . . . . . . 44

3.2 Cavity stabilisation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Chapter 1

Introduction

At the beginning of the 20th century, a new era in the history of natural sciences commenced. With the
ground breaking work of Max Planck and Albert Einstein on the radiation law ([1]) and the photoelectric
effect ([2]), the road towards the formulation of quantum mechanics had been stated. Subsequently,
the mathematical formulation of quantum mechanics as a theory had been mainly performed by Werner
Heisenberg and Erwin Schrödinger. Ever since its introduction, probably no other physical theory has
changed mankind’s understanding of nature so tremendously as quantum mechanics did. Already in its
early days, the inherent probabilistic characteristics of it led to intense argumentations about the impli-
cations this new theory has on the fundamental structure of physics, which culminated in the famous
Einstein phrase1 ”Gott würfelt nicht” . In order to challenge the aforementioned feature, Albert Ein-
stein, Boris Podolski and Nathan Rosen devised a Gedankenexperiment in their seminal EPR paper ([3]),
which pointed out yet another important property of quantum mechanics, namely the possibility of non-
classical correlations between different quantum mechanical objects; a phenomenon termed entanglement
by Erwin Schrödinger ([4]). John Bell later took on the ideas of EPR and formulated a mathematical
inequality, the so-called Bell inequality ([5], [6]), in order to test the predictions from quantum mechanics.
Experiments conducted with respect to these fundamental questions ([7]-[9]) have shown agreement with
the expectations derived from quantum mechanical theory2. Although having otherwise not been con-
sidered of practical interest to begin with, entanglement has been realised to promise enormous potential
for improvements in communication technology and computing within the recent past ([10]), opening up
the entire new field of quantum information processing. In contrast to classical information processing,
classical two-valued bits are commonly replaced by quantum mechanical two-level systems, called quan-
tum bits or qubits ([11]), which allow for superposition and entangled states.
The advantages that quantum mechanics introduces into communication techniques can for instance be
found in cryptography, whereby it, in principle, permits secure communication between different parties,
by exchanging a secret quantum key ([12], [13]). Also the teleportation of information between two dif-
ferent parties is enabled ([14]). Since photons are the information carriers of choice within this area of
research, due to their little susceptibility to decoherence, most initial experiments involving entangled
states have been performed by utilisation of bipartite photonic systems ([15], [16]). However utilising
multiqubit entangled states offers the possibility on the one hand to use novel quantum error correc-
tion codes for communication protocols ([17]) and on the other hand to apply communication schemes
between multiple parties ([18]-[20]), and to perform telecloning of quantum information to multiple re-
cipients ([21]-[23]).
In terms of computational tasks, quantum mechanics allows to yield a considerable speed-up in certain
operations, like search algorithms and prime number factorisations ([29], [24], [25]), compared to entirely
classical computing. Research hereupon has been undertaken by preferably incorporating atomic based
systems in the first place, as the interactions between atoms and ions in traps are easier to control than
the ones of photons. Realisation of quantum gates for the latter particles have initially be though to
require non-linear optical effects ([142]), which are very weak, consequently leading to low efficiencies in
the gate operations. However in the following it has been shown that non-deterministic computation is
also possible by relying on linear optics only ([26], [27]), which fuelled the research on photonic based
quantum logic ([28]-[31]). Therein, multi-photon entangled states form a required resource. While quan-
tum computing has been in first instance based on the circuit model ([34]), it has later been realised that
alternative computing methods are possible ([33], [34]). One of these is the one-way quantum computer,

1”God does not gamble.”
2Although there are still potential loopholes and no experiment has so far been succeeded in closing all of them simul-

taneously.
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6 CHAPTER 1. INTRODUCTION

which hinges on initially multi-partite entangled states, called cluster states, to perform quantum com-
putation. This has been a completely new approach and demonstrated that multi-partite entanglement
can be of utmost importance.
Thus multiqubit entangled quantum states based on photons represent a valuable ingredient in the future
development of quantum information technology, for which studying their characteristic properties is a
subject of general interest for further progress in both fields of research outlined above. Such states entail
in general a much richer structure regarding their entanglement than their bipartite counterparts do, for
example states with more than 3 qubits can be divided up into different families ([89], [146]-[148]), each
exhibiting different entanglement properties, like the aforementioned cluster states. Another particular
example of such states is the family of Dicke states, which have been discovered by R. H. Dicke the spin
operators for describing ”superradiant gases” ([150], [35]). Symmetric Dicke states exhibit the specific
feature of having a high persistency against decoherence ([36]) and can be regarded to be rather persistent
in terms of their entanglement, which is e.g. useful in communicational tasks.
In order to observe multipartite photonic states in the laboratory, the non-linear process of spontaneous
parametric down conversion (SPDC) can be employed. SPDC was first studied theoretically as early
as 1967 ([37]), and was experimentally investigated in 1970 ([38]). Since the correlations in the output
photons of the down conversion process became apparent ([126]), SPDC has been realised to constitute
a suitable tool for production of the desired entangled states, as it is for instance reviewed in reference
([40]). For this reason it became the workhorse for photon sources in most experiments dealing with
photon-based quantum states and quantum information processing. In combination with a linear optical
set-up and conditional detection ([87]), multi-photon entanglement can be observed and characterised.
Since contemporary experiments are focussing on the entanglement in states with photon numbers as
high as six ([23], [43]-[46]), ultrashort laser pulses are required to pump the SPDC process([141]).
Within this work, a novel photon source of the aforementioned type, designed to enable the observation
of the six-photon Dicke state with three excitations ([43], [47]), will be introduced. Since the six-photon
count rates, achievable with contemporary, commercially available laser systems ([44]) are very low, thus
requiring long measurement times, the pumping source presented in this work utilises a recent enhance-
ment mechanism for ultrashort laser pulses. Therewith high six photon count rates become readily
available. The enhancement scheme utilises the coherent addition of ultrashort, mode-locked laser pulses
in passive, narrowband optical resonators3 ([41], [42]). Furthermore this cavity represents the first en-
hancement resonator for femtosecond laser pulses in the ultra-violet (UV) wavelength range.
In the following text, all necessary design parameters are first laid out theoretically, followed by an ex-
perimental investigation of these. We will start in chapter 2 by calculating the properties of the optical
components, required to build the resonator system, also assessing the expected power enhancement
of the pumping pulses for the SPDC process. In chapter 3 the experimental set-up will be described.
Chapter 4 deals with the characterisation of the cavity in terms of the pumping beam quality, the ex-
perimentally achievable power enhancement and the finesse of the resonator. Afterwards chapter 5 will
focus on the temporal properties of the UV pumping pulses inside the cavity. Here we describe what is
to our knowledge the first intra-cavity autocorrelation experiment, which also uses SPDC as the required
non-linear process. Finally, a characterisation of the device as a source for multiphoton states will be
undertaken in chapter 6, in which additionally the entanglement, observable in the output states, will be
discussed in terms of the pump pulses’ spectral properties.

3The bandwidth of the resonator is narrow with respect to the spectral width of its individual resonances.



Chapter 2

Cavity design

In this work the extension of recent designs regarding enhancement cavities for ultra-short laser pulses to
the ultra-violet (UV) regime will be explored. Previous experiments have utilised resonators particularly
for the purpose of second-harmonic and even higher harmonic generation (see e.g. [169], [170], [51],
[52], [53]). Commonly all these devices are based on infra-red (IR) pumping beams. For applications
in quantum information science based on photonic qubits, spontaneous parameteric down-conversion
(SPDC) has however become the workhorse most contemporary experiments deal with, particularly every
set-up interested in multi-qubit states relies on this type of interaction. Since SPDC works the other
way around than SHG, the two photons, referred to as signal and idler, of approximately half the energy
and double the wavelength of the incoming photon are generated1. So UV light is used to drive the
non-linear process, yielding IR outputs for which state of the art single photon avalanche photodiodes
achieve efficiencies as high as ηdet ≈ 50%. Hence for our experiment, which is devised to generate multi-
qubit entangled quantum states with high count rates, an enhancement resonator operating in the UV is
required. We will thus take up previous considerations for femtosecond IR resonators (e.g. [54], [55]) in
combination with the idea of enhancing UV light inside a cavity, already shown in the picosecond regime
([56]) and merge them together to this, yet unexplored, combination.
One of the basic ideas that cavities for ultra-short pulse lasers are founded on, is the coherent addition
of subsequently emitted pulses. The most simplistic and hand-waving view on this is to consider the
optical pulse already situated inside the resonator to precisely meet up with an external one after every
round-trip as drawn in fig. 2.1. If the electric fields of both now interfere constructively with each other,
the intensity inside the cavity builds up successively and is only limited by losses occurring during each
round-trip. In such a way, enough pump power can be generated to enable simultaneous emission of
several signal and idler photon pairs in SPDC, allowing in turn the observation of multi-qubit quantum
states with high count rates.
Of course reality is not exactly as easy as that and a detailed examination of all important parameters
of the cavity and its application as a high flux photon source will be provided in the course of this work.
Nonetheless the aforementioned short summary is sufficient to get the general idea and allows to start
the discussion by consideration of a suitable resonator design serving the described needs.
A free space set-up will be mandatory, since operation with ultra-short UV light is a prerequisite and any
fibre based device would come along with great loss and dispersion. Desiring furthermore to have pulses
propagating on round-trips in order to avoid to great an amount of dispersion and loss, directly implies the
construction of a ring cavity. The non-linear optical crystal to be placed inside requires some necessary
focussing optics, which is taken care of by the cavity mirrors in order to include as little dispersive material
as possible. We decide to build a bow-tie shaped cavity, (see fig. 2.1) allowing the potential insertion of
an additional second crystal for future experiments2. The most important boundary condition is yet to
be set by the repetition rate of the applied pumping laser source. We use a titanium sapphire (Ti:Sa)
laser source3 with a pulse repetition rate of frep ≈ 80.79 MHz. Therefore we have to have a round-trip
time of pulses corresponding to ∆tRT = 1

frep
and in turn a cavity length of Lcav = ∆tRT · c ≈ 3.71 m.

Working with UV-pulses will also require dispersion considerations, whereby particularly for ultra-short
laser pulses these kind of effects are important. The cavity will thus only consist of the four indispensable
end mirrors (M1-M4 in fig. 2.1) and just contain the non-linear crystal, which here will be beta-barium
borate, β −BaB2O4 (BBO), of LBBO = 1 mm length, and air.

1See subsec. 6.1.1 for details.
2Such as e.g. quantum telecloning ([16], [21], [22]).
3working at a central wavelength of λlaser = 780 nm, subsequently frequency doubled to λp = 390 nm, required for

pumping, prior to cavity coupling
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8 CHAPTER 2. CAVITY DESIGN

BBO 1mm

M1 M2

M4M3

Round-tripping internal UV pulses

External UV
pump pulses

Figure 2.1: Schematic drawing of a bow-tie shaped ring cavity for ultra-short laser pulses. The intra-
cavity pulse adds up constructively with the external one at the input coupler after every round-trip.
In that way the intensity is enhanced inside the resonator to a level sufficient to allow for considerable
multi-photon pair emission rates in SPDC.

Altogether we are going to design, build and characterise the first femto-second, UV bow-tie enhancement
resonator of approximately 81 MHz repetition rate, comprising a BBO crystal, air and four end mirrors.
In order to get going, all design parameters for building and properly operating the cavity have to
be worked out in the first place, which is done in this chapter. The discussion starts with the cavity
mirrors, their radii of curvature and reflectance/ transmittance properties. It will turn out, that the
latter directly depend on the losses internal pulses are subject to, which are also connected to the cavity
finesse. Subsequently dispersive effects will be examined, their influences on the free spectral range (FSR)
of the longitudinal modes will be explained and an expectation for the power enhancement within the
cavity will be derived. Finally the process of cavity input coupling and pulse addition, already roughly
conceptualised in fig. 2.1, will be explored in thorough detail. As the last point in this context, the
considerations regarding the frep = 80 MHz cavity will be taken further to the even higher repetition
rate4 of n · frep and consequently resonators of shorter lengths Lcav/n.

2.1 Choice of cavity mirrors

2.1.1 Cavity mirror radii of curvature

Knowing the desired length, the radii of curvature for all mirrors involved have to be calculated as
the initial step towards every resonator design. These kind of discussions offer the great advantage of
being equal for pulsed and continuous wave situations, because they only depend on spatial and not
temporal light properties. So, in the following, we can conveniently neglect any pulsed structure and
just, simplistically spoken, do the analysis for one single frequency within the pump spectrum as it will
be the same for all the others. All time dependencies in the electric fields will consequently be neglected.
Furthermore the proper wave nature of light will be accounted for straight away. A brief summary of it
will be given before moving on to the actual stability criteria and mirror radii of the cavity5.

Basics on intra-cavity mode characteristics Coherent laser light is generally known to follow the
wave equation extracted from Maxwell’s equations ([59])

~∇2Ψ + ~k2Ψ = 0, (2.1)

whereby Ψ represents the light field and ~k is the propagation vector with |~k| = 2πn
λ . For a single frequency

it is commonly solved in paraxial approximation ([58]) and a solution is e.g. given by a plane wave along
the propagation direction, here defined as the z-axis, with a simple transverse Gaussian profile ([61]),

4The resonator design will be considered for the cases n = 2, 3, 4, whereas an expression for the power enhancement valid
for arbitrary n is derived.

5If the reader is thus not familiar with the extension of simple ray tracing to the framework of Gaussian beams, expla-
nations about either of both and their connection to one another can e.g. be found in ([57]) or ([58]).
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referred to as TEM0,0 mode:

Ψ = Ψ0
w0

w
exp

(
−i

(
kr2

2q
+ ζ

))
exp (−ik(z − z0)) (2.2)

r =
√

x2 + y2 labels the coordinate in the transverse direction, the amplitude factor w0
w accounts for the

intensity decrease on axis due to the diffraction of the beam away from its waist position z = z0, ζ is the
Gouy phase and q the complex beam parameter. While the Gouy phase

ζ = arctan
(

λ(z − z0)
πw2

0

)

causes a rapid phase change of the electric field by propagating through the beam waist ([62]), it is the
complex beam parameter q which does really concern us here. It is defined by

1
q(z)

=
1

R(z)
− iλ

πw(z)2
, (2.3)

with R(z) standing for the radius of curvature of the electric field wavefronts and w(z) for the beam
radius at a certain position z. Both quantities depend on the aforementioned coordinate in the following
way ([61])

w2(z) = w2
0

(
1 +

(
(z − z0)

zR

)2
)

(2.4)

R(z) = (z − z0) ·
(

1 +
(

zR

(z − z0)

)2
)

(2.5)

with the Rayleigh range zR = πw2
0

λ , in which the constant w0, called beam waist, is the minimal beam
radius at the focus, where the radius of curvature R(z) equals ∞ and the wavefronts are plane waves. We
hence recognise the optical beam to diverge away from the minimum spot size position z0 (with w(z0) = w0

and R(z0) = ∞) and to deviate considerably from the plane wave approach, Ψ = Ψ0 exp (ikz), at greater
distances ∆z = z− z0. The Rayleigh range assigns the positions along the optical axis (z = ±zR), where
the beam waists are w(±zR) =

√
2w0 and the radii of curvature R(±zR) = ±2zR, being the location of

greatest overall wavefront curvature. For larger distances from the waist position, the divergence angle
can be obtained by linear approximation of eq. (2.4) to ([63]) θ = λ

πw0
. We can therefrom infer the

diffraction of the optical beam to be the smaller the larger its waist w0 is and vice versa. Hence tightly
focussed laser beams, e.g. applied for trapping single atoms ([64]), show tremendous diffraction and tiny
Rayleigh ranges zR, requiring very accurate positioning of objects into their focal points.
It shall also be noted here, that this work follows the common convention regarding the signs of radii of
curvature ([58]). These are taken to be positive, if position coordinates are to the right of the focal spots
at {z0, z1} (see fig. 2.2), i.e. for z > {z0, z1}, with optical beam wavefronts diverging away from {z0, z1},
and respectively negative if locations are to the left of the aforementioned minimum diameter points, i.e.
z < {z0, z1}, with wavefronts converging towards z = {z0, z1}. Please acknowledge the inequalities to be
well defined only within each individual sector in fig. 2.2.

Higher order modes and M2 factor Eq. (2.2) is not the only possibility in the solution space of
the differential equation (2.1). Depending on the boundary conditions, higher order transverse modes
can be obtained as well. For circular symmetric systems, such as our cavity, these are constituted by the
generalised Laguerre polynomials Ll

p ([63]), whereby p stands for the radial and l for the angular mode
number. The expression eq. (2.2) consequently modifies to:

Ψ = Ψ0
w0

w

(√
2

r

w(z)

)l

· Ll
p

(
2

r2

w2

)
· exp

(
−i

(
kr2

2q
+ ζp,l

))
exp (−ikz) (2.6)

Since the polynomial of lowest order is:

Ll
0(x) = 1 (2.7)

one can retain the TEM0,0 mode for a parameter choice of p = 0, l = 0. The intensity distributions of
the first couple of modes can e.g. be found depicted in reference ([58]). For these higher order modes,
the Gouy phase gets changed as well to:
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ζp,l = (2p + l + 1) · arctan
(

λz

πw2
0

)

In terms of the down-conversion process it is very advantageous to have pumping with the fundamental
TEM0,0 mode in order to guarantee for a well-defined phase-matching situation and spatial distribution
of the down-conversion photons (see [101] for details), yielding also a good coupling efficiency into a single
mode (SM) optical fibre applied for transfer of the photons to the linear optical set-up analysing them6.
Therefore the resonator is supposed to operate on the aforementioned mode only, which is experimentally
realised by proper mirror adjustment and input-coupling alignment. The obtained transversal intensity
distribution within the cavity is discussed in section 4.1 (see fig. 4.1).
However real laser beams in resonators are hardly ever describable solely by a Gaussian beam and some
multimode structure is normally present on top, influencing the values for divergence and waist as stated
in eq. (2.4). The quality of these is expressed in terms of parameters expected for purely Gaussian
beams by introduction of an additional factor, called the M2 ([65]). The beam waist expression for such
a multimode situation can be rewritten to ([66]):

w̃(z) = w2
0

(
1 +

(
λ ·M2 · (z − z0)

πw2
0

)2
)

(2.8)

The Gaussian formulae are obtained for M2 = 1 , while for deviation thereof an M2 > 1 will be observed.
It shall be particularly noted here, that the M2-factor connects to both, the waist and divergence of the
beam, and it is therefore not sufficient to measure just one of these for proper beam analysis ([66]). We
will come back to that later on in course of the experimental determination of the cavity parameters7. For
the moment, only the modification of the complex beam parameter by multimode effects is important:

1
˜q(z)

=
1

R(z)
− iλ

πw̃(z)2
=

1
R(z)

− iM2λ

πw(z)2
(2.9)

which should in principle be accounted for in the following calculations. Nevertheless taking up later
results from eq. (4.1), the measured quality factors for our intra-cavity beams are close to one, wherefore
the computations concerning cavity stability and mirror radii of curvature are just performed for the pure
Gaussian situation.

Propagation of Gaussian beams and resonator stability Gaussian beams can be propagated
through linear optical elements by the aid of ray transfer matrices known from ray tracing ([57]). Since all
relevant parameters necessary for the description of a Gaussian beam’s spatial propagation are contained
within the complex beam parameter q (namely radius of curvature, beam waist and wavelength), it is
sufficient to only focus on this quantity. Tracing a light beam can be executed by application of matrices
having a dimensionality of 2 × 2, which accounts for the two aforementioned free parameters within q.
The various matrices comprise particular structures for specific elements, whereby for us just lenses and
bulk media of refractive indices n are important8. The respective expressions are ([63]):

Amaterial =
(

1 d
n

0 1

)
; Afree-space =

(
1 d
0 1

)
; Alens =

(
1 0
− 1

f 1

)
(2.10)

Since no real lenses are inserted into the resonator for dispersion reasons, the mirrors M1 and M2 in
figs. 2.1 and 2.2 take over this job and their focal length is connected to their radii of cuvature by
f = R

2 . Beam propagation through a combined system of the above mentioned elements can now be done
by firstly computing the transfer matrix of the entire conglomerate Asys, by successive multiplication
of the appropriate element matrices. Secondly the complex beam parameter at the exit of the optical
arrangement, qf , can be determined from the one at the entrance, qi, by a functional dependence known
as the ABCD law ([58], [57], [60], [86]). With a general transfer matrix

Asys =
(

A B
C D

)
, (2.11)

it is denoted by ([58], [63]):

6Refer to section 3.3 for details.
7see section 4.1
8Others can e.g. by found in reference ([63]).
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Figure 2.2: Our stable bow-tie cavity with a schematically conceptualised Gaussian beam. Two waists
w0, w1 are obtained at positions z0, z1 in the middle of the distance between mirrors M1 and M2, or
M3 and M4, respectively.

qf =
A · qi + B

C · qi + D
(2.12)

Within optical cavities one would like to store light without leakage, i.e. on the one hand optical ray-
paths should be closed after a number of n round-trips in order to avoid rays to miss one of the cavity
mirrors and thereby escape. On the other hand the beam diameter should not grow infinitely large after
multiple round-trips, as otherwise it would exceed the mirror dimensions and light intensity is lost. The
former can be translated into a requirement regarding the ray transfer matrix for a single round-trip,
which should, after n round-trips, equalise itself after a single one, or more formally spoken:

An
sys

!= Asys ⇐⇒
(

A B
C D

)n
!=

(
A B
C D

)
(2.13)

This expression can be evaluated ([58]) to yield an inequality for the diagonal entries in Asys, the cavity
stability criterion ([63]):

−1 <
1
2

(A + D) < +1 (2.14)

Whenever A and D fulfill eq. (2.14) the underlying optical resonator can be regarded as stable, whereas
otherwise it is unstable and light is lost after some period of time.
For properly designing our system we however must also have some information about the beam shape,
which can be gained from the latter of the above stated conditions for light storage. Transforming it
into a quantitative argument implies the complex beam parameter being forced to resemble itself after
an arbitrary number of round-trips ñ. That means, the beam shape at the starting position z0 = is
recovered after ñ round-trips of stored light, whereby of course no light can in the meantime leak out of
the system if it is stable. For our particular set-up, we would constantly like to have the same shape of
the pumping beam impinging onto the BBO crystal. Thus the complex beam parameter has to be the
same after every pulse circulation, restricting the requirement even further to ñ = 1:

Asys · q != q (2.15)

A Gaussian beam obeying the consequences from the above stated conditions has also been drawn
schematically in fig. 2.2.

Cavity radii of curvature As a first step towards the computation of the radii of curvature for the
four cavity mirrors, referred to as RM1 to RM4, depicted in fig. 2.2, the simplification of constructing
a symmetric cavity is undertaken, whereby the axis of symmetry shall be located at exactly half the
distance between mirrors M1 and M2 respectively M3 and M4, corresponding in turn to RM1 = RM2

and RM3 = RM4. Another constraint arises from the pumping geometry of the down-conversion process.
It has been recognised within our group, that the SPDC process tends to work best, if the pumping beam
diameter is on the order of dpump

0 = 2wpump
0 = 200 µm for a collinear type-II arrangement, as applied
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here9. Additionally the phase fronts of the waves should be flat, i.e. Rpump →∞, wherefore the crystal
is to be positioned at the focal plane of the pump. We furthermore intend to construct a set-up primarily
devised for a single crystal to be accommodated between mirrors M1 and M2, thus only one focal spot
of dpump

0 ≈ 200 µm is needed. Therefrom the opportunity to go for yet another great simplification is
enabled by choosing flat mirrors for the pair M3 and M4 with RM3 = RM4 = ∞. The focal length of
these items will accordingly be fM3 = fM4 = ∞ as well. By consequently having all the off-diagonal
elements in the mirror transfer matrices eq. (2.10) vanishing, we can ignore both mirrors in the context
of the entire systems matrix Asys and only account for the combined distance between mirror M2 and
M1, named dM2,M1 = dM2,M3 + dM3,M4 + dM4,M1 (see fig. 2.2), in the following. Since the entire length
of the resonator is due to be Lcav = 3.71 m, set by the measured laser repetition rate, the optical path
within the denser BBO crystal10 of just LBBO = 1 mm thickness is negligible compared to the remainder
in air11 and will hence also be ignored. Such a simplification shall be noted to only be valid outside the
regime of tight focussing, which would correspond to a waist sizes for the focussed laser beam of about
w0 ≤ 10 µm, therefore being fulfilled here. After these preconsiderations we can now evaluate the cavity’s
transfer matrix, which will be regarded in dependence of the two decisive parameters RM1 and dM1,M2

by the replacement dM2,M1 = Lcav − dM1,M2:

Asys =
(

1 0
− 2

RM1
1

)
·
(

dM2,M1

0 1

)
·
(

1 0
− 2

RM2

)
·
(

1 dM1,M2

0 1

)

=
(

1 dM2,M1

− 2
RM1

1− 2dM2,M1
RM1

)
·
(

1 dM1,M2

− 2
RM2

1− 2dM1,M2
RM2

)

=

(
1− 2dM2,M1

RM2
dM1,M2 + dM2,M1 − 2dM1,M2dM2,M1

RM2
4dM2,M1
RM1RM2

− 2
RM1

− 2
RM2

1− 2dM1,M2
RM2

− 2dM1,M2
RM1

− 2dM2,M1
RM1

+ 4dM1,M2dM2,M1
RM1RM2

)

=


 1− 2Lcav−2dM1,M2

RM1
Lcav − 2dM1,M2Lcav−2d2

M1,M2
RM1

4Lcav−4dM1,M2

R2
M1

1− 2dM1,M2+2Lcav

RM1
+ 4LcavdM1,M2−4d2

M1,M2

R2
M1


 (2.16)

There are still the two variables {RM1, dM1,M2} to be determined by the single condition (2.14) (eq.
(2.15) does not contribute any additional restrictions), so some freedom in choice is available. We decide
to start from a confocal scenario and assume some sensible radii of curvature for the mirrors M1 and
M2. Subsequently, the distance between mirrors M1 and M2 is varied in such a way, to still satisfy
the stability requirement (2.14) but to simultaneously yield a beam waist at the focus of the desired
w0 = 100 µm by the aid of eq. (2.15). This deviation in mirror spacing is hence the free parameter to be
optimised for. A confocal arrangement implies dM1,M2 = fM1 + fM2 = RM1

2 + RM2
2 = RM1: For reasons

to be stated later, it is however far from being the best choice, since it is first not easy to align properly
and second very sensitive to any external influences12. In other words, every slight deviation from perfect
mirror orientation in combination with slight longitudinal mirror displacement can in principle render
such a cavity unstable. Hence the introduction of an excess distance referred to as parameter a. The
reason why a not a certain mirror distance is assumed and the radii of curvature are then optimised
accordingly is as follows: The pursued approach stems from the very practical requirement to spot a
decent manufacturer for qualitative high-reflective laser mirrors suitable for femto-second (fs) UV-laser
pulses (i.e. low dispersion), which are able to sustain the enormous peak powers we are compelled to
achieve inside the resonator. In their standardised versions, these mirrors come along with certain radii
of curvature only13. Under these circumstances, the variation of the mirror separation, which can in
principle be set to arbitrary and in practice to at least finer-than-a-cm-scale values, is sensible.
For the matrix in eq. (2.16) our approach means substitution of dM1,M2 by dM1,M2 = RM1 + a. As it
turns out, a rather useful choice is RM1 = 0.8 m, which is a readily purchasable standard radius and
furthermore satisfies all required needs as will be shown now: Insertion into eq. (2.14) leaves us with a
possible excess distance range of

0 m ≤ a ≤ 0.3673 m (2.17)

9Whereby dpump
0 = 2wpump

0 = 400 µm tend to work best for a non-collinear type-II set-up. For an explanation regarding
both scenarios, see subsec. 6.1.1 later in the text.

10Extraordinary refractive index nBBO
ext (λ = 390 nm) = 1.6683, ordinary refractive index nBBO

ord (λ = 390 nm) = 1.6953
11Refractive index of air here take as nair = 1, with a speed of light c = 299709984.5 m

s
. accounting for it

12thus also the difficulty in alignment
13Manufacturer: Layertec GmbH; Ernst-Abbe-Weg 1; 99441 Memmingen; Germany
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within which the cavity is stable. We can furthermore evaluate the condition for the complex beam
parameter, eq. (2.15). For an arbitrary cavity, symbolised by a propagation matrix (2.13), q can be
evaluated, under the constraints set by eq. (2.15) and AD − BC = 1, to receive the general solution
([60]):

1
qM1

= −A−D

2B
− i ·

√
1− (

A+D
2

)2

B
, (2.18)

which reduces for the appropriate system matrix, stated in eq. (2.16), to:

1
qM1

= − 2d2
M1,M2 + 2dM1,M2 (RM1 − Lcav)

2d2
M1,M2RM1 − 2LcavdM1,M2RM1 + LcavR2

M1

+
i ·R2

M1

√
(RM1−dM1,M2)(dM1,M2−Lcav+RM1)(d2

M1,M2−dM1,M2Lcav+LcavRM1)
R4

M1

2d2
M1,M2RM1 − 2LcavdM1,M2RM1 + LcavR2

M1

(2.19)

Insertion of the relevant numbers and inversion yields the final functional dependence of qM1(a) on the
excess distance parameter a, given by14:

qM1(a) =
1
2
· 2.40 + 1.43 · √−2.1099 + a · √−1.74 + a · √−0.37 + a · √a

−3.01 + 1.43 · a +
1
2
· 1.87 · a− 1.43 · a
−3.01 + 1.43 · a (2.20)

Considering the beam waist to be retrievable from the complex beam parameter via

w(z) =

√
−λp

π · Im (1/q(z))
(2.21)

provides the opportunity to examine the minimal beam waist in the symmetry point between mirrors
M1 and M2. To do so, another propagation of the beam has to be implemented, since eq. (2.16) returns
qM1 at the position of mirror M1. A convenient measure for the necessary distance is provided by the
wavefront curvature of qM1(a) in eq. (2.20), given by

Rz=zM1(a) =
(

Re
(

1
qM1(a)

))−1

, (2.22)

since it provides the distance the point comprising plane wavefronts (i.e. the beam waist) is apart from
the position of mirror M1 (z = zM1). The relevant transfer matrix is thus given by:

AM1→zw0
=

(
1 −Rz=zM1(a)
0 1

)
(2.23)

It shall be noted that Rz=zM1(a) has to be taken negatively according to the applied sign convention,
since the laser beam is converging at z = zM1. Calculation of the new complex beam parameter by the
ABCD law (2.12) and subsequent extraction of the beam waist yields

w0,z=z0(a) =

√
39

100π

√√√√−
[
Im

([
f(a)− 1

2
Re (g(a))

]−1
)]−1

, (2.24)

with

f(a) =
2.41 + 1.42

√−2.11 + a · √−1.74 + a · √−0.37 + a · √a + a · 1.87− a2 · 1.42
2a · 1.43− 2 · 3.01

g(a) =
2.41 + 1.43 · √−2.11 + a · √−1.74 + a · √−0.37 + a · √a + a · 1.87− a2 · 1.43

a2 · 1.43− 3.01

The above expression is plotted as a function of the excess distance a in fig. 2.3. We can infer the
minimum beam waist w0(a) to reach the desired value of roughly 100 µm within a range of approximately
0.15 m ≤ a ≤ 0.23 m, which offers the property of having a shallow gradient. Such a behaviour is very

14This equation shall be noted to contain a non-vanishing imaginary part since a < 0.37.
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Figure 2.3: Minimum beam waist w0,z=z0(a), eq. (2.24), as a function of the excess distance a. A region
of shallow gradient and thus insensitivity to distance changes is apparent for 0.15 m ≤ a ≤ 0.23 m, offering
stability in the SPDC pump geometry.

much favourable, since it allows for small misadjustments of the mirror separation without spoiling the
beam size and therefore influencing the down-conversion process remarkably. In other words the beam
waist does not change much if a is varied within the aforementioned region, in contrast to the situation
at the proximities of the stable cavity interval (a ≈ 0 m and a ≈ 0.3673 m) where w0(a) is strongly
susceptible to any changes in a. Especially since such deviations are not only created by systematic
alignment errors, but also by thermal fluctuations of the resonator system, it is very pleasant to have a
range of approximately 8 cm available over which the beam waist is roughly not altered.
To gain greatest advantage out of the insensitivity region, the point with a gradient dw0(a)

da = 0 will be
chosen as excess distance, corresponding obviously to the maximum in fig. 2.3 at a = 0.182 m. Hence the
beam waist at the BBO crystal, as well as the distances between the mirrors M1 ↔ M2 and M3 ↔ M4
reach values of:

w0 = 101 µm ; dM1,M2 = 0.982 m ; dM2,M1 = 2.728 m (2.25)

We acknowledge our initial assumption of having RM1 = RM2 = 0.8 m to be justified, fulfilling all
requirements for stability and mode geometry. With the particular choice of distances, the cavity set-up
is determined completely as is the optical mode within it. The wavefront curvature and beam waist of the
latter can hence be analysed as a function of position along the cavity’s optical axis (z-axis). Appropriate
calculations are once again performed with the transfer matrices, whereby a variable propagation distance
z has to be inserted. For the part of the resonator between mirrors M1 and M2, referred to as sector 1,
the corresponding matrix is given by:

Asec.1(z) =
(

1 z
0 1

)
, (2.26)

in contrast to sector 2, with the beam going back from M2 to M1 via M3 and M4, in which case
Asec.1(R + a) and the mirror matrix for M2 have to be applied prior to another propagation matrix of
variable distance z:

Asec.2(z) =
(

1 z
0 1

)
·
(

1 0
− 2

RM2
1

)
·
(

1 dM1,M2

0 1

)

=

(
1− 2z

RM2
dM1,M2 + z − 2zdM1,M2

RM2

− 2
RM2

1− 2dM1,M2
RM2

)
(2.27)

If we apply both matrices to the complex beam parameter at M1, 1
qM1

= 1
RM1

− i λ
πw2

M1
, the beam

radii w(z) and wavefront curvatures R(z) can be extracted by eqs. (2.21) and (2.22) at any position
z ∈ [0, Lcav]. Results have been plotted in fig. 2.4 for w(z) on the left and R(z) on the right hand
side. There are not surprisingly two focal spots apparent, whereby the second one w1 is located at the
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Figure 2.4: Beam waist w(z) (left) and wavefront radius of curvature R(z) (right) over entire length of
the cavity z ∈ [0, Lcav]. Two focal points are present, where R(z) diverges to infinity and w(z) adopts
its minimal values of w0 = 101 µm and w1 = 330 µm. Into the former focal point, the BBO crystal will
be placed.

symmetry point z1 in the middle of the distance between mirrors M3 and M4, i.e. ∆z = 1.364 m away
from either mirror, exhibiting a waist size of w1 = 330 µm. So positioning a second non-linear crystal here
would offer the opportunity to implement two photon pair sources within a single cavity. Certain types
of experiments, like quantum telecloning ([16], [21], [22]), needing one multiphoton entangled state and
one single qubit, commonly generated by heralding a SPDC source ([49]), would consequently become
feasible with our apparatus as well. Furthermore a second crystal would also negatively influence the
dispersion properties of the resonator, thus changing the pump spectrum and the amount of generated
SPDC photons per time, as we shall see throughout the remainder of this text15. So an implementation of
such a quantum information protocol would require some further calculations regarding expected count
rates.
The singularities of the wavefront curvature in fig. 2.4 correspond to focus positions since plane waves
with R(z = {z0, z1}) → ±∞ are expected there. The uncontinuous jumps at the positions of mirror
M1 and M2 account for the change in wavefront radius of curvature imparted by mirror lensing ef-
fects that follow the well known thin lens equation ([63]), 1

Rfinal
= 1

Rinitial
− 2

Rmirror
, embedded in the

transfer matrix method. Clearly M3 and M4 do not cause such modifications because of their flatness
RM3 = RM4 = ∞ → 2

Rmirror
= 0 → 1

Rfinal
= 1

Rinitial
. The saddle points in the R(z) function occur at the

Rayleigh range z = z{1,2} ± zR{1,2} of each focus as the wavefront has its greatest values there. One final
word about the wavefront curvatures at the locations of M1 and M2, being R(zM1) = −0.5047 m and
RzM2 = 0.5047 m. These are obviously unequal to the mirror curvatures of Ri∈{M1,M2} = ∓0.8 m. Such
a behaviour might seem counterintuitive to the commonly known situation of a two mirror cavity, whose
mirror curvatures must match those of the beam wavefronts. However for ring cavities this requirement
is not valid anymore as the beam would otherwise be reflected back into itself again, i.e. within both
sectors 1 and 2 the complex beam parameter q(z) would have to be exactly the same at equal distances
z say to either side of mirror M2. Clearly that is impossible already by the mere fact of having different
lengths in both sectors (dM1,M2 < dM2,M1).

Resonator stability diagram What is still pending now is to assess the stability of a cavity imple-
mented with the above set of parameters. The insensitivity against small changes in the excess parameter
a and consequently in the mirror separations dM1,M2, dM2,M1 has already been mentioned (see fig. 2.3).
Deviations in the proper mirror positioning or orientation, affecting the values for the radii of curvature,
in combination with distance alteration have not yet been discussed. However there is a very convenient
scheme available to do so, which is known as the stability diagram (see e.g. [57], [58], [63]). Although
the aforementioned method is normally only applicable for two mirror resonators, it is extendable to our
situation under the assumption of symmetry around z0, i.e. RM1 = RM2 = R̄. We can rewrite the
stability criterion, eq. (2.14), to:

15Particularly outlined in subsec. 2.1.4, 2.1.5 and 6.3.2
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Figure 2.5: Stability diagram for cavity. The black point indicates the positioning of the full length cavity
with Lcav ≈ 3.71 m. The gray, red, blue and yellow boxes are the locations of a cavity with half length
L′cav ≈ 1.83 m, as described further in subsec. 2.2.1. Ultimately the green symbols represent commonly
known symmetric two mirror arrangements, namely confocal cavities with d = R and {g1 = 0, g2 = 0},
concentric cavities with d = 2R and {g1 = −1, g2 = −1} as well as planar cavities with R = ∞ and
{g1 = 1, g2 = 1}. Since all three of these are lying at the stability boundaries in the diagram, they
are very susceptible to negative influences and potentially quickly loose their stability under such slight
disturbances. The straight grey line accounts for the change in the stability parameters, starting from a
cavity of frep ≈ 160 MHz repetition rate and mirror radii of curvatures of RM1,M2 = 0.4 m, by variation
of the values for RM1,M2, while keeping dM1,M2 and dM2,M1 fixed, whereby the green line shows a
treatment of the opposite variational scenario; both are discussed in subsec. 2.2.1.

−1 <
1
2
Tr (Asys) < +1 ⇐⇒ 0 <

1
4
Tr (Asys) +

1
2

< +1 (2.28)

Using the transfer matrix for our system (eq. (2.16)), we get:

0 <
1
4

(
1− 2dM2,M1

RM2
+ 1− 2dM1,M2

RM2
− 2dM1,M2

RM1
− 2dM2,M1

RM1

)

+
1
4

(
4dM1,M2dM2,M1

RM1RM2

)
+

1
2

< 1

⇔0 < 1− dM2,M1

2R̄
− dM1,M2

2R̄
− dM1,M2

2R̄
− dM2,M1

2R̄
+

dM1,M2dM2,M1

R̄2
< 1

⇔0 < 1− dM1,M2

R̄
− dM2,M1

R̄
+

dM1,M2dM2,M1

R̄2
< 1

⇔0 <

(
1− dM1,M2

R̄

)

︸ ︷︷ ︸
=:g1

(
1− dM2,M1

R̄

)

︸ ︷︷ ︸
=:g2

< 1

⇔0 < g1 · g2 < 1 (2.29)

For our set of cavity parameters, the g1 and g2 factors yield g1 = −0.23 and g2 = −2.41. The point {g1, g2}
can now be plotted in a graphic, showing g2 over g1, which is called the stability diagram. The boundaries
of the inequality (2.29) can be inserted therein as well, defined by g2 = 1

g1
, g1 = 0 and g2 = 0. Such a

representation is provided in fig. 2.5, whereby all parameter sets {g1, g2} that lie within the area enclosed
by the coordinate axes and the black hyperbulae represent stable resonator systems, according to eq.
(2.29). The left figure shows an overview of the entire stability diagram, whereas the right figure focusses
onto the interesting part for our particular situation. The green points in the former represent common,
symmetric two-mirror cavity systems, whose properties are discussed thoroughly in references ([57], [58],
[86]). The diagram 2.5 offers now the intriguing possibility to estimate what happens if either the mirror
separations dM1,M2, dM2,M1 or the mirror radii of curvature RM1, RM2 are slightly changed16. Such an

16The latter e.g. by changing the angular orientation of the mirror.
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alteration would consequently modify the respective parameter g1 → g1+∆g1 or g2 → g2+∆g2 leading to
a displacement of the cavity position in the diagram. If one of the above mentioned stability boundaries
is crossed thereby, the resonator becomes unstable and no intensity build-up is possible anymore. Hence
a sophisticated arrangement should stay as far off these boundaries as possible. Comparing the location
of our cavity to the confocal two-mirror scenario at g1,2 = 0, explains the reason for including the excess
distance a in order to specifically not have a confocal arrangement which is most sensitive in its stability
to disturbances. Therefore also the highest gradients of the beam waist w0(a) are located around a = 0
in fig. 2.3. Fig. 2.5 implies that our particular choice of parameters allows for some errors, i.e. the
datapoint symbolising the cavity has some additional stable space around it, however it is still far off
the ideal position, located around the parameter set {g1, g2} = {± 1

2 ,± 1
2}. Nevertheless it will turn out

to be sufficient for our needs. Stable locking conditions, depending also on some other frequency related
parameters examined later on, can be preserved over time scales of days, which is indeed quite good for
pulsed optical resonators. The positioning of the device within the stability diagram is hence convenient.
In addition to the just stated analysis an approximation made shall be mentioned: In deriving eq. (2.29),
a symmetric cavity arrangement has been assumed, i.e. RM1 has been set equal to RM2. However if
e.g. a deviation is introduced in only one of both radii, say M117, this implies, generally speaking,
RM1 = x · RM2, causing eq. (2.28) not to factorise anymore like in eq. (2.29). The non-factorisability
is also the reason why the stability diagram is only applicable for two mirror cavities or symmetric
ring cavities, which in fact resemble a two mirror system. Nevertheless if deviations from the symmetric
situations are small, i.e. RM1 → RM1+∆RM1 with ∆RM1 ¿ RM1, as expected for slight misadjustments,
mismanufacturing, thermal drifts etc., the parameter g1 can be Taylor expanded according to:

gdev
1 = 1− dM1,M2

RM1
+ ∆RM1 ≈ 1− dM1,M2

RM1
+

dM1,M2

R2
M1

·∆RM1 + ...

Insertion into eq. (2.29) returns:

gdev
1 · g2 =

(
1− dM1,M2

RM1 + ∆RM1

)
·
(

1− dM2,M1

RM2

)

=
(

1− dM1,M2

RM1
+

dM1,M2

R2
M1

·∆RM1

)
·
(

1− dM2,M1

RM2

)

(∗)
= 1− dM1,M2

RM1
− dM2,M1

RM2
+

dM1,M2dM2,M1

RM1RM2︸ ︷︷ ︸
=g1·g2

+
dM1,M2

R2
M1

∆RM1

︸ ︷︷ ︸
→0

− dM1,M2dM2,M1

RM2R2
M1

∆RM1

︸ ︷︷ ︸
→0

≈ g1 · g2 (2.30)

Step (∗) is justified since ∆RM1 ¿ RM1 ∨ RM2. Of course this is just a crude simplification, but it
proves the factorisability of eq. (2.29) not to be influenced too tremendously by considering the system’s
behaviour under stability estimation.
There is also a counterintuitive point to be gathered from fig. 2.5: While all symmetric two mirror
resonator are positioned on the straight line connecting the three green points, ring cavities, symmetric
in their mirror radii but comprising unequal mirror separations, do not show this feature for the simple
reasons that dM1,M2 6= dM2,M1 directly leads to g1 6= g2 and consequently to a growing separation from
this line for increasing differences between dM1,M2 and dM2,M1.

Summary All important geometrical design parameters for the enhancement resonator of f ≈ 80 MHz
repetition rate have now been derived and are summarised in appendix A.1. Since beam diameters at the
four mirrors are small enough, half-inch optics can be employed and an even smaller component for one
mirror, used for the later introduced cavity stabilisation, is possible allowing for fast enough regulation
frequencies (see subsec. 3.2.1). The next step in the design process is now to determine the mirror
reflectivities and transmittivities, whose values are connected to the cavity loss and the desired future
applications.

2.1.2 Loss inside cavity and cavity Finesse

To allow for best enhancement properties, the losses in the resonator should obviously be as low as
possible. From this perspective it is demanded to use coatings for mirrors M1, M2 and M4 (fig. 2.2)

17or alternatively a different one for either of both
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with high reflectances R. Since the mirror M2 shall furthermore be employed as an output coupler for
the infra-red photons, generated by the SPDC process, a high transmittance T within their wavelength
range is desired for this particular constituent. A central wavelength of λSPDC ≈ 780 nm and a full
width half maximum (FWHM) spectral width on the order of ∆λ ≈ 9 nm are to be expected for the
down converted light, as we will see in subsec. 5.3.3. Suitable components, meeting these requirements,
have been purchased from the company Layertec18.
For the moment, we are only concerned by the properties regarding UV power storage. For the mirrors
M1, M2, M4 a transmission of Ti = 0.0002=̂0.02% is obtained, corresponding to a reflectance of Ri =
1−Ti = 0.9998=̂99.98 %, with i ∈ {M1,M2,M3}. For a combination of all three mirrors the reflectance
accumultes to

RM1,M2,M3 = RM1 ·RM2 ·RM3 = (0.9998)3 = 0.9994=̂99.94 % (2.31)

Besides these reflectors, we also have air and a 1 mm thick BBO crystal19 incorporated into the set-
up, which also contribute to the overall losses. For the latter an averaged absorption specification at
λ = 266nm of αBBO ≈ 0.1 1

cm can be found ([67]), which is anticipated to be similar for our wavelength
range. So a transmittance of T abs.

BBO = 1 − exp (−0.01) = 0.99005=̂99.01 % can be expected. The crystal
is anti-reflection (AR) coated at around 390nm, adding an extra reflection loss of Rrefl.1

BBO ≈ 0.4% at the
incidence surface and Rrefl.2

BBO = 0.1% at the exit surface. So ultimately the non-linear medium has a
transmittance of

T theo
BBO = T abs.

BBO · (1−Rrefl.1
BBO ) · (1−Rrefl.2

BBO ) = 0.9851=̂98.51%. (2.32)

The direct measurement of this quantity, yielding

T exp
BBO = 0.975=̂97.5%, (2.33)

reveals acceptable agreement with these supplier specifications and shall be used for the further analysis.
Air contributes by an absorption coefficient of αair = 0.27 1

km ([68]), averaged between 337 nm and
488 nm, with a transmittivity of Tair = 0.999=̂99.9 %, loosing 0.1% of the pulse intensity during one
round-trip in the resonator. Altogeher the accumulated transmission T noIC

cav , neglecting mirror M3, and
the associated loss, RnoIC

cav , can be computed to

T noIC, BBO
cav = T exp

BBO · Tair · (1−RM1,M2,M3) = 0.9734=̂97.34 % (2.34)

RnoIC, BBO
cav = 1− T noIC, BBO

cav = 0.0266=̂2.66% (2.35)

and without the non-linear crystal

T noIC, noBBO
cav = Tair · (1−RM1,M2,M3) = 0.9984=̂99.84% (2.36)

RnoIC, noBBO
cav = 1− T noIC, noBBO

cav = 0.0016=̂0.16% (2.37)

are obtained. Following the customary approach for cw cavities, the remaining input coupler M3 has
now to be chosen in such a way to reach a steady state field inside the resonator ([57]). That is to say,
the intensity transmission through M3 has to cancel the losses experience by light already stored inside
the resonator. Disregarding absorption by the input coupler, its transmission should hence equal the
numbers in eqs. (2.34) and (2.36) yielding theoretical20 reflectances of

RIC, BBO, theo
cav = 0.9734=̂97.34 % (2.38)

RIC, noBBO, theo
cav = 0.9984=̂99.84 % (2.39)

For ultra-fast optical enhancement resonators, the criterion for input coupler selection is somewhat more
subtle though and the frequency comb structure of the mode-locked pulses has to be considered as well
([58], [73]). This will be done now, by consideration of the power enhancement inside the cavity, which
also permits to understand the influences of loss and associated finesse changes.
The derivation will start within the time domain and looking at pulse propagation inside an arbitrary

18Layertec GmbH, Ernst-Abbe-Weg 1, 99441 Mellingen, Germany
19Newlight Photonics, 264 Westmoreland Avenue, Toronto, ON M6H 3A5, Canada
20Theoretical in terms of not every arbitrary relectance to be producible.
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resonator system, as shown in fig. 2.1. However for simplicity we will still stick to regarding only a
single frequency component ω within our pulse spectrum for the moment and subsequently extend the
expression to the full picture later. Observing fig. 2.1, an electric field of E0 is present in front of the
input coupler, here denoted as M1, and the intra-cavity field just after propagation through this device
is tIC · E0. During one round-trip, the field is reflected off mirror M2, with a reflectivity of rM2, and
suffers losses inside the resonator, described by a lowered transmittivity tloss(ω) < 1. Furthermore there
are also additional phase shifts occuring due to dispersion, which add a factor of exp (−iΦ(ω)), so the
entire field after one circulation inside the cavity is E = tICtlossrM2rICE0 exp

(
i
(

ω
c Lcav + Φ(ω)

))
. If the

repetition rate of the resonator now matches the pumping laser, the electric fields are superimposed after
every round-trip with light just coupled in, leading, in the steady state limit, to an overall field within
the resonator, which resembles the geometric progression

Ecav = tICE0 + tICE0tlossrM2rICe(i(ω
c Lcav+Φ(ω))) + tICE0

(
tlossrM2rICe(i(ω

c Lcav+Φ(ω)))
)2

+ ...

= tICE0

∞∑
n=0

tlossrM2rICe(i(ω
c Lcav+Φ(ω)))

︸ ︷︷ ︸
=:G(ω)

=
tICE0

1−G(ω)
, (2.40)

whereby the quantity G(ω) is called the net round-trip gain21. This picture is readily extended to
our situation by substituting tloss(ω) =

√
T exp

BBO(ω) · Tair(ω) and rM2(ω) =
√

RM1,M2,M3(ω). The
effects of losses and all mirrors but the input coupler can be accumulated to yet another constant
rnoIC(ω) =

√
T exp

BBO(ω)Tair(ω)RM1,M2,M3(ω) and additional inclusion of rIC gives the quantitiy r(ω) =
rIC(ω)rnoIC(ω). Computing the power enhancement PE, which will be defined for the purposes stated in
this thesis as power inside the resonator with respect to power in front of the input coupler, the following
expression is achieved ([51], [52]):

PE(ω) =
|Ecav|2
|E0|2 =

|tIC(ω)|
1 + r(ω)− 2r(ω) cos

(
ω
c L + Φ(ω)

) =
|tIC(ω)|

1 + r(ω)− 2r(ω) cos (φ(ω))
(2.41)

and the electric field Ecav will acquire a phase shift of ([51])

Ψ(ω) = arctan

(
r(ω) sin

(
ω
c L + Φ(ω)

)

1− r(ω) cos
(

ω
c Lcav + Φ(ω)

)
)

+ arg (tIC(ω)) (2.42)

The power enhancement comprises resonances whenever the argument of the cosine in eq. (2.41) equals
an integer multiple of 2π. Anticipating the additional phase shift Φ to be constant22, the resonance
condition for the pumping light frequency translates into ω

!= n · 2πc
Lcav

= n · ωFSR, with the free-spectral
range (FSR) of the cavity denoted by ωFSR = 2πc

Lcav
= 2πfrep, which corresponds to the pulse repetition

rate of the resonator. An intriguing visualisation of aforementioned requirement is shown in fig. 2.6 b),
simplifying the system by a two mirror arrangement once more. Intensity built-up is possible, whenever
the pumping wavelength is chosen to match the length of the resonator in such a way to show anti-nodes
at both mirror positions and a complete oscillation period of the electric field in between. The separation
between two of these suitable wavelengths is expressed by the free spectral range λFSR = 2πc

ωF SR
. Please

also note the difference between a two mirror arrangement and a ring cavity in this context: While the
former allows for half wavelengths as well, thereby exhibiting a FSR of ω2 mirror cav.

FSR = c
2Lcav

, a ring-shaped
arrangement permits complete wavelengths only, consequently a FSR of ωring cav.

FSR = c
Lcav

twice as big
(as plotted in fig. 2.6 b)). The power enhancement of a individual resonance is displayed in fig. 2.6 a),
whereby the full width at half maximum (FWHM) of the peak is given for low loss cavity, i.e. 1− r ≈ 1
by ([51])

∆ωFWHM =
1− r

π
√

r
=:

ωFSR

F
(2.43)

The quantity F = π
√

r
1−r is named the finesse of the cavity and constitutes a measure for the resonance

widths, as can be inferred from the above definition. It is also connected to the losses inside the system,
by being proportional to r(ω) ∼ texp

BBO(ω)tair(ω)rM1,M2,M3(ω)rIC(ω), and frequency dependent. If the
losses increase, i.e. r ↘, the finesse decreases (F ↘) and the resonance widths rise (∆ωFWHM ↗).
Accordingly the number of round-trips of the stored, circulating electric field shrink as well; so the finesse

21The progression converges because tloss, rM2, rIC < 1.
22This is not the case in reality, since dispersion in the resonator is wavelength dependent, as we will shortly see.
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Figure 2.6: Cavity resonances. Fig. a): Schematic power enhancement of cavity resonance as function
of frequency. The resonance has a width proportional to the intra-cavity loss and thereby to the finesse
F . To achieve coupling, the red laser frequency comb tooth has to overlap with the resonance, which is
easier to fulfil for systems of lower finesse. However these have lower enhancement as indicated by the
height of the cavity resonance. Fig. b): Schematic representation of resonance condition, simplified by
a two mirror arrangement. Intensity build-up is achieved, whenever the wavelength matches the cavity
length in terms of having an anti-node at the locations of the end mirrors, containing a full oscillation
period in between. The character n denotes the number of the resonance.

is furthermore a representative for this property as well. It will be evaluated experimentally later on in
section 4.3. An important observation to be made from fig. 2.6 a) are narrowed peak widths for higher
finesse values. This implies for our set-up, that the BBO crystal will lower the achievable enhancement of
stored UV pulses due to higher losses, however simultaneously broadens the individual cavity resonances,
rendering it therefore easier to hit these by the external pumping frequencies23, as we will see shortly in
subsec. 2.1.4.
For the initial question concerning input coupler choice for pulsed resonator system, the above discussion
suggests to utilise a mirror reflectivity rIC , which maximises the power enhancement or alternatively the
intra-cavity pulse power. However in order to do so, the full frequency spectrum of the pumping pulses
has to be considered due to the proportionality of PE to ω in eq. (2.41). So we will also have to include
the wavelength dependence of the refractive indices of air and the BBO crystal into the investigations, as
they influence φ(ω) in eq. (2.41). The mirror reflectivities and losses in the cavity remain to be assumed
wavelength independent.

2.1.3 Power-enhancement and input coupler choice

Cavity mirror influences As a first step towards phase estimations inside the resonator, the influ-
ences of the cavity mirrors shall be neglected. These only add dispersion contributions to the phase,
which are minor compared to the numbers the BBO crystal and air impart on the UV pulses. From
the group-velocity dispersion (GVD) graph for the actually implemented mirrors, provided by the manu-
facturer, values within the spectral region of the pumping pulse (λUV ∈ {389.45 nm, 390.55 nm}) on
the order of approximately 10 fs2 are obtained. Mirror effects can thus be disregarded for the re-
mainder of all dispersion examinations, since having only air inside the resonator already causes a
GV Dair(λ = 390 nm) ≈ 191 fs2 and with the additional non-linear crystal the entire resonator filling
distorts the pulse by a GV Dair+BBO(λ = 390 nm) ≈ 378 fs2. The GVD and the figures just mentioned
will be analysed more closely in subsec. 2.1.5.

Refractive index of air and BBO What is left is to evaluate the contributions made by the BBO
crystal and air. Both influence the round-trip phase φ(ω) ⇐⇒ φ(λ) by the wavelength dependence of
their refractive indices. This is commonly described by the Sellmeier equation ([69], [72], [101]), given in
its most general form by:

23These shall be noted to have much smaller linewidths than ∆ωFWHM of the resonator, so there is some frequency
interval which they can be displaced over, while still yielding approximately equal overlap with the cavity resonances.
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n(λ)2 = A +
B

C − 1
λ2

+
D

E − 1
λ2

(2.44)

with A, B, C, D and E being material specific constants. For air the necessary parameters can be found
in reference ([70], [71]), providing an index function of:

nair(λ) = 1 +
8342.54 + 15998 µm2

38.9 µm2− 1
λ2

+ 2406147 µm2

130 µm2− 1
λ2

100000000
(2.45)

with λ in units of µm. The constants are evaluated at a temperature of T = 15◦ C and pressure of
p = 101325 Pa with a carbon dioxide content of 0.045%, which is acceptable for the experimental envi-
ronment at hand.
For BBO, two different refractive indices exist for light polarisation along the ordinary or extraordinary
crystal direction, respectively. A more detailed discussion of the latter two directions in terms of bire-
frigent crystals can e.g. be found in subsec. 6.1.1 or in references ([72], [84], [101]). The appropriate
formula for ordinarily polarised light is given by:

nBBO
ord (λ) =

√
2.7359− 0.01354 · λ2

1
µm2

+
0.01878

λ2 − 0.01822 1
µm2

(2.46)

Its extraordinary counterpart is furthermore dependent on the angle of crystal orientation, which equals
here the phase matching angle for type-II collinear spontaneous parametric down-conversion24 of θSPDC =
43.52◦, and is given by:

nBBO
ext =

√
3.11·10−14−2.74 1

µm2 ·λ2+1.35·1010 1
µm4 λ4

1.82·10−14−λ2

√
2.74·10−14−2.38 1

µm2 ·λ2+1.52·1010 1
µm4 λ4

1.67·10−14−λ2

√
5.07·10−28−7.35·10−14 1

µm2 ·λ2+2.55 1
µm4 ·λ4−1.44·1010 1

µm6 ·λ6

3.04·10−28−3.49·10−14 1
µm2 ·λ2+λ4

(2.47)

The necessary parameters for both expressions can be found in reference ([72]), considered at a temper-
ature of T = 20◦ C with wavelengths again in units of µm.

Phase after round-trip The phase shift φ imparted onto the intra-cavity pulses after one round-
trip can now be evaluated by considering a polarisation direction along the extraordinary axis in the
BBO crystal. The reason for that originates from the phase matching condition of the down-conversion
process25. With a cavity length of Lcav = 3.71 m and a crystal thickness of LBBO = 1 mm, the phase φ
turns out to be

φ(ω) =
ω

c · nBBO
ext ( 2πc

ω )
LBBO +

ω

c · nair( 2πc
ω )

(Lcav − LBBO) (2.48)

for a resonator arrangement include the non-linearity and

φ(ω) =
ω

c · nair( 2πc
ω )

Lcav (2.49)

for its absence. A graphical representation for both scenarios is provided in fig. 2.7 for a wavelength
range of λUV ∈ {386 nm, 394 nm}, well containing our UV pumping spectrum.

Spectrally resolved power enhancement With these preliminary considerations, the power en-
hancement as a function of the pumping frequency ω can now be calculated by application of eqs.
(2.41) and (2.45)-(2.49). For this purpose the overall cavity reflectivity r(ω) will be split up again into
r(ω) = rIC(ω) · rnoIC(ω). While the latter reflectivity is determined by the cavity losses stated in sub-
sec. 2.1.2, the former quantity will be the variable to optimise for. Calculations yield, for the situation
with the BBO, power enhancement curves as they are exemplarily represented in fig. 2.8 a). We can
see that the enhancement factor for each wavelength component within the pulse varies quite a lot for
different input coupler reflectivities. The vertical lines at λ1 = 389.5 nm and λ2 = 390.5 nm represent the
spectral region, over which the dispersion compensation and accordingly the input coupling condition is
optimised for, as will be explained shortly in subsec. 2.1.4. Within this interval, the external frequency
modes should best match cavity resonances, i.e. optimally couple into resonator, and thus experience

24See subsec. 6.1.1 for more details.
25See the discussion in subsec. 6.1.1.
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Figure 2.7: Phase shift φ(λ) of UV pulses after one round-trip inside the enhancement resonator. Black
curve: cavity with air and a 1 mm thick BBO crystal. Red curve: Cavity just containing air. The blue
vertical lines indicate the spectral region over which dispersion compensation will be optimised.

the highest power enhancement. If the overlap between external frequencies ω and cavity resonances,
positioned at ωcav = n · ωFSR was perfect within the entire range ω ∈ { 2πc

λ2
, 2πc

λ1
}, the power enhance-

ment would have a flat roof top over this region. The examined M-shaped structure is however due to
deviations from perfect matching for some frequencies (see subsec. 2.1.4), whereby the best coincidence
is achieved at the positions λk at which the power enhancement is maximal (PE(λk) = PEmax). For
continuously changing the input coupler reflectivity26 TIC = 1−r2

IC , these maximal power enhancements
are depicted in fig. 2.8 b), and an overall maximal power enhancement

PEBBO
max ≈ 37.7 at a mirror transmittivity of: TBBO

IC ≈ 2.66% (2.50)

is achieved. The analogue curves are plotted in fig. 2.9 for a situation without the non-linear crystal. A
maximal power enhancement of

PEnoBBO
max ≈ 625 at a mirror transmittivity of: T noBBO

IC ≈ 0.16% (2.51)

is yielded. These values coincide with those calculated previously in eqs. (2.34) and (2.36). For best
power enhancement, we do however not necessarily want to maximise the spectral power enhancement at a
certain pumping frequency, which is analogue to a cw case and thereby not surprisingly resembles numbers
derived exactly for such a situation. Instead we do have to maximise the intra-cavity enhancement over
all frequencies or wavelengths, included in our pumping spectrum, simultaneously. In order to do so, a
suitable pumping spectrum has to be considered in the first place. Subsequently, the spectrally resolved
power enhancement PE(λ) from fig. 2.8 and 2.9 will be multiplied with this normalised external reference
spectrum to gain its amplified internal counterpart, as it is expected for the dispersion relations and losses
of the incorporated optical components. Ultimately it is the energy content yielded by integration over
the spectral intensities of these pulses, which has to be maximised as a function of the input coupler
transmittance.
For an external UV pumping spectrum our choice falls onto the mean UV spectrum for datasets originating
from the power enhancement measurement used in subsec. 4.2.2 and plotted in fig. 4.5 b). According
to the results we will obtain in subsec. 5.3.4, a Sech-pulse profile appears to be more appropriate for the
laser pulses involved. The experimental data, normalised to its maximum value, will for the following
calculations thus be fitted with a Sech-intenstiy profile, defined as

ISech(λ) = sech2

(
λ− λ0

∆λ

)
(2.52)

with a centre wavelength of λ0 ≈ 390.188 ± 0.001 nm and a width parameter ∆λ ≈ 0.653 ± 0.002 nm.
The resulting fitted function, together with the underlying averaged, measured spectrum, is presented

26Losses in the input coupler during propagation have been completely neglected for this calculation. However in reality
they are not negligible, especially not in the UV regime. So the real values for the input coupler coating parameters are
always slightly different in experimental optimisation than in this theoretical estimation, besides that not any arbitrary
reflectivity is readily avaiblable commercially anyway.
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Figure 2.8: Spectrally resolved power enhancement PE(ω) as a function of the input coupler transmit-
tance TIC(ω) for a resonator arrangement comprising the BBO crystal. Fig. a): Examples of spectral
power enhancement functions received for various input coupler choices. The colour coding of the lines
is as follows: Red ⇔ TIC = 1.5%, green ⇔ TIC = 2.0 %, black ⇔ TIC = 2.66 %, blue ⇔ TIC = 3.0%,
yellow ⇔ TIC = 3.5 %. The blue vertical lines correspond again to the wavelength range, dispersion com-
pensation is optimised for. Fig. b): Maximum power enhancement PEBBO

max (λk) achievable for varying
the input coupler transmittance.
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Figure 2.9: Spectrally resolved power enhancement PE(ω) as a function of the input coupler transmit-
tance TIC(ω) for an empty cavity. Fig. a): Examples of spectral power enhancement functions received
for various input coupler choices. The colour coding of the lines is as follows: Red ⇔ TIC = 0.05%,
green ⇔ TIC = 0.1%, black ⇔ TIC = 0.16%, blue ⇔ TIC = 0.2%, yellow ⇔ TIC = 0.25%. The blue
vertical lines correspond again to the wavelength range, dispersion compensation is optimised for. Fig.
b): Maximum power enhancement PEnoBBO

max (λk) achievable for varying the input coupler transmittance.

in fig. 2.10. This function is furthermore normalised to its integrated areal coverage, constituting a
value of ASech =

∫
ISech(λ)dλ ≈ 1.305, to allow for simple retrieval of the overall power enhancement,

also integrated over all wavelength within the pulse: i.e. I ′Sech(λ) = ISech(λ)
ASech

. Subsequently, it is now
multiplied by the spectrally resolved power enhancement function, as plotted in figs. 2.8, 2.9 and stated
generally in eq. (2.41) together with the crystal’s and air’s dispersion properties (eqs. (2.45), (2.47)) to
provide the pulse spectrum as it is expected to establish inside the resonator system. For an arrangement
with BBO, the obtained internal spectra are plotted in fig. 2.11 a), the ones for an empty resonator can
be seen in fig. 2.12 a).
Since it is the overall power enhancement P̄E, which is of interest here, integration over the internal
spectra has to be pursued. The normalisation of the external spectrum I ′Sech permits to directly read
out the desired value from this operation. The resulting enhancement factors are shown as a function of



24 CHAPTER 2. CAVITY DESIGN

388 389 390 391 392
0

0.2

0.4

0.6

0.8

1

Wavelength [nm]

In
te

n
s
it
y
 [

n
o

rm
.]

Figure 2.10: Mean spectrum averaged over the individual external UV spectra measured for power
enhancement determination, as also shown in fig. 4.5. The black boxes represent the experimental data
and the red line denotes the Sech fit according to eq. (2.52).
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Figure 2.11: Expected internal UV spectrum for the cavity including the BBO crystal. Fig a) shows the
internal pulse spectra, whereby the colour coding represents different input coupler transmittances TIC

as follows: Red ⇔ TIC = 2%, green ⇔ TIC = 2.5%, black ⇔ TIC = 3.03%, blue ⇔ TIC = 3.5%, yellow
⇔ TIC = 4%.Fig. b) gives the areal coverage, or in other words the integrated power enhancement, of
the internal pulses as a function of the input coupler transmittance.

input coupler transmission in figs 2.11 b) and 2.12 b) for the respective resonator scenarios. With respect
to this more appropriate quantity to optimise for, the best mirror transmittances deviate from the cw
results (2.38), (2.39) and magnifications of

P̄E
BBO
max ≈ 33 with an input coupler transmittances TBBO

IC ≈ 3.03% (2.53)

P̄E
noBBO
max = 341 with an input coupler transmittances T noBBO

IC = 0.26 % (2.54)

are expected. It shall be strongly stressed here, especially if comparing these theoretical values with the
experimental results in subsec. 4.2.2 (eqs. (4.5) and (4.6)), that perfect transverse mode matching during
input coupling has been assumed throughout the entire calculation. That is to say, if external frequencies
match with cavity resonances, all the intensity of the impinging beam is coupled into the resonator. For
our experimental situation, yet about 50% get reflected off the input coupler, even for having all frequency
related affairs well adjusted and the input coupling condition (see subsec. 2.1.4) fulfilled. Hence, the
power, that really gets enhanced, is of only half the magnitude incorporated here for multiplication with
PE(λ). For a comparison with the experiment, this means in turn that the enhancement numbers in eqs.
(2.53) and (2.54) have to be devided by an additional factor of 2 in order to account for the degraded
coupling, yielding P̄E

BBO, 1/2
max ≈ 17 and P̄E

noBBO, 1/2
max ≈ 171.
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Figure 2.12: Expected internal UV spectrum for the cavity without the BBO. Fig a) shows the internal
pulse spectra, whereby the colour coding represents different input coupler transmittances TIC as follows:
Red ⇔ TIC = 0.15 %, green ⇔ TIC = 0.2%, black ⇔ TIC = 0.26%, blue ⇔ TIC = 0.3 %, yellow
⇔ TIC = 0.35%. Fig. b) gives the areal coverage, or in other words the integrated power enhancement,
of the internal pulses as a function of the input coupler transmittance.

So altogether the input coupler transmittance should be positioned somewhere around 3 % with BBO.
For experimental optimisation, several components have been purchased27. Slightly contrary to the
theoretical predicition, the components with28

RBBO
IC = 97.36% and consequently: TBBO

IC = 2.64% (2.55)

RnoBBO
IC = 98.72% and consequently: T noBBO

IC = 1.28% (2.56)
(2.57)

have shown the highest intra-cavity power levels achievable. Therefore we will apply these mirrors as
input couplers for the respective arrangement with and without the BBO crystal.

2.1.4 Coupling conditions into cavity by frequency comb matching

In the following, the coupling conditions necessary to operate the enhancement resonator will be explained.
There are in general three fundamental requirements ([51], [52]) to accomplish pulse amplification, which
extend the crude picture given in the introduction to this chapter. First the intra-cavity pulses’ envelope
has to be maintained during round-tripping. Second the repetition rates of the incoming external pulses
have to match the round-trip time of the pulses inside cavity and finally, third, the electric fields of the
individual frequencies, comprised by stored pulses, have to stay in phase with their external counterparts.
All these requirements share two common constraints. On the one hand, the absence of dispersion inside
the resonator, or at least a distortion low enough to still enable coherent electric field overlap, is necessary.
On the other hand, the entire procedure is founded on pulses consisting of a coherent superposition of
modes, or in other words mode-locked laser pulses described by a frequency comb ([73]). For alternative
sources of laser pulses with no coherence between different mode contributions, enhancement inside pulsed
optical resonators is not feasible, as explained in ([51]). Despite the statement of the aforementioned
conditions in the time domain, a comprehensible analysis is conveniently undertaken in the frequency
domain. Therefore the discussion about input coupling will start from the frequency comb structure of
the external pumping laser, which can be stated ([73]) as

ωn = n · ωrep + ωCEO (2.58)

with a pulse repetition rate of ωrep and a constant carrier-envelope-phase offset frequency29 ωCEO. This
comb is drawn schematically in the lower half of fig. 2.13, which indicates ωCEO to define the offset and

27with nominal values of TIC ∈ {0.1%, 1%, 2%, 3%, 5%}
28The numbers represent measured values and therefore slightly deviate from the nominal specifications.
29The carrier envelope offset is not really steady over time. However it varies on much longer time scales than fluctuations

on the cavity length occur. Therefore it can be assumed as a constant for deriving the coupling condition.
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hence the positioning of the comb teeth, separated by ωrep, along the frequency axis. We have already
deduced the condition for external frequency modes to match cavity resonances from fig. 2.6. To achieve
perfect input coupling, every comb tooth, present within the pulse, must coincide with a cavity resonance.
Those have been fixed by the power enhancement PE(λ), eq. (2.41), as the internal cavity frequencies,
for which the following condition applies ([51]):

2πñ = φ(ω′ñ) ⇐⇒ 2πñ =
ω′ñ
c

Lcav + Φ(ω′ñ) ⇐⇒ ω′ñ = ñ
2πc

Lcav
− c · Φ(ω′ñ)

Lcav
(2.59)

The modes ω′ñ nearly represent a frequency comb like structure themselves, similar to eq. (2.58), but
unfortunately the second term still comprises a frequency dependence, due to the dispersive phase shift
Φ(ω′ñ), see e.g. eq. (2.48). A customary approach to deal with this problem is to execute a Taylor
expansion in terms of ω′ according to ([51])

Φ(ω′) = −Φ0 + τω′ + ψ(ω′) (2.60)

whereby a constant phase offset Φ0, the group round-trip time inside the cavity τ and higher order
dispersion term ψ(ω′) appear. The latter includes all wavelength dependent effects, which tend to deform
the pulse shape initially coupled into the resonator. It will be subject of further investigations in subsec.
2.1.5. For the moment however, we acknowledge eq. (2.59) to change into

ω′ñ = ñ
2π

Lcav

c + τ
+

Φ0

Lcav

c + τ︸ ︷︷ ︸
=:ω′CEO

+
ψ(ω′)

Lcav

c + τ︸ ︷︷ ︸
=:ω′′CEO

= ñ
2π

Lcav

c + τ︸ ︷︷ ︸
=:ω′rep

+ ω′CEO + ω′′CEO︸ ︷︷ ︸
=:ω̃CEO

= ñ · ω′rep + ω̃CEO, (2.61)

which now resembles our external frequency comb structure (eq. (2.59)) up to the, still frequency de-
pendent, factor ω′′CEO. Although this does not look to offer great advantage at first sight, it is intriguing
to anticipate absence of all dispersion within the resonator for a moment. In such a scenario, the in-
ternal pulse circulation frequency ω′rep as well as the constant phase shift Φ0, accumulated during one
round-trip, can be made to perfectly agree with those of the external pumping comb (eq. (2.59)). In
our experiment, the accessible parameters to control both combs with respect to one another are the
carrier-envelope offset of the external comb and the central wavelength λc of its spectrum, as well as the
cavity length.
The former set of parameters offers free adjustment of the external mode locations, which can be under-
stood by examination of fig. 2.13. Choosing λc determines the position of the comb centre and therefore
simultaneously the location of all other modes along the frequency axis30. Subsequently modifying ωCEO

yields an alteration of the teeth spacings and hence of ωrep of the comb. This is due to the fixation
of the central mode, which prevents any dislocation of the entire spectrum along the wavelength axis.
So, if the offset of the lowest constituent is changed, only the separations between adjacent teeth can
vary31. Thereby the offset frequencies of the external comb and the cavity resonances can be adjusted
to coincide. Furthermore, the spacing between cavity modes and external comb teeth is set to concur by
modifying the denominator 2π

Lcav
c +τ

directly via Lcav and indirectly by changing the pulse round-tip time

τ for variations in32 Lcav.
In the time domain, matching the comb spacings corresponds to the equalisation of the pulse round-trip
time inside the cavity and the time between two successive laser pulses (condition 2 from above), whereby
adjusting the offset frequencies enables coherent addition of the coupled to the circulating pulse by having
the frequency teeth overlap with the cavity resonances (condition 3 from above, see also fig. 2.6). In
other words, what can be influenced and optimised experimentally accords to the fitting of a straight line
in a phase-over-frequency diagram, given by the laser frequency comb with an ordinate offset determined
by the carrier envelope phase ([73]) φext

CEO, given by

φ(ω) = n
ωnLcav

c
+ φext

CEO = n
ωnLcav

c
+

ωCEOLcav

c
(2.62)

to the entire intra-cavity phase function
30reciprocal to the wavelength axis shown in fig. 2.13
31An intriguing analogue for such a behaviour is to imagine a rubber band fixed at its middle by a nail and somebody

pulling with equal forces at either ends.
32Of course an alteration of Lcav also changes ω′CEO and the carrier-envelope-offset of the external pump beam would

technically have to be readjusted again by the aforementioned method. Yet, cavity modes are much broader than their
external counterparts, allowing for some mismatch. Nevertheless achieving mode overlap is an optimisation process between
both degrees of freedom, whose experimental access is coupled.
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Figure 2.13: Schematic drawing of the frequency comb matching condition for cavity input coupling. For
explanations see main text. Source: ([52]).

φ(ω′) = ñω′rep

Lcav

c
+ ω̃CEO

Lcav

c
(2.63)

stated in eqs. (2.61) or (2.59), respectively. The latter is a straight line for the absence of higher order
dispersion (ψ(ω′) = 0) as well, allowing to achieve perfect resemblance between eqs (2.62) and (2.63), thus
enabling coupling of the entirety of the external pulses into the resonator. The enhancement would accord-
ingly solely be determined by the frequency dependence of the cavity losses r(ωñ) = rIC(ωn)rnoIC(ωñ).
However the real apparatus shows a non-vanishing ψ(ω′), as can be inferred from fig. 2.7 already. For
the overall phase φ(ω′), this translates into a deviation from the straight line situation, whose shape is
subject to the particular frequency dependence of ψ(ω′). Group velocity dispersion (GVD), which is of
second order in ω′ and discussed further in subsec. 2.1.5, contributes the most to ψ(ω′) in our situation,
wherefore a parabolic behaviour of the intra-cavity phase

φ(ω′) ≈ −Φ0 +
(

Lcav

c
+ τ

)
ω′ñ + GVD · (ω′ñ)2 + ... (2.64)

is obtained as shown in the top part of fig. 2.13. It is clear, that the above mentioned external fitting
parameters are now not sufficient anymore to achieve proper phase compensation over the entire external
spectrum. Only at the positions of coincidence between the straight line eq. (2.62) and the intra-cavity
function (2.64) perfect phase compensation can be obtained. So some residual phase ∆φ(ω, ω′), which
accords to

∆φ(ω, ω′) = φ(ω′)−φ(ω) =

(
ñ

2π
Lcav

c + τ
+

Φ0

Lcav

c + τ
+

ψ(ωñ)
Lcav

c + τ

)
Lcav

c
−n

ωnLcav

c
− ωCEOLcav

c
(2.65)

will be retained in the denominator of the power enhancement, eq. (2.41), causing an amplification
of the external mode ωn lower than the maximally accomplishable enhancement on resonance (i.e. for
∆φ(ω, ω′) = 0). In terms of the frequency combs, the dispersion results in a displacement of the intra-
cavity comb teeth away from the locations apparent without the addiational term ψ(ω′). Their shifts in
position are also nicely conceivable from the top part of fig. 2.13 and can be understood by the constraint
for the resonance frequencies to meet the phase requirement set by eq. (2.59). So any additional dispersion
ψ(ω′) will modify the cavity resonances by ω′′CEO, hence diminishing the overlap with certain external
frequency comb modes and causing a smaller fraction of the external pulse spectrum to be coupled into
the resonator. We will see later within section 5.3, that the shortening in the spectrum will translate
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Figure 2.14: Residual phase ∆φ(ω, ω′) after phase compensation and thus input coupling optimisation by
fitting eq. (2.65) with eq. (2.62). Figure a) shows the scenario with the BBO crystal inside the resonator,
whereas for fig. b) the crystal is absent.

into an elongation in the pulse duration. At the same time it becomes also reasonable, that a smaller
cavity finesse eases this frequency comb matching condition for input coupling. Since resonances are
broader for such a higher loss scenario, the dislocation of internal comb teeth, depicted in fig. 2.13,
could partially be compensated by the increase in ∆ω′FWHM (see eq. (2.43)). Phase compensation
is executed experimentally by regulating ωn = ωpump

rep , ωCEO and Lcav in such away to maximise the
overall power enhancement P̄E (see eqs. (2.53) and (2.54)), details about the actual implementation
can be found in subsec. 3.2.2. For the theoretical calculations of PE(λ), as stated in figs. 2.8 a) and
2.9 a), the best fit for the straight line in eq. (2.62) to the intra-cavity phase function, eq. (2.64),
within the wavelength interval λ ∈ {λopt

min, λopt
max} is utilised, which causes an intersection in two points33.

The boundaries of the optimisation region, λopt
min = 389.5 nm and λopt

max = 390.5nm, are indicated in
all graphs showing theoretical calculations34 by the straight vertical lines. Due to perfect dispersion
compensation, the two comb frequencies, whose residual phase ∆φ(ω, ω′) = 0 in fig. 2.14, experience
the maximal power enhancement PE(λ), consequently causing the M-shaped structure of the spectrally
resolved power enhancement curves in figs. 2.8 and 2.9. The difference in PE(λ) for these optimally
coupled points to the spectral range between them obviously relates to the amount of losses and thereby
to the finesse. Since higher losses allow more of the aforementioned intermediate frequencies to penetrate
into the resonator as well, the power enhancement results in having a flatter top structure. Although
a predominantly parabolic dispersive phase contribution ψ(ω′) is obtained theoretically (see fig. 2.14)
the experimental situation does not necessarily have to resemble this behaviour, wherefore also third
order terms could in principle contribute, allowing our straight line fit (eq. (2.62)) to intersect the cavity
phase (eq. (2.64)) in more than two points, which would correspond to three or more modes experiencing
perfect dispersion compensation and maximum coupling efficiency.
Finally it is also clear now, that the first condition, mentioned at the beginning, corresponds to the
absence of dispersion or at least its smallness over the wavelength range of interest, since changes within
the spectrum and accordingly, in the time domain, within the pulse form are provoked by it. In the
following the dispersion shall in be stated for the situation at hand.

2.1.5 Higher order dispersion in resonator

In order to investigate the higher order dispersion inside the resonator, we can in a first step look at the
remainder of the phase function (2.65) after phase compensation by the externally accessible parameters,
i.e. after fitting with the straight line in eq. (2.62) having ωn and ωCEO as the optimisation parameters.
Thereby the residual phase ∆φ(ω, ω′), as defined by eq. (2.65), is calculated and the results are shown
in fig. 2.14 for the situation with the BBO crystal inside the resonator and in fig. 2.15 for its absence.
If the compensation parameters are chosen such, that all linear parameters in eq. (2.65) cancel each
other, i.e. Φ0

τ+Lcav/c = ωCEO and 2πñ
τ+Lcav/c = n · ωn, the contributions to ∆φ(ω, ω′) are solely due to the

33While for ψ(ω′) is predominantly ∼ ω′2, there is a second option of a tangential fit with coincidence in one point for a
mainly parabolic dispersion φ(ω′).

34These are: figs. 2.7-2.9, 2.11, 2.12, 2.14, 2.67, 2.20, 2.21, 2.22-2.25
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dispersion ψ(ω′ñ). Anticipating this situation for the following analysis, the curves in figs. 2.14 and 2.15
can be understood by writing out the further Taylor expansion terms, contained in ψ(ω′) (see also eq.
(2.60))

∆φ(ω′ñ) = ψ(ω′ñ) =
(

d2φ(ω′)
dω′2

|ñ
)
· (ω′ñ)2 +

(
d3φ(ω′)

dω′3
|ñ

)
· (ω′ñ)3 + ... = GVD · (ω′ñ)2 + TOD · (ω′ñ)3 + ...,

(2.66)
whereby the second derivative of the phase with respect to the intra-cavity light’s frequency has been
named group velocity dispersion35, GVD, and respectively the next higher derivative third order disper-
sion, TOD.
The former effect causes the individual frequency components within the laser pulses to propagate with
different velocities. For normal dispersive media, i.e. GVD > 0, bluer light with modes of shorter wave-
lengths travels slower than its red counterpart made up of larger wavelengths. All naturally occurring
materials behave like that and abnormal dispersion (GVD < 0) is commonly achieved by either incorpo-
rating prism pairs ([111]), or alternatively including chirped mirrors into the set-up ([74]). Accordingly
all optical components within our apparatus have GVD > 0, causing their individual contributions to
accumulate during round-tripping. The varying propagation speeds influence the overall pulse shape by
firstly elongating it in its time duration and secondly by introducing a chirp on the carrier frequency.
That is to say, the oscillation period of the pulse’s electric field becomes longer towards the leading edge
and shorter towards the trailing edge of the pulse.
The latter of the two relevant terms in eq. (2.66) is even more lethal to the maintenance of the pulse
shape. It causes a previously well defined single pulse to split up into one mother pulse of greater inten-
sity and some daughter pulses successively decreasing in their electric field amplitude. The positioning
of these additional pulses in front of or beyond the mother pulse depends on the sign of the third order
dispersion. Very nice and intriguing graphical explanations about both contributions can also be found
in reference ([111]) and shall therefore not be repeated here.
From the residual phase behaviour, as it is represented in fig. 2.14, the dominance of group velocity
dispersion is clearly visible, since both graphs show parabolic shapes and must thus be mainly deter-
mined by distortions of second order proportional to ω′2. These results are quite pleasant in terms of
the measurements to be done in this thesis. As we will frequently rely on a full-width-half-maximum
(FWHM) definition of the pulse duration, particularly in the course of chapter 5, it is important to know,
that such a convention makes sense for the description of the actually apparent pulses36. Also for the
SPDC process and its emission structure it is important to a single, undistorted pump pulse: Multiple
copies of lower energy would in this respect not only decrease the conversion efficiency, but also cause
an emission split-up into bunches of photon pairs according to the split-up pulse shape. Due to the
requirement of temporal photon pair indistinguishibility, a subsequent creation-time window-filtering of
the emitted SPDC photons is pursued, outlined in subsec. 6.2.2. The bunched emission characteristics,
obtained by TOD influences, would in turn substantially exceed the aforementioned time window, which
would impart an additional suppression of the desired high photon state production rates37.
We can finally evaluate the GVD directly, by considering its definition ([51])

GVD =
d2φ(ω′)

dω′2
=

d2

dω′2
k(ω′)Lcav =

d2

dω′2
n(ω′)ω′

c
Lcav =

2dn(ω′)
dω′ + ω′ d

2n(ω′)
dω′2

c
(2.67)

in combination with the intra-cavity phase function, stated in eqs. (2.48) and (2.49). The resulting values
are shown graphically in fig. 2.15 a) for a cavity with BBO and in fig. 2.15 b) without the crystal.
We acknowledge the group velocity dispersion for the former scenario to be situated between 376.8 fs2 ≤
GVDBBO ≤ 378.4 fs2 and for the latter to amount to 190.2 fs2 ≤ GVDnoBBO ≤ 190.94 fs2. It thus
comprises some very slight wavelength dependence, however the more important fact concerns the differ-
ence between both arrangements: With respect to dispersion, the effects of the air filling of the resonator
are non-negligible and contribute to the entire second order dispersion by as much as the 1 mm thick
BBO crystal. So even for applications only incorporating the cavity as a high repetition rate resonator,
dispersion compensation will potentially become an issue38.

35Sometimes also referred to as group delay dispersion, GDD.
36The reader should realise that ambiguities appear for the presence of TOD, due to the splitting of the pulse into several

copies, which all have their own FWHM pulse duration.
37See subsec. 6.3.2.
38It shall further be noted, that these values exceed by far the contributions expected from the cavity mirrors, which

should be GVDmirrors ≤ 20 fs2 according to the manufacturer’s specifications. Neglecting them in the course of the
previous discussion is therefore justified.
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Figure 2.15: Group velocity dispersion GVD as calculated by eq. (2.67). Fig. a) shows the cavity with
the BBO and fig. b) without it.

Thinking about best pumping conditions and least pulse distortion possible, GVD numbers as high as our
GVDBBO ≈ 377.6 fs2 could be compensated for by substituting one of the cavity mirrors for a chirped
version ([74]). However in order to keep things as simple as possible, the first step to operate the system
has been pursued without introducing negative dispersion. Since the obtained outcomes for all relevant
cavity parameters, which are discussed in detail throughout the remainder of this dissertation, have satis-
fied our requirements, any attempts regarding cancellation of GVD have not been undertaken yet. Before
we will go through the aforementioned characteristics of the enhancement device, we will beforehand also
consider cavities of shorter lengths associated with higher repetition rates.

2.2 Cavity of doubled repetition rate

2.2.1 Cavity mirror radii of curvature

The steps towards a cavity of L′cav = 1.829 m length is absolutely analogous to the previous discussion
of the frep = 80.79 MHz system. Starting ground is thus once again the calculation of the appropriate
mirror curvatures and the associated optical beam characterisation as well as the stability analysis. Since
all the required theoretical background together with the implemented methology for concluding onto
these quantities has already been thoroughly explained in the course of subsec. 2.2.1, they shall not be
repeated here and the following text will be restricted to merely stating the results of the calculations
and discussing those.
Opposite to the full length cavity considerations, several initial mirror curvatures will be considered. This
is because fulfilling the restrictions on the beam waist of w0

!= 100 µm, imparted by the SPDC process,
cannot be completely achieved for the half length version, at least not if the symmetric bow-tie type design
is to be kept up. We have decided to stick to the arrangement and rather live with a slightly deviating
waist. Beginning the computation with the background knowledge from subsec. 2.2.1, a sensible choice
for the radii of curvature of mirrors M1 and M2 appears to be RM1 = RM2 = 0.4 m, for which the
excess parameter range, showing cavity stability, is calculated applying eq. (2.14). Suitable values for a
are situated within the interval

0 m < a < 0.190831 m

The functional dependence of the beam waist w0(a) at the focus in sector 1 on the excess parameter is
evaluated as well, resulting in a curve depicted in fig. 2.16 by the yellow line. Therefrom we can infer
already the insufficiency of the assumed mirror radii in terms of achieving an appropriate beam waist
value. The maximal number for w0, with least susceptibility to changes in a, is realised at a = 0.094 m
causing the length of sector 1 to be dM1,M2 = 49.4 cm and leaving for sector 2 dM2,M1 = 1.335 m long.
A minimum beam waist w0 with a number as low as w0 = 72, 69 µm is retained in this situation. Since
this is approximately 25% less than the required magnitude, greater readii for RM1 and RM2 will have
to be implemented. Prior to that, the beam waist w(z) and the wavefront radii of curvature R(z) are
computed over the entire length of the cavity for later comparison. The computation follows exactely
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Figure 2.16: Minimal beam waist w0(a) as a function of the excess parameter for a stable cavity situation.
The yellow curve represents the situation for mirror curvatures RM1 = RM2 = 0.4 m, the blue curve the
one for RM1 = RM2 = 0.42 m, the red curve the one for RM1 = RM2 = 0.44 m and the grey curve the one
for RM1 = RM2 = 0.456 m, which is the largest radius possible to still yield a stable symmetric cavity.

the eqs. (2.26) and (2.27) by substituting the respective distances. Results are indicated by the yellow
curves in fig. 2.16 with the beam waist w(z) on the left hand side and the wavefront radius of curvature
R(z) on the right hand side. In terms of their behaviour, the analog of what has been said in context
of the Lcav = 3.71 m investigations applies here as well. These two quantities are also stated explicitely
in the table below for the four most prominent locations in the resonator39, which are the positions of
mirrors M1, M2 and the minimal beam waists w0, w1:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 428 µm −25 cm
zM2 428 µm 25 cm
z0 73 µm ∞
z1 299 µm ∞

In order to figure out possible mirror radii, the previous assumption about RM1, RM2 is now successively
increased and all relevant parameters are read out for each new mirror curvature setting. A suitable
increment to use here is ∆RM1,M2 = 2 cm, which is large enough to still be manufactured properly
during mirror production. In the following the results are stated in a summary version, since they do not
show remarkable new insights. However it turns out, that the maximal possible mirror radius is limited
by40 RM1 = 0.456 m for a symmetric resonator design and all radii beyond result in an unstable system.

1. For the situation with mirror radii of curvature RM1 = RM2 = 0.42 m we obtain:

• Excess parameter range: 0 m < a < 0.233 m with a maximum at a = 0.114 m.
• Minimum beam waist dependence w0(a) in this interval as displayed by the blue curve in fig.

2.16.
• Length for sector 1 of dM1,M2 = 0.534 m and for sector 2 of dM2,M1 = 1.295 m.
• Beam waists w(z) and wavefront radii R(z) within the resonator (0 m < z < L′cav) as indicated

by the blue lines in fig. 2.17.
• Numerical values at the locations of mirrors M1, M2 and beam waists w0, w1 (i.e. z0, z1):

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 428 µm −27.6 cm
zM2 428 µm 27.6 cm
z0 79 µm ∞
z1 218 µm ∞

39Please note: Positions for mirrors M3 and M4 have not been included as they can be set arbitrarily within sector 2.
40The precision of this value is higher than what can actually be guaranteed by the supplier, nevertheless it has been

evaluated in order to get a more thorough feeling for the boundary.
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Figure 2.17: a): Beam waist w(z) as a function of the position 0 < z < L′cav within the resonator. b):
Wavefront curvature R(z) of the optical beam inside the cavity over the same range 0 m < z < L′cav.
Yellow curves represent the situation for mirror curvatures RM1 = RM2 = 0.4 m, blue curves the ones
for RM1 = RM2 = 0.42 m, red curves the ones for RM1 = RM2 = 0.44 m and gray curves the ones for
RM1 = RM2 = 0.456 m, which is the largest radius possible to still yield a stable symmetric cavity.

• Consequently still too small a minimal beam waist within sector 1 of w0 = 79 µm.

2. For the situation with mirror radii of curvature RM1 = RM2 = 0.44 m we obtain:

• Excess parameter range: 0 m < a < 0.297 m with a maximum at a = 0.141 m.

• Minimum beam waist dependence w0(a) in this interval as displayed by the red curve in fig.
2.16.

• Length for sector 1 of dM1,M2 = 0.581 m and for sector 2 of dM2,M1 = 1.249 m.

• Beam waists w(z) and wavefront radii R(z) within the resonator (0 m < z < L′cav) as indicated
by the red lines in fig. 2.17.

• Numerical values at the locations of mirrors M1, M2 and beam waists w0, w1 (i.e. z0, z1):

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 430 µm −30.2 cm
zM2 430 µm 30.2 cm
z0 86 µm ∞
z1 205 µm ∞

• Consequently a minimal beam waist within sector 1 of w0 = 86 µm, which comes closer to the
desired value.

3. For the situation with mirror radii of curvature RM1 = RM2 = 0.456 m we obtain:

• Excess parameter range: 0 m < a < 0.4096 m with a maximum at a = 0.171 m.

• Minimum beam waist dependence w0(a) in this interval as displayed by the black curve in fig.
2.16.

• Length for sector 1 of dM1,M2 = 0.627 m and for sector 2 of dM2,M1 = 1.202 m.

• Beam waists w(z) and wavefront radii R(z) within the resonator (0 m < z < L′cav) as indicated
by the black lines in fig. 2.17.

• Numerical values at the locations of mirrors M1, M2 and beam waists w0, w1 (i.e. z0, z1):

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 434 µm −32.8 cm
zM2 434 µm 32.8 cm
z0 92 µm ∞
z1 191 µm ∞
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Figure 2.18: Minimum beam waist changes by variation of the mirror curvatures RM1 and RM2. The
red boxes and line account for the minimal beam waist w0 in sector 1 while the blue triangles and line
stand for w1 in sector 2. Both symbol types represent calculated values and the dashed lines are just
interpolated straight lines between the data points.

The maximum possible waist for the symmetric ring cavity system is hence given by wmax
0 = 92 µm,

which is rather close to the desired wpump
0 = 100 µm. Since the latter represents just a guideline number,

based on experience, the obtained value can be regarded to closely enough fulfill the needs imparted by
down-conversion pumping. So our cavity design is scalable up to the doubled repetition rate in terms
of its stability. To better allow for spotting the changes of both minimal beam waists w0 and w1, they
have been plotted as a function of the mirror radii in fig. 2.18. The beam waist w1 in sector 2 decreases
while its counterpart w0 in sector 1 increases, the gradients of both quantities are different though and
comprise a sightly non-linear dependence on the mirror radius.
Interestingly, from fig. 2.16 it can be seen that the dependence of the minimal beam waist w0(a) on the
excess parameter a looses its symmetry around its maximum for mirror radii close to the edge of stable
cavity arrangements (represented by RM1 = RM2 = 0.456 m). These curves show steeper gradients in
beam diameter changes towards the side of a confocal system, i.e. a < amax with dw0(a)

da |a=amax= 0.
Observing furthermore the behaviour of the wavefront radii of curvature and the beam waists, as shown
in fig. 2.17, together with the lengths dM1,M2 for all four calculated situations, the connection expected
for a two mirror cavity can be revealed for the symmetric ring case as well: That is to say, the larger the
radius of curvature, the longer the focal length of each mirror (f = R

2 ) and the greater the wavefront radii.
If the focal length of the mirrors increases, the divergence angle of the beam decreases and consequently
the minimal spot size at the focus becomes greater. Also, in order to obtain a mirror distance between
M1 and M2, exceeding the confocal case, dM1,M2 = R, dM1,M2 has to increase if RM1 is incremented.
Additionally the excess parameter a also rises in its value, which corresponds to a growing deviation from
the confocal arrangement and should translate into an enhanced positioning of the respective resonator
arrangement in the stability diagram.
Thus an assessment of the stabilities41 of each individual resonator design is undertaken using the above
stated values and eq. (2.29). The results are presented in fig. 2.5 with each mirror curvature drawn
in the already familiar colour coding (RM1 = RM2 = 0.4 m in yellow, RM1 = RM2 = 0.42 m in blue,
RM1 = RM2 = 0.44 m in red and RM1 = RM2 = 0.456 m in grey). Indeed we can infer growing mirror
curvatures and mirror separations dM1,M2 to result in a system’s location moving away from the boundary
line g1 = 0, gaining more stability space around it. The symmetric situations RM1 = RM2 = 0.44 m,
RM1 = RM2 = 0.456 m, sensible for SPDC pumping, are also more centred in their location than
our actual device of full length (Lcav = 3.71 m), thus promising even greater stability against negative
influences, such as misalignment and drifts. Furthermore it shall be pointed out, that the positions of
the calculated points are located on a hyperbola parallel to the boundary line g2 = 1

g1
. This behaviour

opposes the expectation gained from symmetric two-mirror resonators, which are found on the diagonal
through quadrants 4 and 1 (see fig. 2.5, intersection line of the green points). However for the computed
points the optimum excess distance with zero gradient in waist deviation has always been chosen, hence
altering the length of sector 1. In other words, both the radii of curvature Ri in g1 = 1 − dM1,M2

RM1
and

g2 = 1 − dM2,M1
RM2

as well as the distances dj are modified simultaneously. If only the mirror curvatures
in both quantities are changed, while still preserving a symmetric condition and keeping the distances

41which is again justified solely by talking about a symmetric situation
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dM1,M2, dM2,M1 fixed, point movement along a straight line of gradient dg2
dg1

> 0 is obtained. Similarly if
only the distances dM1,M2, dM2,M1 are altered with the Ri fixed, motion along a straight line of gradient
dg2
dg1

< 0 results. For starting values given by the RM1 = RM2 = 0.4 situation, both of these cases have
been included into fig. 2.5, whereby the former is indicated by a grey line and the latter by a yellow one.

Higher repetition rate systems In the course of these cavity mirror investigations, even higher
repetition rates have been given a thought. Explicit calculations have been done for a three times higher
repetition rate of frep = 246 MHz, resulting in a cavity length of L′cav = 1.22 m, and a fourfold one of
frep = 328 MHz , leaving us with a length of L′cav = 0.915 m. Both cases have only been considered
under the assumption of a symmetric cavity and the detailed calculation results can be found in the
appendix (see section A.2). They provide mirror radii of curvature with corresponding maximal beam
waists w0 and minimal beam waists w1 of:

Radii of curvature RM1, RM2 Max. waist w0 Min. waist w1

L′cav = 1.22 m 0.305 m 75 µm 155 µm
L′cav = 0.915 m 0.229 m 65 µm 134 µm

Obviously the waists w0 are lower than wSPDC
0 = 100 µm and their counterparts w1 are larger than that

number. To utilise such higher repetition rates one option could consequently be to drop the symmetry
in radii of curvature between M1 and M2 and introduce a certain ratio between both, RM1 = x · RM2.
Of course in assessing these systems, the stability diagram is not applicable as the approximation in eq.
(2.30) does not hold anymore. However it turns out, that high repetition rate enhancement resonators
inherently carry a major drawback in terms of the available count rates from the SPDC process, preventing
an actual implementation for our purposes42. The arguments leading towards this conclusion will now
be discussed in the context of the intra-cavity pulse structure and the power enhancement.

2.2.2 Power enhancement, implication on available pumping powers and ex-
pected count rates

The main reason behind the considerations regarding a resonator of higher repetition rate for our exper-
iment has been biased by the wish for less noise on top of the desired photonic quantum state43 ([43]).
Unfortunately, as one can inferred e.g. from reference ([75]) and as we will also see in chapter 5, just
scaling up the pumping power of the down-conversion process is not a sensible option to achieve this goal.
Instead it can indeed worsen the entire situation, due to the emission characteristics of SPDC, which lead
to a steeper increase in production rates for higher photon pair numbers with increasing electric field
strengths of the pump. So employing to high a pump power can cause the photon state, which shall
be produced by the SPDC source, to drown in noise stemming from the aforementioned higher orders.
While the relevant details enabling a more thorough understanding are laid out in chapter 5, for the
moment it is just important to note, that a photon source operating at twice the repetition rate was
thought to cure this problem simply by having a lower enhancement factor for the intra-cavity pulses at
higher repetition rates. The initial idea was to keep the count rates of the desired pair number up by
having a higher repetition rate of the SPDC process, but simultaneously suppress unwanted higher order
terms by their greater sensitivity to pumping power decrease. As we will see in course of chapter 6, the
noise contributions at the highest achievable pumping power levels are at the edge of what is bearable to
still retain sensible results. For this reason it would have been nice to maintain the high count rate levels
achieved, while having a tool to get rid of some noise. The following argumentation will now consider the
amplification properties of shorter cavities and evaluate its implications on expected count rates for an
arbitrary shortening fraction. Subsequently the analog theoretical expectations for power enhancement
and dispersion, as stated in subsec. 2.1.3 and 2.1.5, will be shown for the particular scenario of a resonator
L′cav = 1.829 m in length.

Frequency domain picture Probably the most simple way to think about any changes introduced into
the pulse structure and its related parameters by shortening the cavity can be obtained by investigation
of the frequency combs again. The separation of the cavity frequency comb modes (eq. (2.59)) has been
show in subsec. 2.1.2 to be set by ωrep = 2π

τ+Lcav/c . Evaluating the coupling condition for a cavity

42At least with our current laser system, as will be shown in subsec. 2.2.2.
43Please note that the following discussion incorporates scaling behaviour of the SPDC process on the pumping power as

well as some results for photon numbers achieved by our set-up. These are all to be provided in chapter 5. The reader not
familiar with down-conversion might thus want to visit the theoretical introduction in subsec. 6.1.2, before going through
the remainder of the present chapter.
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Figure 2.19: External and internal frequency combs for cavity of half lengths. For simplicity, dispersion
effects shifting the cavity resonances have been ignored in the drawing.

shortened by an arbitrary integer number n, therefore substituting Lcav by L′cav = Lcav/n and τ ′ = τ/n,
gives ω′rep = n 2π

τ+Lcav/c = n · ωrep. This means that the separation between resonances is magnified by a
factor n and only every nth external frequency mode can penetrate into the cavity, even if higher order
dispersion is completely absent. The situation is depicted in fig. 2.19 for n = 2 and we will assume
dispersion to be negligible for the estimation that is to follow.
The entire electric field inside the resonator of length Lcav, ELcav

tot (ω′), is established by the summation
over all frequency contributions Ei(ω′i), i.e.

ELcav
tot (ω′) =

N∑

i=0

Ei(ω′i) ≈ N · Ei(ω′i), (2.68)

whereby N is the number of all comb modes present in the pumping beam and the electric fields have
been anticipated to be vaguely equal for all44 i ∈ N . Since only N ′ = N

n external comb teeth can be
transmitted into the cavity, due to the matching conditions introduced in subsec. 2.1.4, the internal
electric field for the shorter resonator of length L′cav diminishes to

E
L′cav
tot (ω′) =

N ′∑

i=0

Ei(ω′i) ≈ N ′ · Ei(ω′i) =
1
n

ELcav
tot (ω′). (2.69)

Obeying furthermore the intensity and thus also the optical power to scale with E2
tot, we obtain

PE′L′cav =
1
n2

PELcav . (2.70)

It is also important to make oneself aware of the n times higher number of pumping beam penetrations
through the BBO crystal, caused by the n times higher circulation frequency of pulses inside the appa-
ratus. On time average, the SPDC process will therefore see the pumping light n times instead of only
once as for the length Lcav. Altogether this implies the down-conversion to be pumped by a power 1

n2

times lower, but the generated photon pair number to appear n times more often during an averaging
time interval. The main result from the detailed calculations, which is to follow, can thus already be
retrieved by aid of this very easy picture. Due to the non-linearity in photon pair generation rates with
respect to the pumping power, which approximately scale for a pair number l proportional to45 (PUV )l,
the expected number of ñl simultaneously emitted photon pairs, produced in one time bin, reduces by
(eq. (6.18))

ñl ∼ P l
UV =

(
PLcav

n2

)l

· n. (2.71)

So for a cavity of half length (n = 2) we obtain a six-photon count rate, originating from a three pair
emission (l = 3), reduced by a factor of 1

32 , which would clearly be far too low, if the count-rates available
with our set-up are observed (please see fig. 6.7 in chapter 6), detailed numbers are given later in table

44This is clearly an oversimplification, however it is sufficient for the estimation obtainable from frequency space. An
exact calculation is to follow in the time domain.

45The proportionality is only valid in the small pump power limit, which is still fulfilled here. See subsec. 6.1.2 and 6.3.2
or respectively ([161]) for details.
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2.1. To cut a long story short, such higher repetition rate resonators would for this very reason not
provide the advantages we have expected to gain initially, wherefore they have not been considered for
actual implementation either. Since upon now, the argument provided by eq. (2.71) is still just a crude
approximation, a proper derivation will be considered in the following, which allows to calculate the
expected spectrally resolved power enhancement as well.

Time domain consideration and power enhancement To exemplify the modifications happening
in the time domain, we will in a first step take up the reasoning applied in the derivation of the PE(λ)
(eq. (2.41)) in subsec. 2.1.2. Referring to fig. 2.1, the modifications for n round-trips of the stored
electric field between two pumping pulses are based on an analogous sum as in eq. (2.41) only that each
operation due to optical components, i.e. tloss, rM2, rIC , φ(ω), acts n-times on the transmitted field
tICE0. So the electric field inside the resonator can easily be written down as

E′
cav = tICE0 + tICE0 (tlossrM2rIC)n

e(i(ω
c nL′cav+nφ(ω)))

+tICE0

(
(tlossrM2rIC)n

e(i(ω
c nL′cav+nφ(ω)))

)2

+ ...

= tICE0

∞∑

i=0

(tlossrM2rIC)n
e(i(ω

c nL′cav+nφ(ω))) =
tICE0

1−G(ω)n
, (2.72)

whereby all quantities maintain their meanings from subsec. 2.1.2. G(ω) is accordingly the round-trip
gain for one single circulation inside the new resonator. If the power enhancement PE′(λ) is calculated
and furthermore an apparatus of low loss is assumed, which is justified by the previous considerations in
subsec. 2.1.2, allowing to expand ([76]) 1− (tlossrM2rIC)n ≈ n · (1− tlossrM2rIC), a scaling of

PE′Lcav (λ) =
TIC

(1− (tlossrM2rIC)n)2
≈ TIC

n2 · (1− tlossrM2rIC)2
=

1
n2
· PELcav (λ) (2.73)

is obtained, which yields the same result as eq. (2.71). However, the considerations eq. (2.72) are
based on only observe intra-cavity fields after n round-trips, when they coincide with the external pump
again. Though for the higher repetition rate scenarios discussed here, there are n− 1 intermediate pulse
enhancements apparent as well. That is to say, once the field is inside, it looses a fraction of its field
amplitude and gets distorted by dispersion during every round-trip. Therefore after the first round-trip,
the intra-cavity field looks different to the one after the second round-trip, which does itself appear
different to the one after the third circulation, etc. In terms of power enhancement for SPDC pumping,
there are hence in principle multiple different power enhancements apparent, namely exactly as many
as there are round-trips of the intra-cavity field between two successive pumping pulses. What we are
interested in here is the power and pulse shape seen by the BBO crystal, which determines the SPDC
photon yield. This power consequently changes after every round-trip, since the pulses on the one hand
experience losses and dispersion during every circulation, but on the other hand are only enhanced after
every n circulations. So there has to be another method devised, which offers the possibility to investigate
the changes on the pulses after every single time they have propagated around the resonator.
In order to keep things simple and easy to grasp, we will for the moment restrict n to 2 and allow for
shorter lengths later on again. A convenient way to start is to anticipate a pseudo-steady state situation:
We know already about the differences in pulse appearances, let us thus denote the field after one round-
trip by E′1 rt

cav and the one after the second round-trip by E′2 rt
cav . The latter has completed two circulations,

i.e. experienced the G(ω) twice and is superposed with the external pump, whereas the former represents
this field after yet another round-trip, with G(ω) having operated on it once more. Mathematically
spoken a coupled equation system is obtained ([77]):

E′1 rt
cav = G(ω) · E′2 rt

cav (2.74)

E′2 rt
cav = G(ω) · E′1 rt

cav + tICE0 (2.75)

Solving it for each electric field E′i rt
cav , with i ∈ {1, 2}, provides

E′1 rt
cav =

G(ω) · tICE0

1−G(ω)2
= G(ω) · E′2 rt

cav (2.76)

E′2 rt
cav =

tICE0

1−G(ω)2
, (2.77)
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which corresponds to two round-trips with the real steady state situation in eq. (2.72), but contains
an additional gain factor G(ω) in the numerator for pulses after a single circulation. In terms of power
enhancements

PE′1 rt(λ) =
G2(ω) · TIC

(1−G(ω)2)2
(2.78)

PE′2 rt(λ) =
TIC

(1−G(ω)2)2
, (2.79)

this difference suppresses the amplification of pulses, examined after one round-trip, with respect to those
after two. The last point is clear, since after propagating around the resonator once, the pulse has only
experienced losses but no additional amplification by the external source yet.
Generalisation of the results (2.76)-(2.79) is absolutely straight forwardly achieved by

E′1 rt
cav = G(ω) · E′2 rt

cav

E′2 rt
cav = G(ω) · E′1 rt

cav

...

E′n−1 rt
cav = G(ω) · E′n−2 rt

cav

E′n rt
cav = G(ω) · E′n−1 rt

cav + tICE0, (2.80)

leaving us with the expected n different expressions for the power enhancement, depending on the number
of round-trips j, according to

PE′j rt(λ) =
G2j(ω) · TIC

(1−G(ω)n)2
if j 6= n (2.81)

PE′j rt(λ) =
TIC

(1−G(ω)n)2
if j = n (2.82)

So we can infer the intra-cavity pulses to decrease in their intensity successively until they are re-amplified
by the next external pumping pulse46.
To investigate the scaling of the count rates, the already introduced simplification of a low loss cavity
with G(ω) ≈ 1 shall now be used again. From eq. (2.81) one can infer this assumption to overestimate
the SPDC pumping power and thus also the number producible photon-pairs. Furthermore it becomes
arbitrarily bad for going continuously to shorter cavity lengths, since lim

n→∞
G(ω)n → 0, even if G(ω) <

1∧G(ω) ≈ 1. Nevertheless it is still sufficient for n = 2, the example we are most interested in. Execution
reduces eq. (2.81) to eq. (2.82) and subsequent expansion of the latter’s denominator returns,

PE′j rt(λ) ≈ TIC

(1−G(ω)n)2
≈ TIC

n2 · (1−G(ω))2
=

1
n2

PELcav (λ), (2.83)

which once more reproduces the result in eq. (2.71) from the simple frequency comb estimations.
Considering the scaling behaviour of the down-conversion process as stated in subsec. 6.1.2, the de-
pendence of the production rate ñl of l simultaneously generated photon pairs on the pumping power
P cav

UV =
∫

PE(λ)P ext
UV dλ is described like ñl ∼ (P cav

UV )l, see eq. (2.71). Therewith one can compute the
expected count rates at maximum power enhancement with respect to the data observed for our cavity
of full length Lcav at an intra-cavity UV power of PLcav

UV ≈ 7.2 W , which shall be called ñl,Lcav . With
desired photon count rates47 and disturbing higher order emissions48, as they are extractable from fig.
6.7, for a frep = 80.79 MHz resonator

Observed number of photons Desired coincidences ( l
2 · H, l

2 · V) Higher order contributions
2 2.25 · 107 counts

min 2 · 107 counts
min

4 66000 counts
min 17000 counts

min

6 150 counts
min 62 counts

min

46The results so far shall be noted to be strict, i.e. no approximations have been made yet, besides the absence of loss in
the input coupler.

47These are coincidences comprising an equal number of horizontally (H) and vertically (V) polarised photons.
48Those represent coincidences with an unequal number of H and V polarised photons.
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the functional dependence of the interesting two-, four-, and six-photon events49 are for the shorter
cavities:

ñHV
1,L′cav

=
1
n
· ñHV

1,Lcav
ñHHV V

2,L′cav
=

1
n3
· ñHHV V

2,Lcav
ñHHHV V V

3,L′cav
=

1
n5
· ñHHHV V V

3,Lcav
(2.84)

Higher order noise behaves as:

ñnotHV
1,L′cav

=
1
n3
· ñnotHV

1,Lcav
ñnotHHV V

2,L′cav
=

1
n5
· ñnotHHV V

2,Lcav
ñnotHHHV V V

3,L′cav
=

1
n7
· ñnotHHHV V V

3,Lcav
(2.85)

Observed number of photons Desired coincidences ( l
2 · H, l

2 · V) Higher order contributions
2 1.125 · 107 counts

min 2.5 · 106 counts
min

4 8250 counts
min 531.25 counts

min

6 4.69 counts
min 0.48 counts

min

Table 2.1: Expected count rates for a shorter cavity of frep ≈ 160 MHz repetition rate, derived from the
measurement outcomes stated in fig. 6.7 for PUV = 7.2 W average pumping power.

For the resonator system of twice the repetition rate (n = 2), the actual count rates to be expected
are listed in table 2.1. Considering these, a shorter cavity clearly reduces the six-photon count rates by
an amount exceeding what is tolerable in order to end up with half way sensible measurement times.
To underpin that with numbers, the characterisation of the genuine six-qubit entangled50 Dicke |D3

6〉-
quantum state, see references ([43])-([47]) for further explanations, a measurement time of approximately
2 weeks has been necessary. The HHHVVV count rate level in this experiment has been 3.6 counts

min . For the
cavity of half length, we would expect only 0.11 counts

min and an approximate measurement time of 64 weeks,
i.e. more than 1 year would be required in order to collect an equal number of events. Such a measurement
duration is obviously completely illusionary, as even if one was determined enough to attempt this kind
of long term measurement, the experimental apparatus would neither be stable over these time scales
nor maintain its initial alignment. Hence for quantum state preparation, comprising six or more qubits,
shortening of the resonator is not a sensible means for noise reduction. In terms of four photon count
rates, the numbers in table 2.1 are still sufficiently high to allow for convenient measurement durations.
However they come into the region of rates, which are achievable by non-enhanced UV pumping beams,
i.e. just having frequency doubled ultra-short laser pulses directly impinging onto the non-linear medium
without intermediate amplification. Such an experiment is for instance described in reference ([50]).
Ultimately the higher repetition rate enhancement resonator does not provide advantages for our purposes
as long as the laser pulse repetition rate, pumping the cavity, is not scaled up as well. The only way to
achieve shorter measurement times while high maintaining count rate levels and sufficient quantum state
fidelity51 is hence to purchase a new laser system with e.g. high MHz to GHz duty cycle rates52.

2.2.3 Power enhancement and dispersion for a cavity of half length

Although the shorter cavity approach has just been proven not to enable the achievement of our initial
goals, for completeness the expected characteristic parameters for a system of half length (L′cav = 1.829 m)
shall nevertheless still be stated. The derivation of the individual quantities is absolutely analogous, up
to the substitution of L′cav for Lcav, to the statements already given in subsec. 2.1.2, 2.1.5 and the one
for the power enhancement in 2.2.2 with n = 2. Thus only results will be presented in the following and
the reader is pointed out the previous text where appropriate.

Losses In terms of losses the only alteration concerns the contributions imparted by the air inside the
resonator, as the BBO thickness is kept constant. With an absorption coefficient of ([68]) αair = 0.27 1

km
a transmission of T ′air = 99.95% is obtained, which is sensible since half the propagation distance within
the medium should result in half the losses due to this medium. With the transmittivity through the
BBO of T exp

BBO = 97.5% (eq. (2.33)) and a reflectance of the cavity mirrors RM1,M2,M4 = 99.94% (eq.
(2.31)), cw input coupler recommendations of

49i.e. one, two-and three photon-pair emissions
50see reference ([35]) for descriptions of the term genuine multi-qubit entangled.
51Please refer to reference ([35]) for a definition of fidelity.
52For instance available from: Msquared lasers, 1 Technology Terrace, Todd Campus, West of Scotland Science Park,

Maryhill Road, Glasgow, G20 0XA, United Kingdom
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Figure 2.20: Power enhancement curves for the first possible pulse shape inside the shortened cavity,
appearing between two successive pumping pulses when the intra-cavity pulse has completed an additional
round-trip and considering different input coupler transmittances TIC . Fig. a) shows the scenario with
BBO. The colour coding is: Red ⇔ TIC = 1.5%, green ⇔ TIC = 2 %, black ⇔ TIC = 2.71% (best
choice), blue ⇔ TIC = 3 %, yellow ⇔ TIC = 3.5%. Fig. b) represents an empty resonator, with a
colour coding of: Red ⇔ TIC = 0.05%, green ⇔ TIC = 0.1%, black ⇔ TIC = 0.15% (best choice), blue
⇔ TIC = 0.2%, yellow ⇔ TIC = 0.25%.

RIC, BBO, theo.
cav/2 = 97.39% (2.86)

RnoIC, BBO, theo.
cav/2 = 99.89% (2.87)

are obtained, calculated analogously to eqs. (2.38) and (2.39). These numbers are very similar to the
ones obtained previously, as the influence of air on the total intra-cavity loss is minor compared to the
non-linear crystal’s share.

Power enhancement In order to derive the spectrally resolved power enhancement PE(λ), both
possible intra-cavity pulse shapes have to be considered separately. Inserting the new cavity length
L′cav into the function for the phase φ(ω), eq. (2.48), and subsequent utilisation of eq. (2.78) allows
to determine the power enhancement after one round-trip with the BBO crystal inside the resonator.
Similarly applying the phase function from eq. (2.49) together with eq. (2.78) gives the situation without
crystal. Exemplary curves for both arrangements are shown in fig. 2.20 for the former in plot a) and the
latter in plot b).
Equally, the power enhancement for the appearing pulse shape after two round-trips can be yielded from
PE′2 rt(λ) in eq. (2.79) and the respective spectrally resolved power enhancements, for the apparatus
with and without the BBO crystal, based on some different input coupler transmittances are drawn in
fig. 2.21.
One can infer from figs. 2.20 and 2.21 in comparison with figs. 2.8 and 2.9 for the 80.79 MHz resonator
an approximate constancy in the power enhancement achieved for the BBO presence, whereas for its
absence the magnification factors PE(λ) roughly doubles. This is not surprising, since the achievable
maximal enhancement at a particular wavelength is just determined by the losses inside the cavity. While
these are dominated by the BBO and thus do not considerably change in the first case, they half in the
second case, so the power enhancement for individual wavelengths can roughly double.
In order to evaluate the overall power enhancement achieved, as well as the optimal choice for an input
coupler, we will proceed in the same way as described in subsec. 2.1.3. For an external spectrum,
the dataset shown in fig. 2.10 will be applied again. The intra-cavity spectrum will accordingly be
computed by multiplying the appropriately normlised external UV spectrum with the spectrally resolved
power enhancement. Subsequently the overall amplification P̄E can be received from integration over
the expected internal pulse spectrum. Internal pulse spectra have been evaluated by incorporating the
power enhancements shown in figs. 2.20 and 2.21, whose curves are shown in fig. 2.22 a)-2.25 a) for both
possible pulse shapes and both experimental arrangements, respectively.
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Figure 2.21: Power enhancement curves for the second possible pulse shape inside the shortened cavity,
appearing after completion of two round-trips. Fig. a) shows the scenario with BBO by a colour coding of:
Red ⇔ TIC = 1.5%, green ⇔ TIC = 2 %, black ⇔ TIC = 2.82% (best choice), blue ⇔ TIC = 3 %, yellow
⇔ TIC = 3.5 %. Fig. b) represents an empty resonator, with a colour coding of: Red ⇔ TIC = 0.05%,
green ⇔ TIC = 0.1%, black ⇔ TIC = 0.15 % (best choice), blue ⇔ TIC = 0.2 %, yellow ⇔ TIC = 0.25%.
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Figure 2.22: Internal pulse spectrum and integrated power enhancement for intra-cavity pulses between
two external pumping pulses (described by eq. (2.78)) for a resonator with a BBO crystal. Fig. a) shows
the expected internal pulse spectra, with a colour coding of: Red ⇔ TIC = 1.5%, green ⇔ TIC = 2 %,
black ⇔ TIC = 2.92% (best choice), blue ⇔ TIC = 3%, yellow ⇔ TIC = 3.5%. Fig. b) states the overall
power enhancement as a function of input coupler transmittance. The best amplification of a factor 8.7
is achieved for T 1 rt, BBO

IC = 2.92%.
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Figure 2.23: Internal pulse spectrum and integrated power enhancement for intra-cavity pulses between
two external pumping pulses (described by eq. (2.78)) for a resonator without a BBO crystal. Fig.
a) shows the expected internal pulse spectra, with a colour coding of: Red ⇔ TIC = 0.15%, green
⇔ TIC = 0.2%, black ⇔ TIC = 0.26 % (best choice), blue ⇔ TIC = 0.3%, yellow ⇔ TIC = 0.35%.
Fig. b) states the overall power enhancement as a function of input coupler transmittance. The best
amplification of a factor 85 is achieved for T 1 rt, noBBO

IC = 0.26%.
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Figure 2.24: Internal pulse spectrum and integrated power enhancement for intra-cavity pulses coinciding
with the external pumping pulses (described by eq. (2.79)) for a resonator with a BBO crystal. Fig.
a) shows the expected internal pulse spectra, with a colour coding of: Red ⇔ TIC = 1.5%, green
⇔ TIC = 2 %, black ⇔ TIC = 2.92% (best choice), blue ⇔ TIC = 3%, yellow ⇔ TIC = 3.5%. Fig. b)
states the overall power enhancement as a function of input coupler transmittance. The best amplification
of a factor 9.2 is achieved for T 2 rt, BBO

IC = 2.92 %.
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Figure 2.25: Internal pulse spectrum and integrated power enhancement for intra-cavity pulses coinciding
with the external pumping pulses (described by (eq. 2.79)) for a resonator without a BBO crystal. Fig.
a) shows the expected internal pulse spectra, with a colour coding of: Red ⇔ TIC = 0.15%, green
⇔ TIC = 0.2%, black ⇔ TIC = 0.26 % (best choice), blue ⇔ TIC = 0.3%, yellow ⇔ TIC = 0.35%.
Fig. b) states the overall power enhancement as a function of input coupler transmittance. The best
amplification of a factor 85 is achieved for T 2 rt, noBBO

IC = 0.26%.

Optimisation of the input coupler transmittivity is once more implemented by repeating the aforemen-
tioned procedure for continuously changing the TIC values and searching for the maximally achievable
overall power enhancement. The dependences of P̄E on TIC for all four occurring situations are plotted
in fig. 2.22 b)-2.25 b). Optimal input coupler reflectivities and the associated expected maximal over-
all power enhancements are listed in table 2.2 below, whereby the number of round-trips after the last
amplification by the external source is referred to as i, with i ∈ {1, 2}:

i BBO crystal inserted: RIC Maximal P̄E
1 yes 97.18 % 8.7
2 yes 97.08 % 9.2
1 no 99.74 % 85
2 no 99.74 % 85

Table 2.2: Theoretical prediction of input coupler reflectance for highest integrated power enhancement.

The amplifications in both experimental arrangements is slightly lower for the pulses after one round-
trip, since they have not yet been amplified by the external pump again and are thus subject to higher
losses as explained in subsec. 2.2.2. The same reasoning also applies to the required input coupler
reflectances for the situation with BBO. In contrast the equality in RIC for both round-trip numbers
in an arrangement with no crystal can be explained by the low losses once again. With only air and
cavity mirrors (G(ω))2 = RnoBBO

IC = 0.9985 ≈ 1 (see eq. 2.87), wherefore the numerator in eq. (2.78)
(G(ω))2 TIC ≈ TIC resembles the one in eq. (2.79), leading to identical reflectances.



Chapter 3

Cavity operation

In the following chapter the experimental set-up shall be described. In order to do so, three main parts
are to be focussed on: The first concerns preparation of the pumping beam prior to its coupling into
the enhancement resonator. The second deals with the stabilisation mechanism of the cavity. Ultimately
also the linear optical set-up employed to observe an entangled multi-qubit state from the output of the
intra-cavity spontaneous parametric down-conversion (SPDC) process is going to be introduced.

3.1 Pumping-beam preparation

3.1.1 Laser system and frequency conversion

We will step into the discussion by considering our initial laser light source, which is a commercially avail-
able titanium sapphire (Ti:Sa) laser system1 pumped in the green by a 10 W solid state laser2. Utilising
this device, mode-locked ultra-short laser pulses with an average output power of 2 W , centred around
λTi:Sa = 780nm at a repetition rate of frep ≈ 80 MHz are obtained. An autocorrelation measurement
of these indicates a pulse duration of τTi:Sa = 130 fs, assuming Sech-shaped pulses (see chapter 5 for
details on this). Observation of the Ti:Sa output with a spectrometer resulted in a spectral bandwidth
of ∆λTi:Sa ≈ 5.5 nm, so a time-bandwidth product of ∆νTi:Sa · τTi:Sa = 0.379 is received (for more details
on this quantity, see subsec. 5.2.2). The IR output pulses can be modified in terms of their central wave-
length and the amount of negative GVD, they experience inside the laser cavity, by propagation through
four prisms. Both degrees of freedom are externally accessible and are used for preserving the input
coupling condition into the resonator as outlined later in subsec. 3.2.2. Here it shall just be mentioned,
that in order to keep the central wavelength of the Ti:Sa spectrum constant, a small fraction of its output
is split-off and continuously monitored by a spectrometer3. A computer controlled motor connected to
the central-wavelength-adjust screw of the laser, processes these recorded spectra and takes care of the
cancellation of small wavelength drifts by appropriately moving the motor. The rate of this stabilisation
procedure is approximately on the order of 1 Hz.
In order to enter the necessary wavelength range required for the SPDC process, a frequency conver-
sion of the IR pulses has to be undertaken. Therefore, a non-linear lithium triborate (LBO) crystal4

is inserted for sum-frequency generation of the aforementioned pulses5. An in depth discussion of the
underlying physical mechanisms is skipped here, as it is not important and can be found in the literature,
e.g. reference ([79]). What is important for this work is the outcome of the frequency doubling process,
which leave us with a pumping pulse centred at a wavelength in the UV of λp,0 = 390 nm with an average
power of P̄UV = 0.54 W . Its spectral width is on the order of ∆λp = 1.1 nm and its pulse duration is
about τp = 150 fs; the origin of both values will be discussed in detail in chapter 5. The up-conversion
set-up is depicted schematically in fig. 3.1 and its real world implementation can be seen in fig. 3.2. In
order to get rid of the remaining IR light not converted in the LBO crystal, the resulting output beam is
subject to multiple reflections off mirrors, which are highly reflective in the UV but transmittive in the
IR.

1Model: Spectra Physics Tsunami
2Model: Spectra Physics Millennia
3Model: Ocean Optics HR 4000
4See ([72]) and ([78]) for material properties.
5It should be noted, that although such a process is commonly referred to as second-harmonic generation (SHG), in

reality comb modes of different frequencies within the pumping pulse can mix with one another as well, causing cross terms.

43
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Figure 3.1: Schematic drawing of the enhancement cavity set-up. The output of a mode-locked laser
source in the IR is frequency doubled by an LBO crystal into the UV and subsequently coupled into
the resonator after propagation through some lenses to match the transverse cavity mode. Stabilisation
of the resonator length is achieved by polarisation locking according to the Hänsch-Coulliaud method,
utilising two mirrors mounted onto piezo electric transducers. The field inside the resonator is monitored
by a spectrometer and a photodiode, which observe the leakage through one of the cavity mirrors. SPDC
photons, generated within the non-linear BBO crystal inside the resonator, are coupled out through
another mirror, rotated in their polarisation with a half-wave plate and subsequently impinging onto
another BBO crystal of half length, cancelling temporal and spatial walk-off effects between both photons
in the created pair, imparted by the first BBO (see subsec. 6.2.2). Thereafter the SPDC photons are
coupled into an AR-coated single mode (SM) optical fibre, guiding them to the linear optical set-up
explained in more detail in section 3.3.

3.1.2 Transverse mode matching of pump and cavity

In order to achieve good input coupling into the resonator, not only the frequency comb modes of the
external pulses have to match the cavity’s longitudinal modes, but also the transverse spatial modes of
both have to coincide. There is a two-fold requirement on the external pumping beam in that respect:
On the one hand, the transverse Gaussian mode has to fit the Laguerre-Gaussian mode profile of the
intra-cavity beam (eq. (2.6)), which is intended to be TEM0,0. On the other hand, also the transverse
location of the pump has to be such that is fits to the one of the cavity mode, whose positioning is solely
determined by the tilting angles of the four cavity mirrors.
Achievement of the former condition is obtained by shaping the frequency-doubled output pulse of the
LBO crystal by cylindrical lenses, as depicted in fig. 3.2. These minimise the astigmatism resulting from
the frequency doubling of the Ti:Sa pulses. To achieve furthermore equal Gaussian mode sizes at the
position of minimal beam waist inside the cavity, a telescope is applied in front of the input coupling
mirror (schematically incorporated in fig. 3.1). Thereby we are able to achieve a reasonable high input-
coupling ratio of approximately 50 % of the external beam. Although there is also some frequency
comb6 and polarisation7 mismatch included in this figure, the main contribution presumably results
nonetheless from insufficient mode quality of the external UV beam. Such a degradation is tolarable
for our experimental purposes8, however it should be improved, if the resonator is sought to yield the
maximal enhancement.
The latter of the initially stated requirements stems once from the occurrence of drifts in the positioning
and the angle of the pumping beam on the face of the cavity input coupler. The main contributor to those
are changes in the emission direction of the Ti:Sa output beam. This is due to the cavity mirrors within

6see chapter 5
7see subsec. 3.2.1 below
8see discussion about count rates and noise in chapter 6
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the laser system having to be occasionally realigned to achieve the maximum IR output of 2W , which
also requires resetting of the tilting angle orientation of the LBO crystal to achieve phase matching and
thus the highest available UV power. Such a manipulation changes the orientation of the mode within
the laser oscillator and also the positioning plus the angle of the laser output with respect to the optical
axis of the system. Keeping the last mentioned two parameters constant at the cavity input coupler, can
yet be achieved by a compensation scheme for such alterations, employing two reflecting mirrors with
automated angular adjust, as visible in fig. 3.2 and schematically included in fig. 3.1 as well. Both
mirrors are mounted on piezo-electric transducers (PTZ), which are capable of performing the required
angular displacement. They are driven by an error signal derived from two quadrant photodiods, onto
which some minor portion of the beam is incident in after having been reflected off both mirrors. The
error signal is set in such a way, that the mirrors always keep the position and the incidence angle of the
pump at the input coupler in resemblance with the analogue parameters of the intra-cavity beam.

3.2 Cavity stabilisation scheme

In the previous chapter, the requirements for external pumping pulse enhancement by the cavity have
been explained in terms of the frequency comb matching condition in subsec. 2.1.4. Fulfilment of this
condition requires adjustment of both frequency combs involved, whereby their parameters ωrep and
ωCEO have to be matched. In recalling again the expression for the cavity comb ω′n from eq. (2.61), we
can infer the distance of the intra-cavity frequency comb teeth9

ω′rep =
2π

τ + Lcav/c
,

comprising the group round trip time τ and the experimentally accessible parameter of the cavity length
Lcav. In contrast the offset frequency (eq. (2.61))

ω̃CEO =
Φ0

Lcav

c + τ
+

Ψ(ω′)
Lcav

c + τ

can only be changed together with, but cannot varied independently of ω′rep, as all other parameters
entering are fixed dispersion features of the resonator. In other words, we can pin the cavity comb by
keeping the FSR of the resonator constant, which simultaneously also sets ω̃CEO, since the dispersion
of the cavity is assumed to be steady. However we have no means of additionally altering ω̃CEO to our
liking, so the correct positioning of both combs with respect to one another is executed by manipulating
the external one. The following explanations will now focus firstly on a method to achieve stabilisation
and subsequently take care about the mechanisms to adjust the offset frequency of the external comb,
defined in eq. (2.58), in an appropriate way to satisfy the input coupling constraint.

3.2.1 Implementation of the Hänsch-Coulliaud locking scheme

In principle there are several ways to stabilise the length of an optical resonator, among which possibly
the most prominent examples10 are the Pound-Drever-Hall ([80], [81]) and the Hänsch-Coulliaud ([82],
[83]) locking scheme. The first one operates by imparting modulated side-bands onto the frequencies
within the signal, whereby the second is based on the polarisation of the light and shall be used for our
purposes.
Its basic implementation is very well explained in reference ([82]) and shall thus not be repeated here.
However the actual working principle of this technique is slightly more elaborate in our set-up, as we utilise
a birefringent crystal as polarisation selective intra-cavity element ([83]) and have an incoming beam
consisting of an entire frequency spectrum, in contrast to the single mode scenario considered in reference
([82]). The applied polarisation geometry is set as follows: The preferred polarisation direction of the
cavity is orientated along the vertical direction11, referred to as |V 〉. The incoming beam has some slight
diagonal component, i.e. Ep ∼ α|V 〉 + β|H〉 with α À β, whereby |H〉 assigns horizontal polarisation.
However only |V 〉-polarisation can couple into the resonator, due to the birefringence in the BBO crystal.
For the optimum phase matching angle of the collinear type-II SPDC, given by θ = 43.53◦, the refractive
indices for the extraordinary and ordinary polarised rays12 are next = 1.632 and nord = 1.695 respectively,

9The modifications of the denominator with regard to the expression for the free spectral range FSR = 2πc
Lcav

shall be

inferred to stem from the rewriting the intra-cavity mode structure into a frequency comb in eq. (2.61).
10Unless an additional stabilised frequency comb is considered.
11This is due to the phase-matching requirement of the SPDC process, which requires pumping light polarised along the

direction of the extraordinary refractive index in the BBO crystal, here vertical, as outlined in subsec. 6.1.1.
12See reference ([84]) or the discussion in subsec. 6.1.1 later on for an explanation of these terms
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Figure 3.2: Experimental implementation of the optics required for the pumping beam generation of the
cavity. One can infer from this photograph the autocorrelator, used to measure the output pulse duration
τTi:Sa, the spectrometer for observing the spectral width ∆λTi:Sa and its central wavelength λTi:Sa, as
well as the LBO crystal used for frequency doubling, followed by the transverse positioning and pointing
angle stabilisation scheme with its two PZT mounted mirrors and quadrant photodiodes.



3.2. CAVITY STABILISATION SCHEME 47

at a wavelength of λ = 390 nm. In the case of resonance at λ = 390 nm for the extraordinary light, which
in our case corresponds to |V 〉 polarisation, a wavelength of λord = 390.007 nm would be resonant for the
ordinary, |H〉-polarised part. This results in a frequency difference of ∆νbiref = 19GHz between both
resonance frequencies. Furthermore the widths of the cavity resonances are governed by the finesse of
the cavity, which we will infer in subsec. 4.3.2 to be F ≈ 72. The FWHM linewidth ∆ν of a resonance
is connected to this value and the FSR νFSR ≈ 80 MHz according to ([85])

F =
νFSR

∆ν
, (3.1)

which results in ∆ν ≈ 1.1 MHz bandwidth per resonance. Hence the two resonances for |V 〉 polarisation
at λ|V 〉 = 390 nm and for |H〉 polarisation at λ|H〉 = 390.007 nm are well separated. Also the laser
frequency comb modes of the mode-locked oscillator are much narrower than the ∆νbiref = 19 GHz,
preventing any overlap between the small component of the external |H〉 polarised light and the cavity
resonance at λ|H〉. So if we were just considering one comb mode at 390 nm, only the |V 〉 polarisation
would be resonant with the cavity, leading to reflection of the |H〉 component. However, even if considering
the presence of the entire external frequency comb with a mode separation of ωrep = 2π · 80 MHz, the
|H〉-polarised resonance of the cavity would be positioned at 19 GHz = 237.5 · ωrep towards the red of
the resonant |V 〉-polarised tooth, which lies exactly between two external comb teeth. Since the cavity’s
spectral acceptance bandwidth of 1.1 MHz for |H〉 polarisation is much narrower than the separation
between two external comb teeth, the |H〉-polarised light is off-resonant, when the cavity is stabilised
onto its |V 〉-polarised counterpart. The cavity length is actually set by a pair of PZTs, onto which the
cavity mirrors M1 and M3 in fig. 2.2 are mounted on (see 3.1). The first PZT operates at a maximal
bandwidth of 10 kHz with a travel range of 2.2 µm, taking care of rapidly occurring length fluctuations,
whereby the second one has a greater range of 12 µm, with a bandwidth of about 3 Hz and cancelling
long term drifts of the cavity length.
Regarding the generation of an error signal, one has to be aware of the multiple frequency nature of the
laser light impinging onto the beam splitter in the polarisation analysis part of the locking set-up (see
fig. 3.1). We know from subsec. 2.1.4 that cavity resonances get slightly displaced from their original
position by the influence of higher order dispersion. Therefore the optimal cavity comb repetition rate
ω′rep in eq. (2.61) for achieving best comb tooth overlap varies for different parts of the pulse spectrum.
If the entire spectrum was to impinge onto the beam splitter, the locking process could just pick a
certain part in the frequency spectrum and choose an appropriate cavity length to stabilise the input
coupling for this region. However after some time it could just hop on to utilise another part of the
spectrum and set Lcav to optimise for that. So an inherent element of instability would be introduced
by utilising the entire spectrum. Hence we select only a small fraction in the centre of the spectrum,
by reflecting the beam off a grating and choosing the relevant frequency interval by two razor blades,
working as a Fourier filter and dismissing unwanted components. The chosen fraction is subsequently
used for the error signal generation by polarisation analysis like it is described in reference ([82]). All
actually implemented components within the Hänsch-Coullioud lock apparatus can be seen in fig. 3.1.
For the selected frequency part, the best input coupling conditions can be obtained, since dispersion
compensation, according to the scheme introduced in subsec. 2.1.4, is optimal there. Experimentally this
spectral region can be inferred by comparison of the appropriately scaled internal cavity spectrum with
the normalised one of the external pump. Such an examination is conducted later in subsec. 4.2.4.

3.2.2 Maintenance of pump pulse coupling into the cavity

By fixation of the cavity length, the internal comb is set in all of its degrees of freedom according to
eq. (2.61). To fulfil the input coupling condition, outlined in subsec. 2.1.4, the external laser comb
has to be tweaked in its parameters ωrep and ωCEO to achieve best comb mode overlap. We achieve
this, by changing the dispersion, the pulses inside the laser oscillator experience, via the optical path
length of the light within the four prisms positioned in the laser cavity13. In this way, the frequency
comb tooth separation of the laser beam, ωrep, and also the carrier-envelope phase offset, ωCEO, are
changed simultaneously. However, as we have already mentioned, the central wavelength of the IR pulses
is fixed in its frequency positioning. Considering an idealised picture, in which this fixation operates
always the same comb tooth, a modification in both aforementioned quantities can thus only displace
comb modes along the frequency axis with respect to the central mode, symmetrically to either side of
it14. Thereby the separation between teeth and the offset frequency are changed in a controlled way,

13A more thorough explanation of their operational principle can be found in reference ([111]).
14In reality the central wavelength adjustment will pick different teeth at a time, due to its limited sensitivity. Therefore

the entire comb will also be displaced along the frequency axis, when modifying the prism position. However one can still
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Figure 3.3: Schematic, idealised representation of changes introduced on the external frequency comb
(blue) by changing the dispersion compensation inside the laser oscillation. Moving the prisms therein in
and out of the beam, while keeping the central wavelength of the comb constant, results in displacements
with respect to the initial comb modes (grey dashed lines). The new offset and separation between teeth
can bring the external comb (solid lines) into resonance with the longitudinal modes of the enhancement
resonator (solid black curves).

while keeping the envelope of the comb in place during the process, as it is also shown schematically
in fig. 3.3. Since the frequency comb structure is maintained throughout the sum frequency generation
process ([79]), the UV pumping pulses inherit any modifications carried out in the Ti:Sa output. For
a correct choice of the prism positioning, coupling into the resonator can be achieved for most parts of
the external spectrum, as will be experimentally examined further in subsec. 4.2.4. Once set, the input
coupling condition can be maintained over a time scale of hours up to days without considerable changes.
In the event of termination of the comb matching, an automated routine scans possible prism positions
in dependence of the obtained cavity level, while continuously keeping the central wavelength of the IR
laser constant. It subsequently chooses the position of the highest obtainable power inside the resonator
and can thereby almost always restore the coupling into the resonator. The downside of the method is,
that it does not apply a feedback loop and the exact restoration of the cavity level before termination of
the input-coupling cannot be guaranteed.

3.3 Linear optical set-up

In the last part of this chapter, focus shall be placed on the further processing of the photons generated in
the SPDC process. To do so, the experimental implementation of our linear optical set-up is introduced,
as it is commonly applied in photon based quantum entanglement experiments utilising the polarisation
degree of freedom.

Experimental implementation As shown in fig. 3.1, the infra-red SPDC photons are coupled out
of the resonator through mirror M2 and subsequently rotated by a λ/2 wave-plate in their polarisation,
swapping around |H〉 and |V 〉. Such a rotation is necessary for erasing the ”welcher Weg” information
imparted onto the two photons in a down-conversion pair by the birefringence of the BBO crystal. Thus
another BBO of half length is placed behind the wave-plate, reversing the formers influences on the photon
distinguishability. More information hereupon is provided later in subsec. 6.2.2. Yet the aforementioned

achieve frequency comb input coupling in the described manner. Yet the described simplification makes the fundamental
principle more intelligible.
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exchange of polarisations must be kept in mind, when comparing calculated SPDC spectra, generated
inside the resonator, with the ones measured after the SM fibre, conducted in subsec. 5.3.3 (i.e. |V 〉 inside
the resonator corresponds to |H〉 detected in the linear optical set-up). After transmission through the
BBO, the photons are coupled into an anti-reflection (AR) coated single mode (SM) optical fibre, whose
numerical aperture also defines the selected part of the spatial distribution of the down-conversion (see
[101] for details) and which simultaneously works as a transverse mode filter. Maintenance of the |H/V 〉-
polarisation coordinate system after propagation through the fibre with respect to the optical axes of the
BBO crystal is guaranteed by a polarisation controller, usually referred to as paddle polariser. Beyond
the fibre, the photons are incident into a linear optical set-up, whose layout is presented in fig. 3.4. First
of all, photons are spectrally filtered by an interference filter of ∆λ = 2.8 nm spectral width, centred
symmetrically around 780 nm. The spectral narrowing results in an extension of the photons’ coherence
lengths, thereby erasing temporal distinguishability between successively emitted SPDC photon pairs (see
subsec. 6.2.2). Subsequently, the photons are distributed into six spatial modes by the aid of five non-
polarising beam splitters (BS) particularly aligned for complete polarisation independences in reflectances
Ri and transmittances Ti, whose values are RBS1−BS4 = 0.42, TBS1−BS4 = 0.58 for the beam splitters
BS1 till BS4 and RBS5 = 0.48, TBS5 = 0.52 for the beam splitter BS5 in fig. 3.4, respectively. Such a
mode arrangement allows to identify the desired six-photon entangled state by simultaneous detection of
a single photon within each arm. At the front end of each spatial mode, a pair of birefringent yttrium-
vanadate (Y V O4) crystals is placed. These compensate for phase shifts imposed onto the photons by
the birefringence within the beam splitters BS1 − BS5. Exact compensation of such excess phases can
be achieved first by rotating the crystals around the optical axis in order to conserve the |H〉 and |V 〉
polarisation direction, followed by changing the angle of the Y V O4-crystals’ face plane with respect to
the optical axis to maintain the correct phase of any initial state, which is a superposition of |H〉 and
|V 〉 components. Finally a polarisation analysis unit is terminating each arm. Contained therein are a
λ/2 followed by a λ/4 wave-plate, behind which a polarising beam splitter (PBS) is mounted, splitting
the incoming light up into two output modes that are observed by a single photon avalanche photodiode
(SPAPD)15 with quantum efficiencies of:

PBS output Arm 1 Arm 2 Arm 3 Arm 4 Arm 5 Arm 6
|H〉 ηH

1 ≈ 52.3% ηH
2 ≈ 51% ηH

3 ≈ 41 % ηH
4 ≈ 51.2% ηH

5 ≈ 50.8% ηH
6 ≈ 45.6%

|V 〉 ηV
1 ≈ 52.5% ηV

2 ≈ 49.9% ηV
3 ≈ 44.8% ηV

4 ≈ 43.3% ηV
5 ≈ 54.7% ηV

6 ≈ 52.1%

These detectors are non photon number resolving, operating in the Geiger mode. With this scheme, it
is clear that besides the desired six-photon states, also emissions of even higher qubit numbers, referred
to as higher order noise, can contribute to the measured six-fold coincidence clicks. Since two photons of
equal polarisation within such states can penetrate into the same arm of the analysis set-up, they exactly
resemble the signature of a six-qubit quantum state. A more in depth consideration of these processes
can be found in reference ([139]). Nevertheless, as it shall be seen later in subsec. 6.3.2 and reference
([43]), the higher order contributions are low enough to still allow for the observation of the states we are
aiming for.
Regarding the utilisation of the linear optical set-up to infer information about photonic quantum states
and its application in the course of the measurement of photonic qubits, the reader shall be pointed out to
references ([87], [88], [89]), which provide nice explanations hereupon. Therefore an in depth discussion
is skipped here and we will move on to the examine the parameters of the cavity.

15Manufacturer: Perkin Elmer
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Figure 3.4: Schematic drawing of the linear optical set-up. The output of the SM fibre is propagated
through an interference filter and subsequently split-up into six spatial modes with five non-polarising
beam splitters (BS). Additionally each arm contains two Y V O4-crystals for phase compensation. The
polarisation of photons within each arm is analysed by an arrangement consisting of a λ/2 and a λ/4
plate, followed by a PBS and two single photon avalanche photodiodes (SPAPD) positioned in each
output arm of the PBS.



Chapter 4

Characterisation of cavity
parameters

After all necessary design parameters have successfully been determined and the set-up of our enhance-
ment cavity apparatus has been laid out, it is time to characterise the experimentally implemented device.
There are two different aspects that have to be dealt with: On the one hand, the intrinsic properties of the
resonator itself are to be examined. These concern the excited transverse optical mode, the stability of
the intra-cavity power over time, the achievable power enhancement and the finesse of the cavity. On the
other hand, the influences by the resonator on the temporal characteristics of pulses stored therein have
to be taken care of as well. The latter are forwarded to the next chapter, whereas we will be analysing
the former in the following.

4.1 Transverse mode

Transverse optical mode To infer the transverse mode, excited inside the resonator, there are two
features of the stored light to be looked at. One is obviously the transverse intensity distribution in
a plane perpendicular to the optical axis of the cavity. In terms of what has been said about higher
order Laguerre-Gaussian contributions, see eq. (2.6) and reference ([58]), the requirement of having a
Gaussian-like intensity, without additional humps to the side of the global maximum, in order to resemble
the TEM0,0 mode scenario, is fairly obvious. We measure this spatial light distribution inside the cavity
by aid of the signal leaking through cavity mirror M4, see fig. 2.2, since an internal picturing is not
possible because of the unavoidable cavity mode blocking associated with it. It has also been checked,
that transmission through the optical component does not change the beam profile, allowing for such
an observation method. Data taking is performed by application of a standard beam profiler with the
leakage signal directly impinging onto the device, after some attenuation with neutral density filters. The
resulting image of the intensity distribution is shown in fig. 4.1 a) and proves to be a nice, circular-
symmetric mode with an intensity level increase, approximately given by a Gaussian distribution. Hence
our expectations, stemming from the desired TEM0,0 situation, are fulfilled by the experimental findings.

M2-factor However, only looking at the intensity distribution of light in the transverse plane does
not yet prove the resonator to maintain just a single Gaussian mode. This is because the description of
optical systems by Gaussian beams is a simplification and real world devices never actually operate on the
fundamental TEM0,0 mode only, but always have at least some minor additional multi-transverse-mode
contributions participating as well. These might still enable one to receive a transverse mode, closely
resembling the desired TEM0,0 shape1, however they change the longitudinal propagation features of
the entire beam ([57]). Assessment of the multi-mode characteristics of an optical beam is commonly
undertaken by measuring its M -factor, as indicated in subsec. 2.2.1 and references ([66], [63], [57]).
Therefore the deviations in the relationship between diffraction angle and beam waist from the pure
Gaussian case, eq. (2.4), are utilised for a growing multimode fraction and thus a larger M . The factor is
evaluated by measuring the beam radius of an initially converging beam at several different positions in
front and beyond its focus. The procedure is more thoroughly laid out in reference ([66]) and is referred
to as four-cuts method, since the authors suggested to determine the beam diameter in two planes at
either side of the focus. For our particular case, we will once more employ cavity leakage, this time

1at certain positions along the beam path at least
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Figure 4.1: Plot a): Experimentally determined intensity profile of the UV cavity mode as transmitted
through mirror M4. Red areas correspond to high intensity regions, whereas a degradation of intensity
is obtained the bluer the colour gets. Black indicates the absence of a considerable UV light level. One
can infer a Gaussian profile, expected for a mode close to the TEM0,0 situation as also implied by the
measured M2 factors. Plot b): Measured beam widths of transmitted UV signal through mirror M2 in
the proximity of its focal position. The black boxes are beam radii in the x-direction and the blue boxes
correspond to radii in the y-direction. Fitted beam radius behaviours for ideal Gaussian beams, according
to eq (2.4), are drawn in grey and black for the x- and y-direction, respectively. Taking the multimode
nature into account yields fitted functions, given by eq. (2.8), displayed in red for the x-direction with
an Mx = 1.07± 0.01 and in blue for the y-direction with an My = 1.07± 0.02.

through mirror M2, which is subsequently focussed down with a standard lens. Behind the lens, the
beam profile is determined in different planes along the propagation direction throughout the focus, as it
is indicated schematically in fig. 4.2. Beam radii wx,y(z), see eqs. (2.4) and (2.8), in the direction parallel
and orthogonal to the optical table’s surface, named x- and y-direction in the following, are recorded.
The resulting values are displayed in fig. 4.1 b) with black boxes indicating the x-direction and blue ones
representing the y-direction. The abscissa positioning corresponds to a centring around the focal plane
of the beam. In order to obtain the M2-number, the datapoints are fitted with the relevant expression
for the beam waist divergence in the multimode beam case (eq. (2.8))

w̃x,y(z) = w2
0,x,y


1 +

(
λ ·M2 · (z − z0)

πw2
0,x,y

)2

 ,

indicated in fig. 4.1 b) by a red line for the x- and a blue line for the y-direction. From the fitting routine,
we yield numbers for the parameter M2 of:

Mx = 1.07± 0.01 ; My = 1.07± 0.02 (4.1)

These are obviously rather close to M2 = 1, expected for a pure Gaussian beam scenario. We can
thus infer, that our cavity is essentially working within the desired transverse mode regime, maintaining
approximately a TEM0,0 spatial mode, propagating pretty much like a pure Gaussian beam. Also the
simplification of setting M = 1 during the calculations in subsec. 2.2.1 and 2.2.1 is consequently justified.
The minor differences between our experimental situation and an ideal, fundamental mode scenario are
also visualised in fig. 4.1 b) by fitting the data with a function according to eq. (2.8) having M = 1, i.e.
by the ideal Gaussian beam divergence as it has been stated in eq. (2.4). The results are the grey line
for the x- and the black line for the y-direction, which hardly deviate from their multimode counterparts.
More pronounced are however the different divergence angles of the x- and the y-direction, which indicate
the presence of some residual astigmatism in the intra-cavity mode. Finally, due to having M ≈ 1, the
resonator shall furthermore be noted to constitute a good spatial mode filter. Therefore only the TEM0,0

parts of the external UV pump field can actually penetrate into the device2 and we are left with the
2Irrespective of any frequency comb matching, outlined in subsec. 2.1.4.
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Figure 4.2: Measurement set-up for determining the M2-factor. The leaking UV signal through cavity
mirror M2 gets focussed down with an additional lens, and the beam radius is determined at several
planes in front and behind the focal plane.

degraded efficiency of ≈ 50% coupling, mentioned in subsec. 3.1.2.

4.2 Power Enhancement

4.2.1 Introduction

We will now move on towards discussing the power enhancement, achievable by the resonator, and also
look at the implications regarding dispersion in it, which are retrievable thereof. As the name already
suggests, the power enhancement represents the available magnification properties for the UV power. It
is thus also one of the most important features of the apparatus, since increasing the UV pump strength
for the non-linear process has been the underlying reason for setting-up the device in the first place.
The desired SPDC interaction also defines the most important feature to be comprised by the power
enhancement: In order to yield sufficient multi photon pair emission rates, it is necessary to operate
the down-conversion with ultra-short pulses, which in turn translates into a required constancy of the
achieved power enhancement over the spectrum of the external UV pump, so that the intensities of as
many frequency components as possible experience amplification and as little spectral content as possible
is cut off, which would lead to an enlargement in pulse duration. Hence a spectrally resolved analysis
of the power enhancement is necessary, performed by a comparison between the UV pulse spectra in
front and inside of the cavity. From the overlap of both spectra, additional conclusion on the dispersion,
imparted on round-tripping pulses in the system, can be attained. Furthermore sufficient long term time
stability of the power enhancement is indispensible to allow for appropriate counting statistics of the
multi-partite entangled quantum states, which are to be produced with this photon-source later on. All
of these features will be investigated in the following, whereby the assessment shall start with statements
regarding the experimental recording method and the obtained outcomes.

4.2.2 Experimental set-up, measured UV spectra and power levels

Experiment The arrangement, applied for carrying-out the measurement, is shown in fig. 4.3. Since
the internal UV spectrum and the internal UV power level, present during the enhancement process, are
desired, the transmitted light leaking through one of the cavity mirrors can be utilised for recording.
In doing so, we have positioned an additional mirror behind the resonator mirror M4, redirecting the
out-coupled intensity onto a beam splitter (BS). This component splits it up into one fraction directly
impinging onto a photodiode and another, coupled into a spectrum analyser by the aid of a SM fibre. The
spectrum is now recorded by the analyser and entire internal UV power, integrated over all frequency
contributions within the pulses, is observed by the photodiode. The internal parameters, i.e. power and
spectrum, are gained by locking the cavity at the highest possible power level, as the maximally achievable
enhancement is to be investigated here. Clearly lower levels are feasible as well, yet we would like to
infer what our system is capable of at the high end. The external counterparts are recorded separately:
For the spectrum, the propagation of pulses inside the resonator is prevented by placing a beam block
in between mirror M1 and M2 in fig. 2.2. The entire spectrum of the external pulses is accordingly just
transmitted through the input coupler (mirror M3 with transmittance TIC) and the cavity mirror M4
(with transmittance TM4), being readily measurable with the spectrum analyser as well. In contrast the
overall external UV power gets determined by positioning a power meter in front of the input coupler,
due to our applied definition for the power enhancement (see subsec. 4.2.3 below).
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Figure 4.3: Apparatus to measure the internal and external UV spectra and the power levels inside and
in front of the resonator, needed for power enhancement evaluation.

It shall furthermore be mentioned, that for dispersion assessment by comparison between the internal and
external UV spectra, it is absolutely necessary to have no varying offset along the frequency axis in both
datasets. That is because we would later on like to determine the spectral overlap between the internal
and external spectra for this manner, which would be altered by such a shift in positioning. Offsets
in frequency, or in other words, artificial displacements along the frequency axis between both spectra,
would change this quantity and therefore imply a different influence of dispersion effects on frequency
comb matching. In the experimental implementation the spatial propagation directions of the external
beam and the cavity mode are however slightly deviating. To certify equality of the coupling conditions
into the spectrometer during recording the external and internal spectra, the free-space coupling, depicted
in fig. 3.1, has thus been substituted by the aforementioned SM fibre.
Datasets have furthermore been recorded for two experimental scenarios: One with the cavity containing
the BBO crystal, as it is used for photon pair generation in chapter 6, and another arrangement without
the non-linear medium, just resembling a high repetition rate enhancement system.

UV power levels and locking stability Since we measure the intra-cavity power with a photodiode
behind mirror M4, the received voltage signal has to be set in relation to the power level, actually present
inside the resonator. The required conversion constant, which is applied whenever the internal UV power
level is spoken about, is derived in appendix B.1.
For the internal spectra, the cavity has to be locked in order to maintain its maximum enhancement level
over the duration of the measurement. It is therefore essential, that the UV power, initially set by locking,
is kept equal for all spectra contributing to the power enhancement computation. If the level changes
remarkably during the experiment, this would correspond to modifications in the input-coupling condition
and to associated alterations in the spectrum. In other words, if the level is for instance decreasing, less
intensity is coupled into the resonator as some external frequency comb modes loose their matching with
cavity resonances, which in turn narrows the internal spectrum and diminishes the spectrally resolved
power enhancement for these frequencies. Thus prove of constancy in the cavity level is required. For
the situation with BBO this is rather easy to achieve. The internal UV spectra have been measured for a
period of 30 min and the UV power level inside the resonator over that time is shown exemplarily in fig.
4.4. Note here, that each black datapoint in this graph corresponds to an averaged value over all power
levels apparent during a time period of 1 min previous to it. An overall mean internal UV power with
BBO of

PBBO
int = 7.19± 0.15 W (4.2)

is received. The light intensity can thus be regarded to be rather stable on average and this has allowed
to measure internal spectra with rather long integration times approximately on the order of 1min.
However having no non-linear medium inside the resonator renders stable locking harder, since the losses
are diminished in such a situation. In turn the finesse will be increased, as we will see in the next section
4.3, and the cavity resonances get narrower, making it tougher to fulfill the frequency comb matching over
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Figure 4.4: UV power level inside the resonator over the measurement time for the internal UV spectra.
Black points represent level averages taken over 1 min, the horizontal red line corresponds to the averaged
power of PBBO

int = 7.19± 0.15 W .

the entirety of the external spectrum3. Additionally, no polarisation selecting element is present inside
the cavity which would allow a stable locking with the Hänsch-Coulliaud method. Thus the cavity is only
stable on shorter time scales, allowing for less integration time in recording the spectrum, consequently
leading to greater fluctuations in the spectral intensity and greater statistical uncertainties in the spectral
amplitude for this situation. Yet the internal power level is4

P noBBO
int = 20.65± 0.97 W. (4.3)

The external pumping power is equal for both set-up arrangements. The straight forward power meter
measurement yielded

Pext = 0.54± 0.01 W, (4.4)

which is the amount of second harmonic light in front of the cavity to be gained from frequency doubling
of the Ti:Sa laser.

UV spectra The measured internal and external UV spectra for the cavity with and without the BBO
crystal shall now be presented. In order to gain some statistics, several spectra have been recorded for each
arrangement. Each individual spectrum has been normalised with its intensity maximum corresponding
to unity. For the future discussion the mean spectra, averaged over all individual datasets, have been
computed for all of the four possible cases5. The statistical errors on these are given by the standard
deviation between all intensity values to be averaged over at a certain wavelength. The spectra are
presented in fig. 4.5 -4.8, whereby the left hand side always shows the individual recordings plotted in a
different colour for each dataset and on the right hand side the averaged spectra are depicted.
As already indicated, the internal spectra without the crystal show a rougher structure due to shorter
integration times, which also translates into greater uncertainties. For the external spectra, no big a
difference can of course be seen, as these should be approximately equal for both situations. It shall
nevertheless be noted, that the second measurement, without BBO, has been performed a few weeks
after the first one and the spectral output of the Ti:Sa laser has slightly changed over such a time scale.
This has especially to be accounted for, if the reader attempts to compare the spectra presented here
with those to those stated in chapter 5. Both datasets are not comparable with one another, since half
a year time difference has passed between performing both measurements.

3For more details see the discussions in subsec. 2.1.4 and the implications of the finesse in subsec. 4.3.2
4It shall be noted, that in the power uncertainties ∆PBBO/noBBOint/ext the errors on the observed photodiode voltage

reading, defined as their standard deviation ∆V j , as well as the uncertainty in the conversion factors, eqs. (B.2) and (B.3)

in the appendix B.1, are included according to: ∆P j
int =

√
(∆αj)2 · (V j

int)
2 + (αj)2 · (∆V j)2.

5which are external and internal UV spectrum with and without BBO
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Figure a) Figure b)

Figure 4.5: External UV spectra with BBO: The curves on the left hand side are individual recordings of
the spectrum entering the average spectrum. The latter is drawn on the right hand side as a black line,
whereby the green lines indicate the upper and lower error boundaries.
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Figure 4.6: Internal UV spectra with BBO: The curves on the left hand side are individual recordings of
the spectrum entering the average spectrum. The latter is drawn on the right hand side as a red line,
whereby the grey lines indicate the upper and lower error boundaries.

4.2.3 Computation of power enhancement

The power enhancement, as we refer to it, is defined by the power inside the cavity with respect to the
power in front of the cavity, i.e. the power impinging onto the input coupler prior to propagation through
it. There are furthermore two different quantities going along under the same name.
The first is the integrated, or respectively overall power enhancement. It does neither take the spectral
structure of the pulses nor dispersive effects into account, thus it does not differentiate between the
difference in power amplification individual frequency comb modes are subject to. Instead its magnitude
is determined by the entire, i.e. spectrally integrated, pulse power inside and outside of the cavity, given
by eqs. (4.2), (4.3) and (4.4). So the relevant numbers for this parameter can easily be stated as6:

P̄E
BBO =

PBBO
int

PBBO
ext

= 13.3± 0.4 (4.5)

P̄E
noBBO =

P noBBO
int

P noBBO
ext

= 38.2± 1.9 (4.6)

Since it neglects any spectral and hence temporal information, necessary to know about for checking the

6With the errors given by: ∆P̄E
j

=

√(
∆P

j
int

P
j
ext

)2

+

(
P

j
int

P
j
ext

)2

·
(
∆P j

ext

)2
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Figure a) Figure b)

Figure 4.7: External UV spectra without BBO: The curves on the left hand side are individual recordings
of the spectrum entering the average. The latter is drawn on the right hand side as a black line, whereby
the green lines indicate the upper and lower error boundaries.
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Figure 4.8: Internal UV spectra without BBO: The curves on the left hand side are individual recordings
of the spectrum entering the average. The latter is drawn on the right hand side as a blue line, whereby
the grey lines indicate the upper and lower error boundaries.

suitability of the amplification process to pump the SPDC process, all it tells is a rough ballpark figure
about how good the cavity’s amplification is.
For our purposes, we will require the spectrally resolved power enhancement, which represents the second
possible quantity involved here. For its investigation the spectrum measurements have been made. It
includes the full information about how much each frequency comb tooth of the external pulse is enhanced
by the resonator. The relevant definition can accordingly be written as

PEj(λ) =
P j

int(λ)
P j

ext(λ)
(4.7)

whereby P j
int(λ) is the internal power as a function of wavelength and P j

ext(λ) is the analogue counterpart
in front of the resonator, with j ∈ {BBO, noBBO}. From the definition it is clear, that this quantity
contains information about the frequency comb matching, as modes which are not transmitted through
the input coupler do not appear in P j

int(λ) and do not contribute to PEj(λ). To evaluate this expression,
the values for P j

i (λ), with i ∈ {int, ext}, will be required. Yet all we have so far are the normalised
internal, Sj

int(λ), and external, Sj
int(λ), spectra as well as the overall powers in eqs. (4.2)-(4.4). Hence, a

proper scaling between these two sets of data has to be developed in the first place.
As already mentioned, we are aware that integration over the spectral power yields the total power:
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∫
P j

i (λ)dλ = P j
i (4.8)

Furthermore the constant scaling factors, defined as γj
i , have to connect power with spectrum, or in other

words:

γj
i · Si(λ) = P j

i (λ) (4.9)

Putting both equations together returns the correct formula for γj
i :

∫
P j

i (λ)dλ =
∫

γj
i · Sj

i (λ)dλ = γj
i

∫
Sj

i (λ)dλ

︸ ︷︷ ︸
=:Aj

i

= P j
i ⇐⇒ γj

i =
P j

i

Aj
i

(4.10)

whereby the Aj
i are the areas covered by the normalised spectra. By numerical integration of the datasets

for all four average spectra, shown in figs. 4.5-4.8, we acquire numbers of:

ABBO
int = 1.34± 0.14 ; ABBO

ext = 1.29± 0.03

AnoBBO
int = 1.3± 0.17 ; AnoBBO

ext = 1.42± 0.02

The errors ∆Ai onto these are computed by the mean difference in area coverage between the maximum
and minimum error bound of each spectrum7. The difference between ABBO

ext and AnoBBO
ext stems from

taking the data at different days, as mentioned before. Plugging these figures, together with those from
eqs. (4.2)-(4.4), into eq. (4.10) gives the scaling parameters8:

γBBO
int = 5.37± 0.55 ; γBBO

ext = 0.42± 0.01

γnoBBO
int = 15.87± 0.38 ; γnoBBO

ext = 2.21± 0.01

Multiplying the normalised spectra with these constants and insertion of the resulting spectral powers
into eq. (4.7) gives the desired spectrally resolved power enhancement9. The computed data furthermore
undergoes low-pass Fourier transform filtering. This operation is applied on the one hand because of the
variations on top of the measured average spectra, which are particularly prominent in the internal curves
(figs. 4.6 and 4.8). Since these are mainly subject to the integration time choices at the spectrum analyser
or resultant from the statistical nature of our experiment, binning them does not destroy information
about the desired enhancement of spectral components due to intrinsic properties of our cavity. More
important, on the other hand, are the effects due to the convergence between external and internal
spectra in their tails, which are thrown out by filtering as well. These can cause large spikes in the
power enhancement, which of course are just related to the small amplitudes values, resulting in tiny
denominators in eq. (4.7) and hence in large numbers for PE(λ). Such high power enhancements in the
tails, even if they result from perfect frequency comb mode matching, are irrelevant for our purposes, as
the pumping intensities are small in these areas anyway, so they do not significantly contribute to the
enhanced pulse inside the cavity.
The smoothed, spectrally resolved power enhancement is shown in fig. 4.9 by blue lines for the presence
of the BBO crystal in part a) and its absence in b). To allow an assessment of the power enhancement,
additionally the external and internal UV spectra are included as well, whereby the internal ones are
already scaled appropriately to their external counterparts as required for estimating the cavity’s spectral
acceptance.

7That is to say by half the difference between the area under the upper and lower green curves in figs. 4.5b), 4.6b) and
the respective gray curves in figs. 4.7b), 4.8b).

8Their errors are once more retrieved by statistical error propagation following:

∆γj
i =

√√√√
(

∆P j
i

Aj
i

)2

+

(
P j

i

(Aj
i )

2

)2

·
(
∆Aj

i

)2

9The associated uncertainties ∆PEj(λ) are gained from the standard deviations of the normalised spectra ∆Sj
i (λ),

indicated by the above mentioned green and grey curves in figs. 4.5 b), 4.6 b) and figs. 4.7 b), 4.8 b), respectively, together

with the errors ∆γj
i on the scaling factors, according to:

(
∆PEj(λ)

)2
=

(
Sj

int(λ) ·∆γj
int

Sj
ext(λ) · γj

ext

)2

+

(
Sj

int(λ) · γj
int

Sj
ext(λ) · (γj

ext)
2

)2

·
(
∆γj

ext

)2
+

(
∆Sj

int(λ) · γj
int

Sj
ext(λ) · γj

ext

)2

+

(
Sj

int(λ) · γj
int

Sj
ext(λ) · γj

ext

)2

·
(
∆Sj

ext

)2
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Figure a) Figure b)

Figure 4.9: Spectrally resolved power enhancement as given by eq. (4.7) after low-pass Fourier filtering.
Figure a): The power enhancement curve for the cavity arrangement containing the BBO is drawn in
blue, the external UV spectrum is displayed in black and the scaled internal UV spectrum in red. Figure
b): The empty resonator scenario with the power enhancement in blue, the external UV spectrum in
black and the internal one in red.

Inferring from the graphic, we can acknowledge to have a power enhancement roughly flat and constant
over the spectrum of the external UV pulse. The residual structure is expected, due to the remaining
GVD in the resonator, see subsec. 2.1.5, which causes the external frequency comb teeth, the cavity is
stabilised on, to experience greater enhancement, due to increased overlap with the cavity resonances.
Altogether we can however expect the entire frequency content of the external pulses to experience an
approximately similar magnification in their intensities during round-tripping. Importantly, no significant
portion of the external spectrum is subject to a largely diminished or even no amplification. First, this
means that no major parts of the pulse spectra are lost during the enhancement process, which would
otherwise lead to a smaller spectrum and consequently to a longer pulse duration10. Second, we can
look at the electric field of the external pulse, which is given by the summation over all individual
spectral contributions E(λ) = f(λ) exp (−2πi c

λ t) with a spectral amplitude f(λ) and an oscillation term
proportional to a plane wave, according to Epulse

ext =
∑

λ f(λ) exp (−2πi c
λ t): In having a roughly equal

power enhancement for all E(λ), denoted by PE(λ) ≈ const., the internal, enhanced pulse can be written
in terms of the aforementioned sum as:

Epulse
int =

∑

λ

PE(λ) · f(λ) exp
(
−2πi

c

λ
t
)

= PE(λ) ·
∑

λ

f(λ) exp
(
−2πi

c

λ
t
)

= PE(λ) · Epulse
ext

So the intensity amplification inside the resonator should not distort the electric field superposition and
thereby the pulse shape. Both are highly desired, since they indicate the ability to use our apparatus for
femto-second laser pulses without stretching them. Simultaneously the power enhancement promises the
ability to drive the SPDC process with high intensities. However both arguments regarding the power
enhancement shall be noted to just deal with intensities. So phase effects due to residual dispersion on
the electric fields E(λ), whose influences are not large enough to dislocate the cavity resonance positions
in frequency space far enough to terminate overlap with an external frequency comb mode (fig. 2.13),
are not include, as they drop out in the intensity I(λ) ∼ |E(λ)|2. Hence there is still the possibility to
have additional considerable higher order dispersion contributions, like GVD, and associated potential
distortions on the internal UV pulses. Investigations of these will be dealt with by direct pulse duration
measurements in the next chapter.
The power enhancement is furthermore also situated within the range expected from the overall power
enhancement numbers in eqs. (4.5) and (4.6), whereby the maximally achieved enhancements PEj

max(λk),
at a certain wavelength λk, are yet higher11. These turn out to be

10The relationship between spectral width and time duration of laser pulses is given by Fourier transform and explained
more thoroughly in the next chapter.

11This is not surprising, since the P̄Es are just averages over the PE(λ) and as numbers for the latter tend to get lower
towards the tails of the spectra, they have to be higher than the average in the centre.
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PBBO
max (λ = 390.92 nm) = 17± 3 (4.11)

P noBBO
max (λ = 391.11 nm) = 45± 10 (4.12)

and are achieved at the location where the external frequency comb mode best matches a cavity resonance.
In this context it shall be pointed out, that the maximally achieved power enhancements are situated in
the flanks of the pulses’ spectra (see fig. 4.9) for arrangements with and without BBO. So the frequency
on which the Hänsch-Couillaud lock is operating on has been set in a range around λlock ≈ 391 nm,
which is selected by choosing a particular part of the spectrally resolved back-reflection from the input
coupler, see subsec. 3.2.1. In other words, the straight line our dispersion compensation scheme fits onto
the proper intra-cavity dispersion φ(λ), as depicted in fig. 2.13, touches the aforementioned curve around
λlock ≈ 391 nm, so that frequency comb modes here best match the cavity resonances.
We will now investigate the spectral acceptance of the resonator by further looking at the averaged
intra-cavity spectra in comparison to the external ones by their respective area coverages.

4.2.4 Overlap between internal and external UV spectra and dispersion es-
timation

Like already drawn in fig. 4.9 the internal spectrum has first of all to be scaled onto the external for
drawing conclusions about spectral acceptance of the cavity. It is clear by energy conservation, that
even in the very best scenario, only wavelengths apparent in the pumping spectrum can be enhanced
by the resonator. Thus, by retaining the normalised external spectra Sext(λ) from figs. 4.5, 4.7, the
internal spectra from fig. 4.6, 4.8 can maximally show amplitudes equal to the external values for the
upcoming analysis. This is because if the internal spectrum was allowed to exceed the external one for
some wavelength positions, the former could in principle be scaled up in such a manner to have finite
spectral intensity even within its tails, where the latter has decreased to zero intensity already. Hence
the energy conservation would be violated due to these additional contributions in the internal spectrum.
To fulfill the requirement, the internal spectrum has to be scaled by a factor σj in order to touch but
not intersect the external in one point12, yielding the curves presented in fig. 4.913. We can therefrom
qualitatively acknowledge a great part of the external UV spectrum to be covered by the internal one, i.e.
a large fraction of the former is coupled in and enhanced. In number terms, spectral coverages, defined
by

Γj = 100 % ·
∫

σjSj
int(λ)dλ∫

Sj
ext(λ)dλ

,

of

ΓBBO = 78± 8% ; ΓnoBBO = 86± 13% (4.13)

are obtained. The uncertainties hereon stem once more from the standard deviation error bounds in the
spectral intensities14, depicted in figs. 4.5-4.8. It shall be noted here, that these figures for the fractional
coverages in principle include a combination of effects stemming on the one hand from the spectral
acceptance and on the other hand from the spectral power enhancement of the cavity. That is to say, the
former property determines, which frequencies are resonant and therefore coupled into the apparatus in
the first place. The latter subsequently defines how big the losses for each mode are and by how much
it can thus be amplified. To illustrate the last effect it is intriguing to anticipate equal input coupling
efficiencies for all wavelengths. For a non perfect coverage, i.e. Γj < 100 %, some wavelengths would hence
have to suffer greater losses than others, thereby exhibit smaller intensity amplitudes. To thoroughly infer
the strength in influence of both effects with respect to one another, a spectrally resolved loss assessment

12In principle also more than one point would be possible, if the straight line for dispersion compensation in fig. 2.13 is
chosen to have multiple intersection with φ(λ) instead of just touching it.

13It shall be noted that these spectra do not correspond to the power levels in eqs. (4.4)-(4.6).
14With an error of ∆

(∫
Sj

i (λ)dλ
)

on the individual spectra, these are given by:

∆Γj = 100 · σj

√√√√√√

(
∆

(∫
Sj

int(λ)dλ
))2

(∫
Sj

ext(λ)dλ
)2

+

(∫
Sj

int(λ)dλ
)2 ·

(
∆

(∫
Sj

ext(λ)dλ
))2

(∫
Sj

ext(λ)dλ
)2
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of the cavity over all relevant wavelengths would be necessary. In order to do so, the finesse F of the
apparatus would have to be determined for all contributing frequencies in the external comb separately.
Since for a particular wavelength one gets PE = F

π , the optimally achievable power enhancement without
spectral acceptance effects would be obtained. In order for this formula to be valid, impedence matching
has to be fulfilled as well, i.e. the mode under study has to be resonant with the cavity in its wavelength
as well as its spatial mode structure, demanding pumping with a TEM0,0 mode, and the input coupler
has to have a transmission as high as the losses for that wavelength. Yet, as outlined in section 4.1, we do
not have such an ideal situation at hand and have furthermore only measured a finesse, averaged over all
wavelengths, as will be explained in the next section 4.3. However an evaluation of the mirror reflectivities
and the losses of BBO and air over the relevant spectral range reveal constancy in the expected losses,
i.e. the finesse should stay roughly the same. Major influence on the difference in the spectral coverages
Γj can thus be attributed to the spectral acceptance of the cavity. Equally the spectrally resolved power
enhancement PE(λ) in fig. 4.9 is also mainly governed by the aforementioned feature. This depencence
allows us to gain some information about the quality of frequency comb matching in input coupling. For
the wavelengths λk, at whose positions the internal and external spectra coincide in their amplitude,
dispersion compensation is perfect, since these represent the points where the straight line in fig. 2.13
resembles the cavity dispersion curve φ(λ). The external frequency comb modes hence optimally match
cavity resonances for these λk. For that very reason the power enhancement PE(λ) also comprises its
maximal values here, given in eqs. (4.11), (4.12). Departing from these positions, an examination of figs.
4.9 a) and b) reveals a worsening in matching, since the differences between internal spectral amplitudes
and their external counterparts rise, which mean less external modes, or respectively a smaller fraction
of these, overlap with cavity resonances, like it is drawn schematically in fig. 2.13. The deviation is
larger for an arrangement with BBO than for an empty resonator, which is to be expected due to the
doubling in dispersion introduced by the crystal. So although the finesse of the resonator becomes lower
with the dielectric medium and the cavity resonances accordingly become broader by an approximate
factor of 3.5 (see eqs. (4.28) and (4.29) in the next section about finesse), rendering it easier to hit them,
the displacement of the resonances by the additionally introduced crystal dispersion exceeds that and
causes less overlap with external comb modes. Hence there are fewer modes coupled into the cavity, the
associated spectral amplitude σ ·Sint(λ) shrinks and the areal coverage of Γ becomes smaller than for the
empty apparatus, like stated in eq. (4.13).
For the power enhancement PE(λ) this reasoning implies, that the differences in its maximal values
(eqs. (4.11), (4.12)) are only determined by the different losses or respectively by the different finesse
between both scenarios, which is further examined later in subsec. 4.3.2. The difference in the overall
power enhancements P̄E

j =
∫

PEj(λ)dλ in eqs. (4.2), (4.3) is however influenced by the varying spectral
acceptance as well. Summarising, the influences of dispersion on the intra-cavity pulses are visible and
not negligible, however still the major parts of the UV pulses are coupled into the resonator and get
enhanced to an appropriate level for our purposes, as we will see in the next two chapters.

4.2.5 Time stability of power enhancement

The aforementioned cavity locking time scale shall now be presented in this last step of the discussion. Due
to the requirements regarding counting statistics of linear optics based quantum computing with multi-
partite entangled photonic qubits, it is highly desirable to have a photon source comprising constant
production rates over long time scales, which are commonly on the order of hours up to days. In turn
constant pumping powers are needed to operate the underlying SPDC process. Since we would ultimately
like to use our resonator system as such a device, a stable power enhancement and cavity locking is
indispensible. While in fig. 4.4 the stability of the internal UV power has already been shown over the
time duration of the spectra measurements, which only have been on the order of approximately 30min,
we can proof the ability to reach far longer periods of solid pumping power level with our apparatus. For
the high-end region of possible intensities within the cavity, an exemplary measurement is shown in fig.
4.10. It has been recorded during the characterisation of our resonator set-up as a source for multi-photon
states, as further described in chapter 6.
We have been able to acquire a pumping power as high as Pmax

UV = 7.2±0.2 W for more than 3.5 h during
this run. It shall be stressed that the stability of the cavity level is normally not spoiled by termination
of input coupling and associated loss of locking, but by a bleaching of the BBO crystal’s anti-reflection
coating, which can only sustain such high peak intensities for a limited period of time. Destruction of the
coating increases cavity losses and deteriorates the power enhancement. At the time when the dataset of
fig. 4.10 was measured, the crystal always had to be moved by hand to have the cavity mode impinging
onto another spot of its surface after these problems occurred. In the meantime, a computer-operated
driving procedure has been implemented, which offers the possibility to slowly move the crystal during
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Figure 4.10: UV pumping level in resonator as used for the measurement of multi-photon count rates,
presented in subsec. 6.3.2. A mean power of P̄max

UV = 7.2 ± 0.2 W has been achieved over a time scale
of more than 3.5 h and is indicated by the straight red line in the figure. Black points correspond to
measured values averaged over a time period of 1 min.

the measurements, thereby circumventing negative influences of the pumping beam. It has furthermore
turned out, that such a continuous motion does neither affect the cavity locking nor trouble the collection
of the generated photon pairs by the single mode fibre beyond the cavity’s output coupler (mirror M2 in
fig. 2.2), at least not if the dislocation range is chosen narrow enough.

4.3 Finesse

The measurement of the finesse and the associated light storage qualities of an optical cavity can in
principle be performed in many different ways, which are more or less applicable to our situation. In
the following we will choose a method in order to conclude onto the cavity’s finesse F , known as ring-
down spectroscopy. It was originally developed to measure absorption rates of objects positioned inside
cavities for pulsed laser light ([90]) with much higher accuracy than attainable in direct observation of
the absorption magnitude of cw lasers. For instance an application has been the direct measurement of
energy level splittings in molecules ([90]). For our purpose, we will follow an approach devised in reference
([91]), using it with a bare cavity only in order to figure out the latter’s energy decay rate.

4.3.1 Principles of ring down spectroscopy

Connections between ring down signal, decay rate and finesse The general idea behind the ring
down technique is to deposit some light into an optical resonator and subsequently observe its leakage
through one of the mirrors. Having an optical pulse with a certain amount of energy inside a resonator to
start with, transmission through the mirrors and any additional source of loss will step by step diminish
the stored intensity during round-tripping of the pulse. Thus the observed out-coupled signal will decay
as well. Obviously the lower the resonator’s losses, i.e. the higher its quality and finesse, the longer the
extinction time of circulating light. Energy deposition is achieved by having a light source for an instant
of time in resonance with the cavity and, once light is coupled in, quickly switching off the external
pumping by termination of the resonance condition. That is either achieved by modulating the external
laser frequency15 or by changing the cavity’s FSR. We will choose the second option and sweep the fast
piezo-electric transduzer (attached to mirror M1, see 2.2), normally used for stabilising the repetition
rate, over a fraction of its entire travel range ∆Ltot

piezo = 2.2 µm with a frequency fpiezo. Hence for some
mirror position the cavity comes into resonance with the external UV pulses and light is coupled in, but
as ωFSR is continuously changed the cavity repetition rate moves out of resonance again and the light
inside is decoupled from the external pump. From this hand-waving explanation it is clear, that the
travel range of the piezo has to be small enough not to scan over adjacent cavity resonances, as otherwise

15For instance by aid of an AOM.
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additional light could penetrate in again, while the piezo frequency has to be high enough to allow for a
quick switch-off of the external pump, but still lower than the inverse decay time of the stored energy. In
order to develop a quantitative understanding of the intensity decrease, an easy argumentation, following
reference ([51]), shall be presented.
Consider light just coupled into the cavity to comprise an electric field given by E′(t) = tICE(t), whereby
tIC is the transmittivity of the input-coupler. After one round-trip, with a time duration TR = Lcav

c , the
resulting field will be

E′(t + TR) = r · E′(t) · exp (iΦ) (4.14)

The reflectivities of all cavity components have here been combined into the total cavity reflectivity
r = rM1 · rM2 · rM3 · rM4 · tBBO · tair and all temporal phases picked up are accounted for by Φ =
ΦM1 · ΦM2 · ΦM3 · ΦM4 · ΦBBO · Φair. Accordingly, after n roundtrips, an electric field of

E′(t + n · TR) = rn · E′(t) · exp (inΦ) (4.15)

is obtained, resulting in an intra-cavity intensity given by

Icav(t + nTR) ∼ r2n · |E′(t)|2 = Rn · |E′(t)|2 := |E′(t)|2 · exp
(
−nTR

τ

)
(4.16)

with a total cavity reflectance defined as16

R = r2 := exp
(
−TR

τ

)
= exp

(
− 1

frepτ

)
. (4.17)

In the above expression, frep = 1
TR

symbolises the cavity repetition rate and τ stands for the cavity ring
down time. Observation of the transmitted signal through one cavity mirror thus yields an intensity
Ileak(t) = |tMirror|2 · Icav ∼ exp

(− t
τ

)
showing an exponential decrease. Determination of the constant

τ from this recording allows, by knowledge of the cavity’s free-spectral range νFSR = ωF SR

2π = frep, the
computation of the entire reflectivity r and therefrom the cavity finesse by aid of ([51])

F =
π
√

r

1− r
(4.18)

It shall be mentioned, that this method only works, if frep is approximately constant during the cavity
length sweep in order to obtain the last term in eq. (4.16). With a cavity length of Lcav = 3.71 m and
a maximally possible sweep range of only ∆Ltot

piezo = 2.2 µm, the aforementioned condition is very well
satisfied and the cavity repetition rate can be regarded as equal to the Ti:Sa pulse repetition rate of
frep ≈ 80 MHz.

Shape of the ring down signal The above picture is yet a little too simple in order to account for the
real experimental findings, as these comprise some additional oscillations with increasing frequency and
an exponentially decaying amplitude (eq. (4.16)), e.g. depicted in figs. 4.11 and 4.12. For brevity, only
a qualitative reasoning for this behaviour will be presented in the following. For a detailed mathematical
treatment, the reader might consult reference ([91]), containing an argumentation based on classical
physics, and reference ([51]), taking the full relativistic nature of the electromagnetic light field into
account. For what is required to understand the measurements evaluated later on, it is sufficient to
acknowledge the oscillating feature to stem from interference between the round-tripping pulses, which
are shifted in frequency by the Doppler effect, encountered during each reflection off the moving mirror
M1. While so far we anticipated to have a strict cut-off of any pulse penetration into the cavity once its
length is swept out of resonance, in reality there is still some residual transmittance of the external pulses
through the input coupler, due to the finite transmittance of this component ([91]). For the intra-cavity
field an interference between a number of n already stored copies of the pulse inside the resonator, each
with a number of 1 up to n accomplished roundtrips, with a newly input-coupled pulse occurs. As the
intra-cavity field experiences a relativistic Doppler shift of uDS = 1−V

c√
1−( V

c )2
during each reflection off the

mirror M1, moving with a velocity V , we have an interference of the electric fields, that have been subject
of 0 up to n shifts in their frequency and hence a superposition of Ecav ∼

∑n
j=0 rj · exp

(
iω(uDS)2jt

)
([51]). So depending on the exact phase relationships between all pulses as a function of time, oscillations

16For high cavity finesse, this expression can be Taylor expanded to R = exp
(
−nTR

τ

)
≈ 1 − TR

τ
, which coincides with

the result derived by approximation in reference ([91]).
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between constructive and destructive interference are obtained17. It shall particularly be noted, that
this interference happens inside the resonator already and is therefore observable on every signal leaking
through any mirror. Under the approximation of each Doppler shift causing a phase variation much
smaller than 2π, an exact calculation yields an intra-cavity field of ([51])

E′
cav(tm + t′) = E′(tm + t′)

√
ic

8V m
exp

(
g(t′)2

)
(1 + erf (g(t′))) (4.19)

with

g(t′) =

√
−ic

8πV m

(
2π

ωV t′

πc
+ i ln (r)

)
, (4.20)

whereby ω is the instantaneous frequency of the round-tripping light and the time t has been split up into
t = tm + t′. The variable tm is the time at which the mth resonance in the cavity occurs for the Doppler
shifted light, in other words exp

(
iω(uDS)2mtm

)
= exp (i2πm) = 1. Hence t′ is a time offset between two

of these constructive resonances. The error function erf(x) in eq. (4.19) is defined by:

erf(x) =
2√
π

∫ ∞

0

exp
(−x′2

)
dx′

In order to retrieve the decaying intensity Icav, one has to take the absolute square of eq. (4.19) ([51])

Icav(tm + t′) ∼ exp




Im
(

c(2t′ωV/c+i ln (r))2

mV

)

4π




= exp
(

c

mπV
Im

(
4t′2ω2 V 2

c2
− ln2 (r) + 4it′ω ln (r)

V

c

))

= exp


2 ·ω0

m
·

︸︷︷︸
=1/TR

ln (r)t′


 = exp

(
2 ln (r)

TR
t′
)

= exp
(
− t′

τ

)
(4.21)

showing also an exponentially decreasing amplitude. Examining the last substitution in closer detail, we
can infer

τ = − TR

2 ln (r)
⇐⇒ ln (r) = −TR

2τ
⇐⇒ r = exp

(
−TR

2τ

)
⇐⇒ R = r2 = exp

(
−TR

τ

)
(4.22)

which resembles the result obtained from the simple picture of leakage during round-tripping, expressed
by eq. (4.16). So for figuring out the finesse of the cavity, it is sufficient to just use the oscillation
maxima at times tm from the ring down signal, fit these datapoints by a simple exponential decay
function y(t) = α · exp

(− t
τ

)
and extract τ with subsequent calculation of F under consideration of eqs.

(4.17) and (4.18).

Ring down signal observed in reflection In the measurement, we will record the transmitted signal
through the input coupler (mirror M3 in fig. 2.2), which is superposed with the uncoupled electric field
rICE(t) directly reflected thereof. Thus an additional interference between these two contributions in
principle occur and the resulting intensity can be expressed as ([51]):

IRD(tm + t′) = | − rICE(tm + t′) + tICE′
cav(tm + t′)|2

= RICI(tm + t′) + TICIcav(tm + t′)

+2I(tm + t′)Re

(
rICt2IC

√
ic

8V m
exp

(
g(t′)2

)
(1 + erf (g(t′)))

)

︸ ︷︷ ︸
=:f(t′)

= RICI(tm + t′)︸ ︷︷ ︸
term 1

+TICIcav(tm + t′)︸ ︷︷ ︸
term 2

+2I(tm + t′)f(t′)︸ ︷︷ ︸
term3

(4.23)

17The same argumentation applies to cw pumping of the resonator. One only has to think about interference of electric
field strengths at times t + jTR instead of distinct pulses.
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Term 1 assigns the directly reflected intensity of the external pump, so no ring down fingerprint is to be
expected here. Term 2 is the transmitted intensity of the ring down signal, given by eq. (4.21), as it
also observable in leakage through mirrors M1, M2 and M4. The last term 3 represents the interference
between the external pumping field and the electric field of the ring-down signal, only present at the
input-coupler. Calculating exp

(
g(t′)2

)
in f(t′), one is left with

exp
(
g(t′)2

)
= exp

(√
−ic

8πV m

(
2ω0

V

c
t′ + i ln (r)

))2

= exp
(

ω0 ln (r)t′

2πm
+

ic ln2 (r)
8πV m

− iω2
0V t′2

2πmc

)

= exp
(

ln (r)t′

TR

)
· exp

(
−i

(
ω2

0V t′2

2πmc
− c ln2 (r)

8πmV

))

= exp
(

t′

τ ′

)
· exp

(
−i

(
ω2

0V t′2

2πmc
− c ln2 (r)

8πmV

))
(4.24)

By further analysis of the exponentially decaying term and comparison with the decrease in ring down
signal strength, described by eqs. (4.16) and (4.21), we get:

τ ′ = − TR

ln (r)
⇐⇒ ln (r) = −TR

τ ′
⇐⇒ R = r2 = exp

(
−2TR

τ ′

)
=⇒ τ ′ = 2τ (4.25)

So the interference term comprises a decay constant of twice the ring down time τ and the entire signal
reflected off the input coupler contains two contributions, one decaying with τ (term 2 ∼ Icav(tm + t′))
and one with 2τ . For examination of our measurement results, we will however only account for term 2
in eq. (4.23) and neglect the additional interference with the longer extinction time. The reason for that
will be described at the end of this part regarding finesse evaluation, where flaws in the experimental
implementation are to be discussed.

4.3.2 Data analysis

Experimental ring down signals The ring down signal has been recorded by positioning a fast pho-
todiode into the reflected beam off the cavity input coupler in front of the Hänsch-Couillaud polarisaton
analysis apparatus (see fig. 3.1), since the latter is not required during the measurement procedure.
Ring down signals have been taken for the situation with a BBO crystal, utilising an input coupler of
RIC = 97.36% reflectance, and for an empty cavity with a mirror M3 of RIC = 98.72% reflectance.
The mirror M118 has been moved by driving the fast piezo electric crystal with different frequency and
voltage parameter sets of

(fpiezo, Vpiezo) ∈ {(7 kHz, 75.2 V ), (20 kHz, 37.6 V ), (25 kHz, 37.6 V )}
for the case with the non-linear crystal and

(fpiezo, Vpiezo) ∈ {(7 kHz, 75.2 V ), (10 kHz, 37.6 V ), (15 kHz 37.6 V ), (20 kHz, 37.6 V ), (25 kHz, 37.6 V )}

for its absence. The datapoint for (fpiezo, Vpiezo) = (20 kHz, 37.6 V ) has been measured twice in both
runs. An exemplary graph for the results with the BBO is provided in fig. 4.11 and outcomes without
the BBO are shown in fig. 4.12, both for a parameter choice of (fpiezo, Vpiezo) = (20 kHz, 37.6 V ). Appli-
cation of a detector with a fast response time enables to observe the repetition frequency of the pumping
laser on top of the ring down signal, which can be seen as fast oscillations in the parts denoted by a)
in figs. 4.11 and 4.12. To precisely infer the oscillation maxima of the ring down curve, it is however
necessary to get rid of these additional fluctuations in the data. Therefore a Fourier analysis has been
pursued. A pronounced peak is visible therein at a frequency of frep ≈ 80 MHz, which corresponds to
the laser’s repetition rate and in turn also to the FSR of the resonator. For further analysis, frep is deter-
mined in each dataset and subsequently low-pass Fourier filtering is performed with a cut-off frequency
of fcut−off = 30 MHz. The evaluated laser repetition rates for the various measurements can be found
in the appendix B.2. Such an operation delivers a smoothed ring down signal, from which the relevant
maxima are readily spotted, as exemplarily drawn in figs. 4.11 b) and 4.12 b). Furthermore one can also

18see fig. 2.2
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Figure 4.11: Ring down signal with the BBO crystal at a piezo frequency of fpiezo = 20 kHz and an
applied voltage of Vpiezo = 37.6 V . Figure a) shows the raw ring down data with fast oscillations on top,
stemming from the driving laser’s repetition rate. Figure b) represents the smoothed signal after low-pass
Fourier filtering with a cut-off frequency of fcut−off = 30 MHz. The red line indicates a fit according
to eq. (4.26) to the ring down maxima. The green lines are the error boundaries of twice the standard
deviation on the fit.
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Figure 4.12: Ring down signal without the BBO crystal at a piezo frequency of fpiezo = 20 kHz and an
applied voltage of Vpiezo = 37.6 V . Figure a) shows the raw ring down data with fast oscillations on top,
stemming from the driving laser’s repetition rate. Figure b) represents the smoothed signal after low-pass
Fourier filtering with a cut-off frequency of fcut−off = 30 MHz. The red line indicates a fit according
to eq. (4.26) to the ring down maxima. The green lines are the error boundaries of twice the standard
deviation on the fit.
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acknowledge both signals to be rather different compared to each other. While the ring down oscillations
without the BBO inside the cavity show nice modulations with exponentially decreasing maxima and
exponentially increasing minima, as expected from eq. (4.21), the situation with the crystal present is
different and no full modulation can be observed, resulting in the maxima in the ring down signal to
exhibit an exponential increase as well. The most likely explanation for such a behaviour is found in
an interplay between the multi-mode nature of our measurement, caused by the application of a pulsed
laser, in combination with altered dispersion by the BBO; it will be illuminated in more detail later on.

Ring down time τ Now all oscillation maxima in the ring down signals are selected and fitted by the
decaying exponential19

I(t) = I0 exp
(
± t

τ

)
+ Ioffset (4.26)

The resulting data is plotted in fig. 4.11 b) for the cavity containing the BBO and fig. 4.12 b) for
its absence, exemplarily again for fpiezo = 20 kHz and Vpiezo = 37.6 V , comprising the fitted functions
indicated by red lines. Altogether the ring down times τ , as stated in table 4.1, are obtained by the
fitting procedure. The errors therein originate from the fitting uncertainties and are thus statistical in
their nature.

Piezo freq. [kHz] τ with BBO [ns] τ without BBO [ns]
7 422± 99 495± 17
10 − 461± 13
15 − 735± 23
20 167± 11 561± 19
20 158± 8 510± 16
25 99± 1 411± 14

Table 4.1: Ring down times obtained from fitting the oscillation maxima in the ring down signals by
exponentially decaying functions according to eq. (4.26).

The confidence level of the fit is also included into figs. 4.11 b) and 4.12 b) by the green lines enclosing
an area of twice the standard deviation above and below the fitted behaviour. Looking at the number
for τ with BBO at fpiezo = 7 kHz, as well as the one without BBO at fpiezo = 15 kHz, one can see that
these numbers deviate considerably, since they do not match with the magnitude range implied by their
counterparts at the other sweeping frequencies. So one has to check whether their underlying signals
make sense in terms of what is expected from a ring down measurement. Furthermore an analysis of the
suitability of all measured data in this experiment is generally necessary just for the very reason that we
attempt to measure the ring down signal with a broadband light source, which could lead to a wash out
of the oscillations in the intensity as it will be outlined later. A possible means to do so is offered by the
oscillation frequency of the round-tripping light intensity inside the cavity. It is shown in reference ([91]),
that the time separation between the first two minima in the ring down curves must be approximately
given by20

T12 = (
√

2− 1)

√
Lcav

c

λ

v
(4.27)

whereby v = ∆Lpiezo ·fpiezo equals the velocity of the mirror displacement during cavity length sweeping.
The dislocation of the mirror is expressed by the one of the PZT, ∆Lpiezo, which is proportional to the
applied voltage, Vpiezo, according to21 ∆Lpiezo = ∆Ltot

piezo ·Vpiezo/(100V ). One should note in this context
the first minimum to be the one adjacent to the right hand side of the first maximum (i.e. at times
t > t1stmax) and not the global minimum to its left hand side in figs. 4.11 b), 4.12 b). This relationship
approximately describes every ring down signal leaking out of any resonator mirror except the input

19Due to the aforementioned modifications in the ring down oscillations with BBO, a positive sign has to be chosen for
this scenario.

20The missing factor of 2 under the square root in eq. (4.27) with respect to the formula, stated in ([91]), is due to our
set-up being a ring cavity, in which the entire round-trip length is Lcav, whereas An et. al. ([91]) have been considering a

linear, two mirror arrangement with a mirror separation of L
[91]
cav and consequently a round-trip length of 2 ·L[91]

cav , entering
their expression for the interference minima distance.

21The extension of the PZT crystal is specified as 2.2 µm/100 V with an uncertainty of ±20%.
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coupler. Here the interference between E′
cav(tm + t′) and the external field E(tm + t′), expressed by eq.

(4.23), could potentially modify the oscillation periods. However as we neglect the interference term 3
in eq. (4.23) it shall be applied here. Plugging the cavity length of Lcav = 3.71 m, the piezo travelling
ranges ∆Lpiezo and frequencies fpiezo into eq. (4.27) yields the theoretically expected times T theo

12 , which
are stated together with the durations from the measurements in table 4.2.

Piezo freq. [kHz] T theo
12 expected [ns] T exp

12 with BBO [ns] T12 without BBO [ns]
7 267 169 325
10 316 − 287
15 258 − 432
20 224 146 186
20 224 183 200
25 200 138 169

Table 4.2: Time separation of the first two minima in oscillation of the ring down signal. Theoretical
numbers are calculated by eq. (4.27).

Indeed the value for fpiezo = 15 kHz without BBO reveals severe deviations in this parameter from the
theoretical expectations. Also the value for fpiezo = 7 kHz with BBO differs from the trend set by the
other data, which roughly resembles T theo

12 . The ring down times for both measurements are furthermore
considerably off the averaged outcome among all the other ones, whereby the former digresses by more
than 4 standard deviations from their mean value and the latter is off by as much as 7.6 standard
deviations. Thus the datasets at fpiezo = 7 kHz with BBO and the one at fpiezo = 15 kHz without
BBO will be neglected in the following analysis, which is justified, since τ is directly proportional to the
finesse and we expect F to be equal for all datasets. Regarding the deviations of all other measurements
from their theoretical expectation in table 4.2, one should keep in mind, that first of all eq. (4.27) only
provides an approximate quality measure for the data22. Second, the extension length of the PZT is
only specified within an error boundary of 20 % around the calculated value. Finally, a possible reason
for such a mismatch could of course also be the already mentioned blurring of the oscillations, due to
the multimode nature of our ring down signal. Nevertheless we continue the finesse evaluation with the
residual data in table 4.2.

Resonator reflectivity and reflectance We can conclude onto the mirror reflectivities rj , respec-
tively their reflectances Rj , by the aid of eq. (4.17). The errors on both can be computed from the
uncertainties of the ring down time ∆τ and the repetition rate ∆frep. However because the error ∆r
cannot be gained from ∆R simply by taking the square root and since the cavity reflectivity as well as
the reflectance will be needed shortly, their resulting numbers are stated separately in table 4.3 for both
experimental arrangements23.

Piezo freq. [kHz] r with BBO R with BBO [%] r without BBO R without BBO [%]
7 − − 0.9876± 0.0004 97.53± 0.08
10 − − 0.9867± 0.0004 97.35± 0.08
20 0.963± 0.002 92.9± 0.5 0.989± 0.0004 97.82± 0.07
20 0.961± 0.002 92.4± 0.4 0.9879± 0.0004 97.6± 0.07
25 0.9395± 0.0007 88.3± 0.1 0.985± 0.0005 97± 0.1

Table 4.3: Reflectivities r and reflectances R for the entire cavity apparatus with and without the BBO
crystal inside, gained from eq. (4.17).

Before moving on to calculating the finesse, one can briefly check the cavity losses associated with these
22Therefore the fnoBBO

piezo = 15 kHz and fBBO
piezo = 7 kHz values are not solely disregarded on the basis of their deviation

from T theo
12 , but also by their huge deviation from the mean, set by the other data.

23The respective formulae for the two errors are:

∆r =

√√√√
(

1

2f2
repτ

exp

(
− 1

2frepτ

))2
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1

2frepτ2
exp

(
− 1
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))2

(∆τ)2
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reflectances. We know that the reflectance of the entire cavity is proportional to the cavity loss L. In
other words, each bit of light intensity that does not get reflected, gets transmitted or absorbed, so
R = 1 − L. During designing the cavity, an input coupler reflectance for a resonator with BBO of
RIC,BBO = 97.36 % and one of RIC,noBBO = 98.72% has been figured out to be appropriate (see subsec.
2.1.3). Since R represents the entire cavity reflectance, division by RIC yields the one of apparatus
without the input coupler, still containing all other three mirrors as well as the losses due to air and the
non-linear crystal (if it is included), whereby the reflectances of mirrors M1, M2 and M4 are ≥ 99.9%.
So by calculating RnoIC,BB0 = RBBO

RIC,BB0 and RnoIC,noBB0 = RnoBBO

RIC,noBB0 , the losses, the intensity in the ring
down signal experiences, can be assessed and compared with the values for the combination of the BBO
crystal, air and the mirrors M1, M2, M4. The relevant numbers are:

Piezo freq. [kHz] RnoIC,BBO [%] LBBO [%] RnoIC,noBBO [%] LnoBBO [%]
7 − − 98.79± 0.08 1.21± 0.08
10 − − 98.62± 0.08 1.38± 0.08
20 95.4± 0.5 4.6± 0.5 99.08± 0.07 0.92± 0.07
20 94.9± 0.4 5.1± 0.4 98.86± 0.08 1.14± 0.08
25 90.7± 0.1 9.3± 0.1 98.3± 0.1 1.7± 0.1

As average loss values, L̄noBBO = 1.3 ± 0.3% is recieved without BBO and L̄BBO = 6.3 ± 2.6% with
BBO, whereby the errors represent the standard deviation. Both are larger than the expectations based
on calculations of the optical components’ properties. From the discussion in subsec. 2.1.2, we receive
a loss estimate for the cavity without BBO of LnoBBO ≈ 0.16% and for the presence of the crystal we
approximate LBBO ≈ 1.5%. However the best choices of input couplers, see eqs. (2.55) and (2.57),
considering the entire spectrum, would indicate a loss rate of L̃noBBO ≈ 2.64% and L̃BBO = 1.28%.
These values are nevertheless also a function of the external and internal mode overlap, as outlined in
subsec. 2.1.4, so they do not only account for losses in the cavity but also include contributions due to
dispersion. The latter terminates coupling of certain modes into the cavity, causing an overestimation of
the losses these modes would experience with respect to a situation, where dispersion would be absent and
they would actually be resonant. As we have measured the ring down signal with the full spectrum of the
pumping pulse, these spectrally averaged loss values are therefore the more appropriate ones to compare
L̄noBBO, L̄BBO to. The first number L̄noBBO = 1.3 ±0.3% from the ring down measurement thus accords
at least with the figure retrieved by input coupler optimisation. The second value of L̄BBO = 6.3 ± 2.6%
does not correspond to any of the appraisals though24. A possibility for such a mismatch might again be
due to in employing a broadband spectrum to investigate the ring down time, washing out the oscialltions
and hence preventing one from retrieving the proper mirror reflectances. But this is just one potential
reasoning and a proper verification of the deviations’ origin is not clear yet. This leaves us with the
notion, that quantities infered from this measurement, especially for the arrangement with BBO, are an
estimation only.

Finesse Nevertheless the conclusion onto the resonator’s finesse25 shall be accomplished by eq. (4.18)
with the overall reflectivities stated in table 4.3. The results are provided in table 4.4.

Piezo freq. [kHz] Finesse with BBO Finesse without BBO
7 − 251± 9
10 − 234± 7
20 85± 6 285± 10
20 80± 4 258± 8
25 50± 1 209± 7

Table 4.4: Finesse of resonator obtained from datasets at different piezo sweeping frequencies, calculated
by eq. (4.18).

For a mean value of the finesse, we thus achieve

F̄BBO ≈ 72± 19 (4.28)

with the BBO crystal and

24Even if the differing datapoint for frep = 25 kHz is neglected, still an attenuation of L̄′BBO
= 4.8 ± 0.3% would be

implied by the ring down method, exceeding the real resonator losses.
25Errors on the individual datasets are computed according to ∆F =

( √
r

(1−r)2
+ 1

2
√

r(1−r)

)
π∆r.



70 CHAPTER 4. CHARACTERISATION OF CAVITY PARAMETERS

F̄ noBBO ≈ 247± 28 (4.29)

without it. The errors on these averages are the standard deviations between all contributing data, since
those are larger than the propagated individual errors and account more appropriately for the discrepan-
cies between the numbers at different piezo frequencies. The presence of the non-linear medium obviously
deteriorates the quality of the resonator by approximately a factor of 3.5. In turn, by maintaining the
same FSR, the cavity resonances widen by an equal amount due to F ∼ 1

∆ωF W HM
. So matching external

frequency comb modes to these, or in other words coupling light into the resonator, should be much easier.
Indeed that has been observed experimentally during recording of internal UV spectra for measuring the
spectrally resolved power enhancement. While the cavity offers stable enhancement over a time scale of
days up to a week, if the crystal is included, it is otherwise challenging to have it stabilised even for a
couple of minutes. However this does not only result from a higher sensitivity to dispersive displacements
between external comb teeth and cavity resonances, but also from the higher susceptibility to any source
of noise, for instance caused by vibrations, which dislocate the latter modes with respect to the former,
thereby terminating the input coupling.

Comparison with power enhancement As initially mentioned, it is not sensible to extract the
finesse from a power enhancement measurement for broadband resonators, accommodating ultra-short
laser pulses. Contrary, it is nonetheless feasible to gain a gross idea about significance of the separately
yielded finesse by comparing the power enhancement it suggests, denoted by PE′, with the value really
apparent, assigned as PE. We will do so using the connection between power enhancement and finesse,
given by

PE′ =
F

π
, (4.30)

i.e. dividing eqs. (4.28) and (4.29) by π leaves us with a power enhancement of ¯PE′BBO = 23 ± 6 and
¯PE′noBBO = 79± 9. These numbers are best to be compared to the maximum of the spectrally resolved

power enhancement PE(λ). That is because we expect the finesse to be rather constant over the pulse
spectrum due to the approximate constancy in the mirror reflectances as well as BBO and air absorption.
In contrast, the power enhancement strongly depends on the input coupling condition, set by frequency
comb matching, and does therefore only accord to eq. (4.30) for perfect dispersion compensation, fulfilled
best at the maximum of the power enhancement spectrum PE(λ). This is not a contradiction to what
has just been said in the course of the cavity loss estimation. A finesse value, retrieved from the power
enhancement, is only sensible for impedance matched coupling, when eq. 4.30) is solely valid. A com-
parison with a finesse value, derived from the spectrally integrated power enhancements P̄E

j (eqs. (4.5),
(4.6)), is hence not sensible, since the connection between both quantities is not well defined. Referring
to the previous discussion in subsec. 4.2.3, figures turned out to PEBBO

max (λ = 390.92 nm) = 17± 3 with
the crystal and PEnoBBO

max (λ = 391.11) = 45 ± 10 without it. Before establishing a connection with the
¯PE′s, it is necessary to become aware of the difference in the way of their determination: PE′ values

solely account for features intrinsic to the resonator, i.e. enhancement experienced by light already trans-
mitted through the input coupler, whereas the PE ones also include the effects of reflection off the input
coupler. That is to say, the latter quantity has been scaled to the total26 amount of stored internal to
the total external UV power and hence includes a reduction in power enhancement by a factor of 2,
which is due to transverse mode mismatch at the input coupler as outlined in subsec. 3.1.2. Spoken
more precisely: Since ≈ 50% of the external UV light of P ext

UV ≈ 0.54 mW , impinging onto the input
coupler, are reflected by that component, only tICP ext

UV ≈ 0.27 mW make it into the resonator and can
be enhanced. The power enhancement values PE are normalised to P ext

UV ≈ 0.54 mW though and are
thus artificially diminished, due to our definition of PE as ”power within the cavity divided by power
outside the cavity”. So the values for PE′ have to be halved in order to accound for this inequality
in definition. We consequently yield with the BBO ¯PE′′BBO = ¯PE′BBO

2 ≈ 12 ± 3, which is to be com-
pared with PEBBO

max (λ = 390.92 nm) = 17 ± 3, and without it P̄E
noBBO ≈ 40 ± 5, to be contrasted with

PEnoBBO
max (λ = 391.11) = 45 ± 10. Both sets of values coincide within their error boundaries, although

they still deviate and the uncertainty ranges are rather large27. The figures for the finesse are hence to
be regarded sensible in terms of their correspondence with results obtained from independent measure-
ments. Nevertheless the non perfect resemblance underlines, that the finesse evaluation, presented here,
just provides an estimation about the precise number for this parameter. This has to be kept in mind,

26i.e. spectrally integrated over all frequencies within the laser pulses
27Especially for PEnoBBO

max , due to the low statistics on the spectra, caused by the problematic cavity locking.
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particulary since the power enhancement PE(λ) is a rather precisely, flawlessly and, above all, directely
measured value, which puts the numbers of PEmax(λ) on solid footings. The finesse and its associated
implications (like PE′ and RnoIC) are opposingly acquired indirectly and are subject to approximations
and uncertainties, which are stated in the appendix B.3.
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Chapter 5

Characterisation of pulse duration
within resonator

5.1 Introduction into autocorrelation with SPDC

5.1.1 Determination of pulse duration with autocorrelation

Within this chapter, the duration of the intra-cavity UV pumping pulses will be measured. Since laser
pulses with durations on the order of femtoseconds are far too short to be measured by electronic means,
self-referencing techniques in the optical domain are commonly utilised instead. These are based on the
idea of measuring the pulse under study with a time delayed copy of itself by the aid of a generated
signal, which is sensitive to the overlap, respectively the convolution between both pulses. Varying the
time separation and thus moving one pulse over the other, produces a signal, whose width is proportional
to the pulse duration and therefore allows sampling of the pulse’s electric field amplitude. It is obvious,
that an optical process, generating the desired signal, cannot be linear in the electric field, since it has to
be sensitive to the overlap between the fields and not just to their superposition. In other words, the signal
s has to comprise terms proportional to E1 ·E2, whereby Ei represents the electric field of the ith pulse.
So non-linear optical processes have to be utilised, which result for two pulse copies in s ∼ (E1 + E2)n

for a process on the order of n. Commonly, non-linearities scaling with second order in the electric field,
i.e. n = 2, are used for such measurements, whereby especially second harmonic generation ([96]) became
the workhorse in this field. Nevertheless we will employ SPDC as the process of choice. The easiest and
oldest approach to infer the pulse duration from such a generated non-linear signal is to just measure its
strength as a function of pulse separation τ and set the width of the resulting function in relation to the
duration of the expected underlying pulse. Such a measurement is termed autocorrelation and will also
be the method of our choice to gather information about the intra-cavity pulse length. Although there
are more advanced schemes at hand, which allow retrieval of addition information (see references [115]-
[124]), the aforementioned method will suffice for our needs. Furthermore one can distinguish between
two different types of autocorrelation. The first one is incorporating the intensities of the overlapping
pulses and is therefore termed intensity autocorrelation, see references ([97], [98]). The second one in
contrast is sensitive to the pulses’ electric fields, consequently named interferometric autocorrelation, first
considered in reference ([95]). We will focus on the latter version for reasons to be outlined within the
following section and start the discussion by evaluation of the autocorrelation function for the down-
conversion process. More general information about autocorrelation can be found in ([79], [111]) and
references therein.

5.1.2 Autocorrelation by the SPDC process

Although the fundamental requirement to obtain an autocorrelation type signal is to just have a non-
linear process available for its generation1, taking a closer look at our specific effect of SPDC will be
fruitful. Since SPDC is not a standard means for this kind of measurement, indeed to our knowledge no
previous attempt has been published so far, evidence about the applicability of autocorrelation theory
shall be provided in the first place.

1See reference ([92]) for general discussions about this manner. Particular examples of implementing an autocorrelation
without using frequency conversion can e.g. be found in reference ([93]) employing two photon absorption, or reference
([94]), relying on the non-linear electron emission from a tungsten needle tip.
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Before examining the down-conversion effect in more detail, the reader shall be made aware of the
terminology used within this chapter, referring to an expression given by the superposition of two electric
fields, according to ([110])

gn(τ) =

∫∞
−∞ |(E1(t) + E2(t− τ))n|2dt∫∞

−∞ |(E1(t))n|2dt +
∫∞
−∞ |(E2(t))n|2dt

, (5.1)

as the correlation function of nth order ([110]). This stands in contrast to the nomenclature commonly
used in the field of quantum information science, where a correlation is represented by the expectation
value of a tensor product of projectors instead of the expectation value of a linear combination of opera-
tors2 to the power of n (see also section 6.2). However it is commonplace when dealing with measurements
on ultra-short laser pulses and shall therefore be used here as well.
The second order (n = 2) of the gn-functions is generally adopted when measuring autocorrelation, which
relies on effects involving two pump photons. While it is thus sufficient for an SHG-based system to just
record one signal photon, for SPDC four photons have to be measured, since each pumping photon splits
up into a signal and idler photon. Since the BBO crystal inside the optical resonator is orientated for
collinear type-II down-conversion (see subsec. 6.1.2), two horizontally and two vertically polarised pho-
tons are required to be measured for g2. In contrast only one horizontally and one vertically polarised
photon is needed to yield the first order correlation g1(τ). For the following discussion a single mode de-
scription for SPDC shall be considered in the first place and subsequently extended towards the inclusion
of multi mode effects, which result from a finite phase matching bandwidth and a pulsed pumping beam
([114], [126]). Doing so is justified, as we are only interested in the terms regarding the pump pulses,
unlike e.g. the autocorrelation measurement on the down-converted photons stated in reference ([100]).
Any implications by phase matching as well as the spectral features of the SPDC photons are thus of no
concern at the moment as these will all be integrated over in detection, resulting just in a scaling factor
for the number of measured photon pairs. The interaction Hamiltonian for type-II SPDC is introduced
in subsec. 6.1.2, whereby the resulting output state of the conversion process is given by3 (eq. (6.13)):

|Ψ(t)〉 =
√

1− tanh2 |g′|
∞∑

n=0

tanhn |g′|
n!

(
â†H â†V

)n

|vac〉 (5.2)

The variable g′ represents an interaction parameter in this expression, which is proportional the non-
linearity and the length of the BBO crystal as well as the phase matching and the pumping power PUV .
Further the annihilation and creation operators for SPDC fields at a particular frequency with horizontal
or vertical polarisation are assigned by â†H , âH , â†V , âV . Considering the pump power values we will
have available during the actual autocorrelation experiment, these will be situated within an interval of
PUV ∈ [1.97 W, 3.47 W ]. From a simulation of our set-up, carried out in reference ([139]), the parameter g′

can in turn be figured out to lie within an interval of g′ ∈ [0.21, 0.28]. Such a parameter range is suitable
for the small pumping power approximation g′ ¿ 1, leading to tanh |g′| ≈ |g′| and

√
1− |g′|2 ≈ 1, under

which eq. (5.2) simplifies to (see eq. (6.17)):

|Ψ(t)〉 ≈
∞∑

n=0

|g′|n
n!

(
a†Ha†V

)n

|0〉 =
∞∑

n=0

|g|n
n!

(
a†Ha†V b̂p

)n

|0, p〉 (5.3)

Here also the quantisation of the pump field has been taken into account by splitting up g′ into a crystal
parameter dependent constant g and the destruction operator b̂p, operating on the pump field |p〉. Now
the particular situation for an autocorrelation set-up has to be taken into account. Since there are two
pumping pulses of which one is delayed with respect to the other by a variable time separation τ , there has
to be some ambiguity in the origin of the down-converting pump photon. In other words, to be sensitive to
the pulses’ overlap, the conversion must be able to occur with equal probability either at time t or t−τ . We
include this pump pulse structure into the interaction model by assuming equal electric field amplitudes
between both pulses and rewriting the pump field annihilation operator as b̂p = 1√

2

(
b̂p(t) + b̂p(t− τ)

)
,

acting on a photon from the pulse at time t or t− τ , respectively. Eq. (5.3) modifies to:

|Ψ(t)〉 =
∞∑

n=0

|g|n
n!

(
a†Ha†V

)n

|0〉
(

1√
2

(
b̂p(t) + b̂p(t− τ)

))n

|p〉 (5.4)

2Here in the classical limit electric field amplitudes
3Here the interaction parameter τ from eq. (6.13) has been substituted by the symbol g′ in order to avoid confusion

with the time separation between pumping pulses, also referred to as τ .
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Further simplification is achieved by utilising the process strength once more: Since the efficiency of
the down-conversion process is rather small, scaling with ≈ 10−12 · Ipump, the depletion of the pumping
beam can be neglected. With a total average pumping power during this measurement of ≈ 2.3 W at a
repetition rate of ≈ 80 MHz, a pulse energy of Epulse = 1

2 · 2.3 W
80 MHz ≈ 29 nJ is obtained, corresponding

to an approximate number of npulse = Epulseλ
hc ≈ 57 · 1010 pump photons per pulse of which about4

57 ·1010 ·10−12 = 0.057 are converted, so roughly only a small portion of the pulses, propagating through
the crystal, takes part in the frequency conversion. Therefore the pump field can comfortably be treated
classically, resulting in bp(t)|p〉 = E0(t) and bp(t−τ)|p〉 = E0(t−τ), whereby E0(t′) is the complex valued
electric field amplitude functions of a classical ultra-short laser pulse at time t′. Hence eq. (5.4) reduces
to:

|Ψ(t)〉 =
∞∑

n=0

|g|n|nH , nV 〉SPDC

(
1√
2

(E0(t) + E0(t− τ))
)n

(5.5)

In the experiment, the 2n-photon coincidence count rate gets measured by the aid of the linear optical set-
up (see section 3.3), applied as a photon counting unit. The language of quantum mechanics translates this
into the expectation value of the photon number within the SPDC state |nH , nV 〉SPDC, evaluated by the
conditional number operator, which for a four photon coincidence has the form ([101]) 〈: â†H â†V âV âH :〉.
For detecting n signal and idler photons, we obtain the expression

〈: n̂H , n̂V :〉 = 〈Ψn(t)|â†H â†V âV âH |Ψn(t)〉
= |α′|2 〈nH , nV |â†H â†V âV âH |nV , nH〉︸ ︷︷ ︸

=nSPDC pairs

(E∗
0 (t) + E∗

0 (t− τ))n · (E0(t) + E0(t− τ))n

= |α′|2nSPDC pairs| (E0(t) + E0(t− τ))n |2 (5.6)

whereby α′ is a proportionality constant, including g and factors of 1√
2
, nSPDC pairs represents the number

of photon pairs and |Ψn(t)〉 is state resulting from the nth order SPDC emission, given by

|Ψn(t)〉 = |g|n|nH , nV 〉SPDC

(
1√
2

(E0(t) + E0(t− τ))
)n

So far, all down-conversion photons have been assumed within the same frequency mode. This is clearly
oversimplified as, due to the phase matching condition5, in SPDC an entire continuum of down-converted
photons is generated, which is also highly correlated in its wavelength and momentum degree of freedom
(see [101], [102]). Including now all SPDC wavelengths possible, the annihilation and creation operators
for signal and idler have to be rewritten as6 ([101])

â
(†)
H,V →

∑
ωH,V

â
(†)
H,V (ωH,V ) −→

continuum

∫

ωH,V

dωH,V â
(†)
H,V (ωH,V ).

Furthermore we have only allowed for pump photons at a certain point in time within the pumping pulses.
Since these have a certain duration, referred to as τp, all times t′ ∈

[
−τp

2 ,
+τp

2

]
have to be included as

well, resulting in an integration over t′. In our model for the autocorrelation, we will only treat isolated
optical pulses, that is to say no pulse trains of 80 MHz repetition rate are considered. Therefore the
integration boundaries of t′ can be extended to ±∞. All these changes plugged into eq. (5.6) yield the
following expression7:

4Assuming a non-linear conversion efficiency of χ(2) ∼ 10−12.
5See the discussion in subsec. 5.3.3 later on in this chapter.
6Different pump and emission directions are neglected here, as the former are relevant for phase matching, which we

considered as fulfilled here for all contributing wavelengths ωH,V , and the latter determine the spatial distribution of SPDC
photons, which is of no concern due to its fixation be the SM fibre coupling (see section 3.3).

7The double integral stems from the presence of aH,V and a†HV in eq. (5.6).
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〈: n̂H , n̂V :〉 ∼
∫

ωH

∫

ωH

〈nH(ωH)〉dωH

︸ ︷︷ ︸
S(ωH)

dωH ·
∫

ωV

∫

ωV

〈nV (ωV )〉dωV

︸ ︷︷ ︸
S(ωV )

dωV ·
∫ +∞

−∞
| (E0(t′) + E0(t′ − τ))n |2dt′

=
∫

ωH

S(ωH)dωH ·
∫

ωV

S(ωV )dωV

︸ ︷︷ ︸
∼ntotal

order n SPDC

·
∫ +∞

−∞
| (E0(t′) + E0(t′ − τ))n |2dt′

= ntotal
order n SPDC ·

∫ +∞

−∞
| (E0(t′) + E0(t′ − τ))n |2dt′ (5.7)

whereby S(ωs) and S(ωi) represent the respective spectra of the signal and idler photons, and ntotal
order n SPDC

is the total number of down-conversion pairs in the nth order emission, including all signal and idler
wavelengths possible8.
The only relevant term for us here is the second one in the above expression, which results from the
pulsed temporal structure of the pump. We can infer by comparison with eq. (5.1) that it constitutes
the numerator of the nth order autocorrelation signal. If one now normalises eq. (5.7) by the sum of the
background signals, either at time t and t − τ , obtained for a single pulse only, i.e. 〈: n̂H , n̂V :〉(t) ∼
ntotal

order n SPDC ·
∫ +∞
−∞ |En

0 (t)|2dt′ and 〈: n̂H , n̂V :〉(t− τ) ∼ ntotal
order n SPDC ·

∫ +∞
−∞ |En

0 (t− τ)|2dt′, an expression
equal to eq. (5.1) is obtained

〈: n̂H , n̂V :〉(t, t− τ)
〈: n̂H , n̂V :〉(t) + 〈: n̂H , n̂V :〉(t− τ)

=
ζ · ntotal

order n SPDC ·
∫ +∞
−∞ | (E0(t) + E0(t− τ))n |2dt′

ζ · ntotal
order n SPDC ·

(∫ +∞
−∞ | (E0(t))

n |2dt′ +
∫ +∞
−∞ | (E0(t− τ))n |2dt′

)

=

∫ +∞
−∞ | (E0(t) + E0(t− τ))n |2dt′

∫ +∞
−∞ | (E0(t))

n |2dt′ +
∫ +∞
−∞ | (E0(t− τ))n |2dt′

= gn(τ), (5.8)

where the ”=” sign can be used as the additional proportionality factors ζ, the photon count rate is also
subject to9, drop out. If we now furthermore consider, that the count rates

〈: n̂H , n̂V :〉(t) + 〈: n̂H , n̂V :〉(t− τ) = 2 · 〈: n̂H , n̂V :〉(t)

are contained in an autocorrelation measurement already for pulse separation values t À τpulse, i.e. out-
with the pulses’ interference region, our ability to record an autocorrelation curve is certified by eq. (5.8).
The last expression (5.8) tells us how to evaluate the recorded data. This is done by normalisation of all
data points to the average value of count rates at positions far outside the pulses interference region.
Importantly, we can infer from eq. (5.8) the unique ability, to infer all different orders n in the interfero-
metric autocorrelation signal10 from the down-conversion process simultaneously, with the specific order
defined by the chosen number of observed photon pair coincidences. This feature is to be contrasted with
the commonly applied SHG autocorrelation measurements, which only enables access to the second order
g2-function in their standard set-up. However, since expression (5.8) is only valid in the low pumping
power limit with g′ ¿ 1, the strength of higher order SPDC pair emissions is rather weak as we will see
in the course of subsec. 6.3.2.

5.2 Theory on correlation functions of first and second order

Within the following part of this chapter the necessary correlation functions and related expressions
will be derived. It will be dealt with first and second order autocorrelation, whereby focus is placed on
our particular experimental situation. Furthermore the information retrievable in both cases shall be
examined in a little bit more detail, especially with respect to the correspondence between first order

8Since the aforementioned spectra have been introduced artificially into the discussion, the reader might want to refer
to a more thorough analysis of these contributions in reference ([101]).

9Such are e.g. the collection and coupling efficiency into the SM fibre (see section 3.3 and fig. 5.6) and the distribution
probability of four photons into four distinct spatial modes in the linear optical set-up (see fig. 3.3).

10See subsec. 5.2.3 for details.
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correlation and pulse spectra as well as regarding the difference between intensity and interferometric
autocorrelations.

5.2.1 First order correlations

General form of first order correlation The first order correlation function is proportional to the
intensity yielded by the linear superposition of the electric fields from two optical pulses, separated in
time by τ with respect to one another. Mathematically spoken, g1(τ) is:

g1(τ) =

∫∞
−∞ |E1(t) + E2(t− τ)|2dt∫∞

−∞ |E1(t)|2dt +
∫∞
−∞ |E2(t− τ)|2dt

. (5.9)

This expression is very well known to represent interference of first order ([84]), thus no non-linear effect
is needed in the context of its measurement and it can e.g. just be recorded by observing the output of
a standard interferometer with a linear detector11.
It is now important to consider the situation of having two electrical fields differing in their respective
amplitude, i.e. |E1(t)| 6= |E2(t)|. As it will turn out, during discussing the implementation of the pulse
length measurement (section 5.3), we will be dealing with a non ideal interference visibility of V ≤ 1.
This degradation leads to non perfect interference. Hence it is advantageous to rewrite the electric field
amplitudes of the overlapping pulses according to

E1(t) = a · E′(t) (5.10)
E2(t− τ) = b · E′(t− τ), (5.11)

with a, b ∈ R. Herein E′(t) and E′(t − τ) represent the same arbitrary pulse amplitude centred at two
different times t, t − τ . Furthermore real electric fields shall be assumed here, i.e. E1(t) = E∗

1 (t) and
E2(t−τ) = E∗

2 (t−τ), since they are the appropriate quantities for future comparisons with experimental
data. The g1(τ)-function can thus be expressed as:

g1(τ) =

∫∞
−∞ |E1(t) + E2(t− τ)|2dt∫∞

−∞ |E1(t)|2dt +
∫∞
−∞ |E2(t− τ)|2dt

= 1 +
2

∫∞
−∞E1(t)E2(t− τ)dt∫∞

−∞E1(t)2dt +
∫∞
−∞E2(t− τ)2dt

= 1 +
2ab

∫∞
−∞E′(t)E′(t− τ)dt

a2
∫∞
−∞E′(t)2dt + b2

∫∞
−∞E′(t− τ)2dt

(∗)
= 1 +

2ab

a2 + b2
·
∫∞
−∞E′(t)E′(t− τ)dt∫∞

−∞E′(t)2dt
︸ ︷︷ ︸

=:(∗∗)

(5.12)

For computing the denominator, the equality between
∫∞
−∞E′(t)ndt and

∫∞
−∞E′(t− τ)ndt has been used,

which becomes obvious by substitution:
∫ ∞

−∞
E′(t− τ)ndt

︸ ︷︷ ︸
Subs:t′→t−τ ;dt→dt′= dt′

dt dt=dt′

=
∫ ∞

−∞
E′(t′)ndt′. (5.13)

Indeed, in the case of equal pulse amplitudes a = b, the prefactor in front of the term (∗∗) in eq. (5.12)
reduces to unity and the commonly stated expression for normed first order interference is obtained
([110], [113]). For recording the g1(τ)-function in our experiment, there are several opportunities offered
by placing an interferometer in front of the enhancement resonator12: On the one hand, the intensity
can be measured directly, e.g. by monitoring the signal with a photodiode or by logging the power level
inside the resonator. On the other hand the SPDC process also provides an appropriate means, since
down-conversion of a single UV pumping photon generates two infra-red photons. These single photon

11which is also done in our measurement, see fig. 5.6
12see fig. 5.6
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pair processes are linear in the pump field amplitude (see eqs. (5.5) and (5.8)), and can therefore be
associated with a certain pulse, providing a first order interference signal as well. In the course of the
experiment all three possible methods have been applied to gain the g1(τ)-function.
Its evaluation however demands the assumption of a particular underlying pulse shape, whereby we choose
in this respect to follow the most widespread approach and presume our laser pulses to be either Sech- or
Gauss-like. The g1(τ)-functions for both pulse models shall consequently be calculated in the following.

g1(τ) for Gaussian pulses In the case of Gaussian pulses, the electric field distribution for both
interfering pulses is given by:

EGauss(t) = E1,2 · exp

(
−t2

2 (∆t)2

)
· cos (ω0t) (5.14)

Within this function the pulse envelope has conveniently been centred around zero pulse delay and
any additional temporal phase has been neglected since it does not influence the first order correlation
function, as will be shown later in subsec. 5.2.2. Plugging the pulse model (5.14) into eq. (5.12), the
Gaussian g1(τ)-correlation function can be gained by integration of the term (∗∗). The result can e.g. be
found in ref. ([110]), leaving us with a first order correlation for Gauss-pulses of:

gGauss
1 (τ) = 1 +

2ab

a2 + b2
· exp

(
−τ2

4 (∆t)2

)
· cos (ω0τ). (5.15)

As we will see during the discussion about the circumstances for the actual measurement in section
5.3, only the values at constructive and destructive interference will be important for data evaluation,
wherefore the oscillating term cos (ω0τ) can be taken at its extrema and set to ±1, reducing eq. (5.15)
to the proper g1(τ) fitting functions

gGauss
1 (τ) = 1± 2ab

a2 + b2
· exp

(
−τ2

4 (∆t)2

)
, (5.16)

whereby the minus sign applies for interference minima and the plus sign has to be taken for fitting
interference maxima. A graphical representation of first order interference (eq. (5.15)) and its envelopes
(eq. (5.16)) is given in fig. 5.1, which depicts perfect interference, i.e. a = b ⇒ 2ab

a2+b2 = 1, on its left
hand side. On the right hand side a situation for a reduced interference with parameters a = 1, b = 0.477
is displayed, which corresponds to the average value of all b parameters, received during the actual
measurement. The interference visibility, defined by

V =
(a + b)2 − (a− b)2

(a + b)2 + (a− b)2
=

2ab

a2 + b2
(5.17)

and discussed more thoroughly in terms of its physical implications within the experimental part of this
chapter, is V = 0.777 for this set of electric field amplitude parameters.

g1(τ) for Sech pulses Assuming a Sech-shape for the underlying UV pulses requires an electric field
model of:

ESech
1 (t) = E1,2 · sech

(
t

∆t

)
· cos (ω0t) (5.18)

The expression can be inserted into eq. (5.12) as well, and by solving the relevant interference integral
(∗∗), one ends up with the g1(τ)-function for Sech-pulses ([110]):

gSech
1 (τ) = 1 +

2ab

a2 + b2
·

τ
∆t

sinh
(

τ
∆t

) · cos (ω0τ) (5.19)

Once more, only the points at constructive and destructive interference will become important, simplifying
eq. (5.19) to:

gSech
1 (τ) = 1± 2ab

a2 + b2
·

τ
∆t

sinh
(

τ
∆t

) (5.20)

Both, the Sech-first order interference function (eq. (5.19)) and its envelope (eq. (5.20)), have also been
plotted in fig. 5.1, again for perfect interference on the left and conditioned to the parameters a = 1
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Figure a) Figure b)

Figure c) Figure d)

Figure 5.1: g1(τ)-correlation function (black curve) with envelopes for Gaussian pulses (blue curve)
together with the full g1(τ)-function for Sech-pulses (grey curve) and its envelopes (red curve) for a value
of ∆t = 100 fs. The left picture shows the situation of complete interference, the right one reduced
interference. The upper row includes the entire interference region, whereas in the lower row an interval
between −10 fs ≤ τ ≤ +10 fs has been cut out for the Gaussian g1(τ)-function, to allow spotting of the
interference fringes.
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and b = 0.477 on the right. We can observe from fig. 5.1 a peak-to background ratio of 2 : 1 in the
case of perfect interference between both pulses, deminishing to a lower value of 1 + b : 1 ⇒ 1.477 : 1
for the degraded situation (a = 1, b = 0.477). It can furthermore be inferred that the interference
pattern in both first order correlation functions (5.15) and (5.19) oscillates at the carrier frequency ω0

of the electromagnetic fields involved (eqs. (5.14), (5.18)). Thus one can in principle yield the latter by
measuring the width of the individual interference fringes, if a complete interferogram is available.

FWHM of the correlation functions and minimal pulse duration It is interesting to evaluate
the full width at half maximum (FWHM) values for the gl

1(τ)-functions (l ∈ Sech, Gauss) and set them
into a relation with the FWHM of the actual optical pulses in the time domain. This is because the
FWHM pulse durations obtained from the gl

1(τ)-functions via the aforementioned connection constitute
a measure for the minimum possible pulse duration allowed by the spectral content of the underlying
pulses, as we will see in the upcoming discussion about the spectral information inherent in the first order
interference.
To establish this relation, it has to be defined what exactly is meant by pulse duration in the first
place: This work will follow the convention to name the FWHM of the envelope of the pulse’s intensity
distribution its pulse duration13. The pulse duration is therefore strictly defined by the value τFT,l, which
satisfies the following conditions:

IGauss
env (±τFT,Gauss

2
) = a2 exp

(
− (±τFT,Gauss/2)2

(∆t)2

)
!=

a2

2
(5.21)

and

ISech
env (±τFT,Sech

2
) = a2sech2

(±τFT,Sech

2∆t

)
!=

a2

2
(5.22)

Solving the above equations for τFT,l yields the dependence between pulse duration and width parameter
∆t for the respective pulse model:

τFT,Gauss = 2
√

ln 2 ·∆t (5.23)

τFT,Sech = 2arcsech
(

1√
2

)
·∆t. (5.24)

In an analog fashion, the FWHM values ∆τFWHM,l
g1 for the gl

1(τ)-correlation functions (eqs. (5.16) and
(5.20)) can be figured out as a function of ∆t ,defined by the conditions:

gGauss
1

(
±∆τFWHM,Gauss

g1

2

)
= 1 +

2ab

a2 + b2
· exp

(
−(±∆τFWHM,Gauss

g1 /2)2

4 (∆t)2

)
!= 1 +

1
2
· 2ab

a2 + b2
(5.25)

gSech
1

(
±∆τFWHM,Sech

g1

2

)
= 1 +

2ab

a2 + b2
·

±(∆τF W HM,Sech
g1 )

2∆t

sinh
(
±(∆τF W HM,Sech

g1 )

2∆t

) != 1 +
1
2
· 2ab

a2 + b2
, (5.26)

in which only the functions for interference maxima have been considered as the minima conditions are
redundant. Since these expressions are analytically solvable with all parameters a and b dropping out,
the values for ∆τFWHM,l

g1 are independent of the choices for {a, b} and hence of the interference visibility.

One yields constants αl
g1 =

∆τF W HM,l
g1

∆t with numbers of:

13Although there are other definitions in use, the chosen one is most suitable for our experimental situation and further-
more allows to compare results with standard textbooks, such as ([57], [58]). However this FWHM definition is particularly
poor for a situation with a lot of third order dispersion, TOD, on top of the pulses to be measured. Since TOD causes pulses
to be split up into a major (mother-) pulse and some adjacent ”sidepulses” at the leading or trailing edge, successively
decreasing in their intensity, the FWHM is not unambiguously defined anymore. That is to say, it depends whether such a
sidepulse exceeds half the intensity of the motherpulse for it to be considered for the FWHM of the pulse as well (see ([111])
for a more thorough discussion). Obviously it makes a major difference in the numerical outcome if such an additional
pulse is included or not, spoiling the applicability of the FHWM pulse duration definition. Since TOD and all higher order
dispersion contributions are negligible for our set-up, as we have seen in section 2.1.5, the FWHM definition is sensible.
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αGauss
g1 = 4 ·

√
ln 2 (5.27)

αSech
g1 = 4.35464 (5.28)

Combining both sets of factors (eqs. (5.23), (5.24) and (5.27), (5.28)) provides us with the desired conver-
sion factors γl

g1 = τF T,l

∆τF W HM,l
g1

between FWHM of the first order correlation functions gl
1(τ), ∆τFWHM,l

g1 ,

and the minimal possible pulse duration τFT,l, which are both consequently independent of the interfer-
ence visibility as well14:

γGauss
g1 =

1
2

(5.29)

γSech
g1 = 0.4048 (5.30)

One can recognise the Sech-shaped pulses to be generally shorter in time duration than their Gaussian
counterparts, a property which solely stems from the different weighting between wing and central peak
parts in both functions. The Gaussian has lower values for the former and is broader in the latter region,
rendering its FWHM larger and accordingly the pulse duration computed thereof longer.
At this point, a potentially misleading nomenclature shall be pointed out. One might tend to refer to
τFT,l as the coherence time of the pumping beam. This terminology will also be used in this work
when dealing with the temporal indistinguishibility of SPDC photon pairs in subsection 6.2.2. Therefore
usually the minimal pulse duration τFT,l of the SPDC photons is chosen as a decisive quantity, whereby
the ”coherence length” ∆xSPDC = c · τFT,l has to be greater than the spacings between individually
emitted pairs. However for mode locked laser pulses, the coherence time is defined by the inverse spectral
width of each individual frequency comb mode within the pulse spectrum. These are on the order of
time scales expected for conventional single mode cw lasers, e.g. τCW

Coh ≈ 1 ms À τFT,l, and by far longer
than the pulse duration. As the phrase ”coherence time” is therefore rather ambiguous, it will not be
used during the determination of the UV pulse lengths and only taken up for the SPDC photon pairs to
examine their indistinguishibility in chapter 6 later on.

5.2.2 Pulse spectra in connection with g1(τ)-functions

To receive the well known time-bandwidth products for short laser pulses and to furthermore shown the
insensitivity of first order correlation functions to any phase terms, the linkage between g1(τ) and the pulse
spectra shall be investigated. Therefore we have to consider the Fourier transform connection between
the time and frequency domain. By examination of eq. (5.12), it becomes clear that only the numerator
in term (∗∗) results in a non-constant contribution under Fourier transformation15. All constant parts
are neglected from now on, since the spectral data will be normalised for its analysis anyway. Focussing
on the relevant part we get:

FT{
∫ ∞

−∞
E(t) · E∗(t− τ)dt

︸ ︷︷ ︸
Convolution

} = FT{(E ⊗ E∗)(t)} = FT{E(t)} · FT{E∗(t)}, (5.31)

where use was made of the interference integral being the convolution between E(t) and its complex
conjugate as well as the Fourier transform (FT) of a convolution of two functions being equal to the
product of the Fourier transforms of each individual function ([103]).
The FT of the electric field in the time domain results in the spectral amplitude FT{E(t)} = E(ω) and
FT{E∗(t)} = E∗(ω) reducing eq. (5.31) to the spectral intensity16 of the pulse:

S(ω) = |E(ω)|2 = E(ω) · E∗(ω) = FT{E(t)} · FT{E∗(t)} (5.32)
We can now see, that any phase contributions, resulting e.g. from GVD or TOD effects, cannot affect
the pulse spectrum, as they show up by an additional spectral phase factor E(ω) = E0(ω) · exp (−iφ(ω))
in the frequency domain, cancelling out in eq. (5.32). Moreover they do not enter the g1(τ)-function
either, since there is a strict Fourier transform connection between S(ω) and g1(τ). We can now use eq.
(5.32) to calculate the expected theoretical spectral functions for both of our pulse models (eq. (5.14)
and (5.18)). This will enable us to later compare the spectral information in the first order correlation
measurements with the directly recorded UV spectra inside the cavity.

14This feature will turn out to be different for the second order correlation function
15Assigned as FT in the following.
16i.e. the spectrum measured by any spectrometer
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Figure 5.2: Theoretical spectral functions for Gaussian pulses (blue lines) and Sech pulses (red lines) with
a value of ∆t = 100 fs. The spectral functions, given by eqs. (5.34) and (C.3), which correspond to eqs.
(5.35) and (5.37) within the plot range, are shown for positive frequencies, relevant for the subsequent
comparison with measured spectra.

Spectra for Gauss-pulses For the Gaussian pulse spectrum, EGauss(t) = a · exp
(

−t2

2(∆t)2

)
· cos (ω0t)

is Fourier transformed as stated in the appendix C.1.1, yielding:

FT{E(t)} =
√

π

2
a∆t

(
exp

(
−1

2
(∆t)2 (ω + ω0)2

)
+ exp

(
−1

2
(∆t)2 (ω − ω0)2

))
. (5.33)

Due to having real field amplitudes, i.e. E(t) = E∗(t), the FT of the complex conjugate field in eq.
(5.32) results in the same expression as eq. (C.1), only swapping the parameter a for b. However, in
the following we will always be dealing with normalised spectra, wherefore the scaling factor,

√
π
2 a∆t

or
√

π
2 b∆t, will be dropped and angular frequencies shall be transformed into proper frequencies by

ω = 2πν. With these replacements the Gaussian pulse spectrum turns out to be

S(ν)Gauss =
(
exp

(
−2π (∆t)2 (ν + ν0)2

)
+ exp

(
−2π (∆t)2 (ν − ν0)2

))2

= exp
(
−4π2 (∆t)2 (ν + ν0)2

)
+ exp

(
−4π2 (∆t)2 (ν − ν0)2

)
+ 2 exp

(
−4π2 (∆t)2 (ν2 + ν2

0)2
)

(5.34)

which has been plotted for positive frequencies only in fig. 5.2. Eq. (5.34) comprises three contributions,
whereby the first term is centred around the negative and the second term around the positive value of
the carrier frequency ν0. The former’ appearance is not surprising as real functions for the electric fields
have been utilised in the calculation ([103]); nevertheless in the measurement only the positive frequency
parts are recorded, rendering the first term negligible for later comparison with experimental spectra.
The third term is proportional to a sum of optical frequencies to the power of four times the 1/e pulse
duration squared. With optical frequencies relevant for our experiment of ν ≈ ν0±3 THz, ν0 ∼ 770 THz
(corresponding to a UV pumping pulse centred at λ0 = 390 nm) and a 1/e width of ∆t ≈ 100 fs, this
term results in a number exp (−9 · 105) ≈ 0 and can hence be neglected as well. So the Gaussian spectral
function for the decisive positive frequency part simplifies to

S(ν)Gauss = exp
(
−4π2 (∆t)2 (ν − ν0)2

)
, (5.35)

providing the functional dependence shown in blue in fig. 5.2. It shall be regarded as the appropriate
theoretical spectrum for future discussions.

Spectra for Sech-pulses The analogous computation for the Sech-pulse model ESech(t) = a·sech (
t

∆t

)·
cos (ω0t) can be found in the appendix C.1.1 and solely the result shall be stated here, which provides a
spectral function of:
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S(ν)Sech =
1

cosh2 (π2∆t(ν + ν0))
+

1
cosh2 (π2∆t(ν − ν0))

+
2

cosh2 (π2∆tν) + cosh2 (π2∆tν0)
(5.36)

The first term in eq. (C.3) is centred around negative carrier frequencies and is therefore unimportant.
The third term carries a denominator containing a sum of two cosh functions. Their arguments can
once more be estimated by assuming the adequate variable values ν ≈ ν0 ≈ 770 THz and ∆t ≈ 80 fs,
which lead to numbers around 2π2∆tν ≈ 1200. Consequently 1

cosh(2π2∆tν) ≈ 1
cosh(2π2∆tν0)

→ 0 and we
can forget about the contribution from the third term, ending up with a normalised theoretical spectral
function for Sech-pulses of

S(ν)Sech = sech2
(
π2∆t(ν − ν0)

)
(5.37)

shown as the red curve in fig. 5.2. A very nice feature for both pulse models is consequently the
equivalence between the pulse shapes in the time domain, eqs. (5.14), (5.18), and the spectral shapes in
frequency domain, eqs. (5.35), (5.37). While this is commonly known to be true for Gaussian pulses it
does hold for Sech pulses as well.

FWHM of spectra and time-bandwidth-products As a last step in the analysis of the first order
correlation function, the conversion factors connecting the FWHM values of the spectra with the width
parameter ∆t for each pulse form can be worked out. Referring to the spectral FWHM as ∆νl, these
are computed in an analogous fashion to the numbers for the pulse duration (eqs. (5.29), (5.30)) and are
defined by the conditions:

SGauss

(±∆νGauss

2

)
= exp

(
−4π2 (∆t)2 (±∆νGauss/2)2

)
!=

1
2

SSech

(±∆νSech

2

)
= sech2

(
π2∆t(±∆νSech/2)

) !=
1
2

Evaluation provides the desired expressions:

∆νGauss =

√
ln 2

π∆t
(5.38)

∆νSech =
2 · arcsech(1/

√
2)

π2∆t
(5.39)

If the constants connecting the minimal pulse duration τFT,l with ∆t (eqs. (5.23), (5.24)) are utilised,
we can derive the well known time-bandwidth-products of short laser pulses, connecting the FT limited
pulse duration with the spectral width for a particular pulse shape ([58]):

∆νGauss · τFT,Gauss =
2 ln 2

π
= 0.441 (5.40)

∆νSech · τFT,Sech =
4 · arcsech2( 1√

2
)

π2
= 0.315 (5.41)

It is therefrom also clear, why the time period τFT,l defines the minimum possible duration of a pulse.
By the Fourier transform connection and the time-bandwidth products one can directly infer that τFT,l

is the length of the pulse, built up by coherent superposition of all frequency modes contained within the
pulse spectrum. Any phases added onto certain frequency comb teeth, e.g. due to dispersion, disturbs
this constructive interference and can consequently only temporally broaden the pulse ([57]). However
by aid of eq. (5.31) it has been proven that these phases do not contribute to the spectral function for
the pulse and thus do not affect ∆νl. Obeying the time-bandwidth products (eqs. (5.40), (5.41)), the
FT limited pulse duration τFT,l is just stipulated by a pulse shape dependent constant times ∆νl and
therefore also uninfluenced by any elongation.
Nonetheless this argumentation quickly exemplifies the limitations of the information regarding the pulse
duration extractable from the g1(τ)-function: We can certainly not rule out the presence of dispersion. So
another means for determining the proper pulse duration, which includes effects originating from phase
contributions, has to be applied to investigate the UV pumping pulses inside the enhancement resonator.
It can be found in higher order correlation functions, i.e. n > 1 in eq. (5.1), whereby the interferometric
autocorrelation function g2(τ) will be of particular interest for us.
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5.2.3 Second order correlation functions

We will now discuss the appropriate way to estimate the real duration of our UV intra-cavity pulses,
which in principle includes all broadening effects from higher order dispersion17. However the down-side
of all autocorrelation measurements is the impracticality to extract the apparent pulse shape from the
experimental findings. Autocorrelation is thus only a useful method for determining the pulse duration,
but cannot be applied for full pulse reconstruction, as proven in reference ([104]). Furthermore the reader
shall be made aware of the existence of two rather different second order autocorrelation functions,
namely the intensity and interferometric autocorrelation. While the former is easier to implement, it
suffers the great disadvantage of the impossibility to determine pulse broadening due to temporal phases
added onto the pulses. This serious downside renders it just as impractical for our purposes as the
g1(τ)-function. Nevertheless it shall quickly be introduced at the beginning, especially to grasp a more
thorough demonstration of the phase information loss during the cross-over between interferometric and
intensity autocorrelation.

Intensity autocorrelation function The intensity autocorrelation function with background is de-
fined as ([113])

G2(τ) = 1 + 2 ·
∫∞
−∞ I(t) · I(t− τ)dt∫∞

−∞(I(t))2dt
. (5.42)

With background refers in this context to the simultaneous measurement of the autocorrelation signal
produced by each individual beam itself together with the combined signal generated by the overlap of the
pulses. From this definition one could be led to think that the insensitivity of G2(τ) to any phase effects
is already spotable, since these show up in the electric fields according to E(t) = E0(t) exp (iφ(t)) and
hence cancel out in the intensities I(t) ∼ E(t) ·E∗(t). However considering real fields, whose amplitudes
can be written according to E(t) = const. · f(t) · cos (ω0t + φ(t)), with f(t) ∈ R, the entire situation
is not as clear cut anymore and a proper prove is given later. Nevertheless the message remains, that
G2(τ)-functions cannot detect dispersion effects.
For the two pulse models assumed for our experimental situation (eqs. (5.14) and (5.18)) the intensity
autocorrelation function G2(τ) for Gauss pulses turns out to be ([113])

GGauss
2 (τ) = 1 + 2 · exp

(
− τ2

2 · (∆t)2

)
(5.43)

and for Sech pulse shapes one gets:

GSech
2 (τ) = 1 + 2 · 3

(
τ
∆t cosh

(
τ
∆t

)− sinh
(

τ
∆t

))

sinh3
(

τ
∆t

) (5.44)

Both functions have been plotted in fig. 5.3 for a parameter value ∆t = 120 fs with the Gaussian pulse
case being drawn in blue and the Sech pulse case in red. The peak to background ratios for the G2(τ)
functions amounts to a maximum of 3 : 1 for perfect overlap between both pulses in the non-linear
medium. Less well adjusted pulse intersection only diminishes this number. It can thus be compared to
the ratio from the interferometric autocorrelation, deduced subsequently, which yields for perfect pulse
interference a value of 8 : 1. For our experimental situation, we reach a degraded ratio of approximately
4.1 : 1, which is mostly due to residual mode mismatch (see subsec. 5.3.4). Nevertheless it is clearly still
larger than the maximum ratio achievable for intensity autocorrelations, which indicates interferometric
stability. Furthermore the intensity autocorrelation does not show any interference oscillations as they are
present in the g1(τ)- or g2(τ)-correlation functions (see figs. 5.1, 5.4). That stems from the requirement
to particularly not have any stable interference during measurements of G2(τ) and contributes to the
major advantage of this type of autocorrelation, namely its simple experimental implementation. As it is
extractable from eq. (5.42), just two delayable copies of the pulse to be measured have to be generated.
Subsequently these have to impinge onto a non-linear medium, generating a signal proportional to their
mutual intensity overlap, i.e. their convolution given by the integral in eq. (5.42). It must be assured
though, that it is the intensity of both pulses the autocorrelation signal is subject to and not their
electric field amplitudes. That is to say, the electric fields must not interfere with one another to enable

17For instance GVD. Since this dispersive effect results in varying propagation velocities for the different frequency parts
of the pulse spectrum, leading to a divergence of these, it modifies the pulse carrier wavelength to increase or respectively
decrease in its oscillation frequency (see ([111]) for detail). Such an alteration can be viewed as an imparted overtone,
wherefore GVD is also referred to as chirp.
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Figure 5.3: Theoretical intensity autocorrelation function with background for Gaussian pulses (blue
curve) and Sech pulses (red curve). The width parameter ∆t has been set to 120 fs for both cases and
perfect pulse overlap has been assumed, providing a peak to background ratio of 3 : 1.

the measurement of the intensity autocorrelation. Possible experimental set-ups to measure the quantity
G2(τ) are presented in reference ([111]).

General form of the interferometric autocorrelation function In the course of the future discus-
sion about the experimental set-up for the autocorrelation (see 5.3.1) we will realise a collinear geometry,
with both pumping pulse copies E(t) and E(t − τ) impinging onto the BBO crystal under the same
angle, as required to observe the g2(τ) correlation ([79]). Therefore the relevant quantity to be used is
the interferometric autocorrelation with background, defined as ([110]):

g2(τ) =

∫∞
−∞ |(E1(t) + E2(t− τ))2|2dt∫∞

−∞ |(E1(t))2|2dt +
∫∞
−∞ |(E2(t− τ))2|2 (5.45)

In order to determine it for Gaussian and Sech pulses, the expression above shall be simplified in the first
place. Likewise to the derivation of the gl

1(τ)-functions, real electric field distributions are assumed and
unequal amplitudes between both pulses, resulting in a degraded interference, are taken into account as
well. Therefore the electric fields are:

E1(t) = a · EGauss/Sech
0 (t) · cos (ω0t + φ1(t)) = a · E′(t) (5.46)

E2(t− τ) = b · EGauss/Sech
0 (t− τ) · cos (ω0(t− τ) + φ1(t− τ)) = b · E′(t− τ) (5.47)

whereby t = 0 has been set to the centre of pulse E1(t), the functions E
Gauss/Sech
0 (t′) represent Gaussian

or Sech pulse envelopes given by EGauss
0 (t′) = exp

(
− t′2

2(∆t)2

)
or ESech

0 (t′) = sech
(

t′
∆t

)
, respectively, and

possible spectral phases φ(t′) have been included this time as well. Inserting both expressions into eq.
(5.45), the g2(τ) function can be simplified. The detailed calculations are stated in the appendix C.1.2
and as a result

g2(τ)
(∗)
= 1+6· a2b2

a4 + b4
·
∫∞
−∞E′(t)2E′(t− τ)2dt

2
∫∞
−∞E′(t)4dt

︸ ︷︷ ︸
=:(∗∗∗)

+4· ab3 + a3b

a4 + b4
·
∫∞
−∞

(
E′(t)E′(t− τ)3 + E′(t)3E′(t− τ)

)
dt

2
∫∞
−∞E′(t)4dt

︸ ︷︷ ︸
=:(∗∗∗∗)

(5.48)
is yielded. Before proceeding on to compute the interferometric autocorrelation function for both pulse
models, another assumption shall be made concerning the variable for the pulse width: Although g2(τ) is
sensitive to dispersive broadening, it is not possible to extract the underlying pulse form from the g2(τ)
measurement results ([104]). It is e.g. possible to multiply our chosen pulse shapes by Blaschke prod-
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Figure b)

Figure 5.4: g2(τ) correlation function for Gauss pulses (black line), with its envelopes (blue lines), and
Sech pulses (grey line), with its envelopes (red lines), for a width parameter of ∆t = 110 fs. The left
column represents a situation of perfect interference, V = 1, whereas the right column shows degraded
interference, V = 0.777. The FWHM values ∆τGauss

g2 and ∆τSech
g2 are also included in green.

ucts18([108], [109]) and still retain the same g2(τ)-function. In terms of the pulse duration τ l, retrieved
from interferometric autocorrelation, will thus not distinguish between the contributions stemming from
underlying pulse itself and others introduced by dispersive broadening. The phase elongation ∆τdis(φ(t))
will therefore be included implicitly into the width parameter ∆t in the pulse models, which of course
now does not connect to the FT limited pulse duration anymore, resulting in the phase factors in eqs.
(5.46) and (5.47) to be dropped.
It shall also be mentioned in this respect, that chirp effects deform the flanks of the interferometric auto-
correlation signal, which is further discussed in reference ([79]). However our experiment is not sensitive
enough to reveal these modifications.

g2(τ) correlation function for Gauss pulses Using our model for real Gaussian field amplitudes
(eq. (5.14)) the integrals indicated by (∗ ∗ ∗) and (∗ ∗ ∗ ∗) can be calculated ([110], [111], [113]), yielding
the following interferometric autocorrelation function of second order:

g2(τ) = 1 + 4 · a2b2

a4 + b4
· exp

(
− τ2

2 (∆t)2

)
+ 2 · a2b2

a4 + b4
· exp

(
− τ2

2 (∆t)2

)
· cos (2ω0τ)

+4 · ab3 + a3b

a4 + b4
· exp

(
− 3τ2

8 (∆t)2

)
· cos (ω0τ) (5.49)

The above expression has been plotted for a pulse width parameter value of ∆t = 110 fs in fig. 5.4. In the
graph to the left hand side, the situation for equal pulse intensities of I1 ∼ |E1(t)|2 and I2 ∼ |E2(t− τ)|2
as well as perfect interference, i.e. a = b = 1, has been depicted, whereas on the right hand side the
actual experimental situation has been accounted for. In the latter a first order interference visibility of
V = 0.777 and thus a b-parameter of b = 0.477 have been achieved (see table 5.2). We also acknowledge
the peak-to-background ratio for g2(τ) with a = b = 1 to yield 8 : 1, whereas in the degraded interference
case a ratio of just 4.13 : 1 is observed. As autocorrelation set-ups, particularly the ones relying on
interferometric autocorrelation, are commonly aligned to achieve the maximal peak-to-background ratio
possible, which should normally at least be situated in the proximity of 8 : 1 ([104]), it will have to be
explained why such a degradation is present and does not influence the accuracy of our measurement. A
justification for this will be provided in the experimental section (see subsec. 5.3.4). For the moment,
focus shall be placed on the properties of the g2(τ)-function.
Further inspection of eq. (5.49) reveals the interferometric autocorrelation function to consist of three

18Specifically, i.e. multiplying the electric field’s spectral amplitudes by factors of B(ω) =
N
Π

m=1

ω−ω∗m
ω−ωm

, whereby the

constants ωm are complex zeros of an analytic continuation of the pulse spectrum, see ([104], [108], [109]) for details.
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differently oscillating contributions and hence to comprise three Fourier components: One constant part,
one oscillating at the carrier frequency ω0 and another one at twice the carrier frequency 2ω0. Additionally
the non-oscillating part 1+4· a2b2

a4+b4 ·exp
(
− τ2

2(∆t)2

)
shall be noted to reduce to the intensity autocorrelation

function G2(τ) (eq. (5.43)) in the case of a = b. This is a direct consequence of the requirement to have no
interferometric stability in order to measure the intensity autocorrelation. If one takes the time average
of eq. (5.49), i.e.

〈g2(τ)〉T = lim
∆T→∞

1
2∆T

∫ ∆T

−∆T

g2(τ)dτ

= lim
∆T→∞

1
2∆T

∫ ∆T

−∆T

(
1 + 4 · a2b2

a4 + b4
· exp

(
− τ2

2 (∆t)2

))
dτ

+ lim
∆T→∞

1
2∆T

∫ ∆T

−∆T

(
2 · a2b2

a4 + b4
· exp

(
− τ2

2 (∆t)2

)
· cos (2ω0τ)

)
dτ

︸ ︷︷ ︸
→0

+ lim
∆T→∞

1
2∆T

∫ ∆T

−∆T

(
4 · ab3 + a3b

a4 + b4
· exp

(
− 3τ2

8 (∆t)2

)
· cos (ω0τ)

)
dτ

︸ ︷︷ ︸
→0

= 1 + 4 · a2b2

a4 + b4
· exp

(
− τ2

2 (∆t)2

)

〈g2(τ)〉T = Ga 6=b
2 (τ) (5.50)

it can be directly seen that the oscillating terms average out to zero and one is left with the intensity
autocorrelation function for unequal pulse intensities and non perfect interference Ga 6=b

2 (τ). Although
Ga 6=b

2 (τ) has not been explicitly stated here, it follows from eq. (5.42) in exactly the same manner as eqs.
(5.15), (5.19) and (5.49), (5.51) do from the first and second order correlation functions eqs. (5.12) and
(5.48). This cross-over between interferometric and intensity autocorrelation will also turn out to be the
appropriate tool to prove the phase information loss by going from the former to the latter function.
Since we are only capable of recording data at the oscillation maxima of eq. (5.49), for reasons to be
described in subsec. 5.3.1, we can set cos (ω0τ) = ±1 and cos (2ω0τ) = ±1, leaving us with maximum
and minimum envelope functions for g2(τ). Their functional dependence is consequently determined by

g2(τ) = 1 + 6 · a2b2

a4 + b4
· exp

(
− τ2

2 (∆t)2

)
± 4 · ab3 + a3b

a4 + b4
· exp

(
− 3τ2

8 (∆t)2

)
, (5.51)

whereby the positive sign provides the envelope for oscillation maxima and the minus sign for minima.
Both functions are included in fig. 5.4 by blue lines, indicating Gaussian pulses.

g2(τ) correlation function for Sech pulses The very analogue of what has been said regarding the
electric field distributions in the context of Gaussian pulses applies to Sech shapes as well. Using the
electric field function, as stated in eq. (5.18), followed by insertion into eq. (5.48) and calculation of the
integrals (∗ ∗ ∗) and (∗ ∗ ∗ ∗) ([110], [111], [113]) yields:

g2(τ) = 1 + 12 · a2b2

a4 + b4
·

τ
∆t cosh

(
τ
∆t

)− sinh
(

τ
∆t

)

sinh3
(

τ
∆t

)

+6 · a2b2

a4 + b4
·

τ
∆t cosh

(
τ
∆t

)− sinh
(

τ
∆t

)

sinh3
(

τ
∆t

) · cos (2ω0τ)

+3 · ab3 + a3b

a4 + b4
· sinh

(
2τ
∆t

)− 2τ
∆t

sinh3
(

τ
∆t

) · cos (ω0τ) (5.52)

This autocorrelation function is also displayed in fig. 5.4 by the grey curve for the same pulse amplitude
parameters as in the Gaussian case, i.e. V = 1 and b = 1 for the plot on the left hand side and V = 0.777
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and b = 0.477 for the one to the right hand side19. Likewise to the aforementioned scenario, eq. (5.52)
does not surprisingly contain three Fourier components and reduces to the intensity autocorrelation for
Sech pulses (eq. (5.44)) by time averaging, which is due to an intrinsic property of all g2(τ) functions
as derived shortly. The calculation is absolutely analogous to the Gaussian case and thus skipped here.
However what is important is to also extract the envelope functions for constructive and destructive
interference from eq. (5.52), being given by

g2(τ) = 1 + 18 · a2b2

a4 + b4
·

τ
∆t cosh

(
τ
∆t

)− sinh
(

τ
∆t

)

sinh3
(

τ
∆t

) ± 3 · ab3 + a3b

a4 + b4
· sinh

(
2τ
∆t

)− 2τ
∆t

sinh3
(

τ
∆t

) (5.53)

and represented graphically in fig. 5.4 by the red curves. The ultimate fitting function for interferometric
autocorrelation maxima for the Sech pulse model is consequently defined by implementing eq. (5.53)
with plus signs between the individual terms.

FWHM of the g2(τ) correlation function and real pulse duration Having the explicit second
order correlation functions for Gauss and Sech pulses at hand, we can now establish the connection
between these and the real FWHM pulse duration τ l, with l ∈ {Gauss, Sech}. Since dispersive broadening
has been included into the parameter ∆t and the pulses have been assumed to be undistorted Gaussian
or Sech functions, the conversion factors between the parameters ∆t in the pulse models (eqs. (5.14),
(5.18)) and the FWHM durations of the pulse intensity envelopes (eqs. (5.21), (5.22)) are equal to the
ones derived for the g1(τ)-correlation function (eqs. (5.23) and (5.24)):

τGauss = αGauss
g2 ·∆t = 2

√
ln 2 ·∆t

τSech = αSech
g2 ·∆t = 2 · arcsech

(
1√
2

)
·∆t

To gain the pulse length from the interferometric autocorrelation functions, the FWHM values of these,
referred to as ∆τg2, have to be expressed in terms of the parameters ∆t, determined by the following
condition:

g2(∆τg2) =
1
2

(
lim
τ→0

g2(τ)− 1
)

+ 1 (5.54)

By substituting in the appropriate correlation function (eq. (5.51)), we obtain for Gaussian pulses:

1+6 · a2b2

a4 + b4
· exp

(
− ∆τ2

g2

2 (∆t)2

)
+4 · ab3 + a3b

a4 + b4
· exp

(
− 3∆τ2

g2

8 (∆t)2

)
= 1+3 · a2b2

a4 + b4
+2 · a

3b + b3a

a4 + b4
(5.55)

For the Sech-case, it is useful to examine the individual terms of eq. (5.53) in the limit of τ → 0 first.

Using the behaviour of lim
τ→0

τ
∆t cosh ( τ

∆t )−sinh ( τ
∆t )

sinh3 ( τ
∆t )

→ 1
3 and lim

τ→0

sinh ( 2τ
∆t )− 2τ

∆t

sinh3 ( τ
∆t )

→ 4
3 , the condition eq. (5.54)

can be evaluated for this pulse shape as well, yielding:

1 + 18 · a2b2

a4 + b4
·

∆τg2
∆t cosh

(
∆τg2
∆t

)
− sinh

(
∆τg2
∆t

)

sinh3
(

∆τg2
∆t

)

+ 3 · a3b + ab3

a4 + b4
·
sinh

(
2∆τg2

∆t

)
− 2∆τg2

∆t

sinh3 ∆τg2
∆t

= 1 + 3 · a2b2

a4 + b4
+ 2 · a3b + ab3

a4 + b4
(5.56)

In contrast to the equations for ∆τFWHM,l
g1 (eqs. (5.25) and (5.26)), both expressions above are not

analytically solvable anymore in terms of ∆t, therefore a numerical solution is pursued. Furthermore
the factors containing the electric field parameters a and b are not separable from the remainders in
eqs. (5.55) and (5.56). This is rather important as it means that the solutions of both equations are
functions of a and b: ∆τg2 = ∆τg2(a, b). In turn it implies the conversion factors to be dependent on

19Although the experimental parameters, recieved particularly for the HHVV coincidences deviate slightly from the b
parameter and the visibility used here, see table 5.2, V = 0.777 and b = 0.477 shall nevertheless be used, as they represent
the averaged values over all intra-cavity datasets and have also been applied during discussing the g1(τ) function.
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the interference visibility of the pulses to be measured. There are two specific situations for which the
solution of the above equations and the conversion factors calculated thereof shall explicitly be stated.
The first one is the situation for perfect interference and equal pulse intensities, given by the parameter
set of a = b = 1. Eqs. (5.55) and (5.56) return:

∆τGauss
g2 (a = 1, b = 1) = βGauss

g2 ·∆t = 2.553 ·∆t (5.57)

∆τSech
g2 (a = 1, b = 1) = βSech

g2 ·∆t = 2.9901 ·∆t (5.58)

Further application of the constants τ l = αl
g2 ·∆t allows to gain the relation between pulse duration and

FHWM of the g2(τ)-functions according to

τ l =
αl

g2

βl
g2

·∆τ l
g2 := γl

g2 ·∆τ l
g2, (5.59)

with the final set of conversion factors to be:

τGauss (a = 1, b = 1) = 0.6523 ·∆tGauss
g2 (a = 1, b = 1) (5.60)

τSech (a = 1, b = 1) = 0.5895 ·∆tSech
g2 (a = 1, b = 1) (5.61)

These values are the commonly applied ones when dealing with interferometric autocorrelation. It shall
be particularly stressed, that they are different to the set of parameters obtained if considering intensity
autocorrelation (given by γGauss

G2 (a = 1, b = 1) = 1/
√

2 and γSech
G2 (a = 1, b = 1) = 0.6481). Although the

latter numbers are often the factors stated in the literature ([104], [111], [113]), one should not fall for
the trap of using them with respect to interferometric autocorrelations, since they overestimate the pulse
length.
With the precise experimentally determined b-parameter from the measurement of HHVV coincidences,
bHHV V = 0.4383 (see table (5.2)), we get from eqs. (5.55) and (5.56) the relevant constants for our
situation of reduced visibility. The constants βl

g2 are

∆τGauss
g2 (a = 1, b = b0) = 2.58 ·∆t (5.62)

∆τSech
g2 (a = 1, b = b0) = 3.0289 ·∆t, (5.63)

which translate via eq. (5.59) into conversion factors γl
g2(a = 1, b = b0) of:

τGauss (a = 1, b = b0) = 0.6454 ·∆τGauss
g2 (a = 1, b = b0) (5.64)

τSech (a = 1, b = b0) = 0.582 ·∆τSech
g2 (a = 1, b = b0) (5.65)

Those will be the correct values for the future evaluation of our experimental findings. However the
difference to the optimal situation is not tremendously severe, as deviations only start to make a difference
from second leading order onwards.
Due to our particular realisation of our experimental set-up, subsec. 5.3.1, so far our model had to take
degraded interference and different intensities between the pulses at time t and t− τ into account, due to
the cavity acting as a spatial mode filter. If a free space set-up is considered, only degraded interference
will be important to obey, as both pulses have equal intensities. In this case the denominators of the
g2(τ) correlation functions transform into I1 = const. · a2 = I2 = const. · b2, while the numerators still
have to account for the imperfect electric field interference, consequently comprising products of a ·b with
a 6= b. Thereby eqs. (5.51) and (5.53) change into:

g′Gauss
2 (τ) = 1 + 6 · a2b2

2a4
· exp

(
− τ2

2 (∆t)2

)
+ 4 · ab3 + a3b

2a4
· exp

(
− 3τ2

8 (∆t)2

)
(5.66)

g′Sech
2 (τ) = 1 + 18 · a2b2

2a4
·

τ
∆t cosh

(
τ
∆t

)− sinh
(

τ
∆t

)

sinh3
(

τ
∆t

) + 3 · ab3 + a3b

2a4
· sinh

(
2τ
∆t

)− 2τ
∆t

sinh3
(

τ
∆t

) (5.67)

We can now compute the conversion factors for both cases, g2(τ) and g′2(τ), by the aid of eqs. (5.55) and
(5.56) evaluated according to the appropriate situation with the correct denominators. For both pulse
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Figure 5.5: Conversion factor between the FWHM of the interferometric autocorrelation function g2(τ)
and the FWHM pulse duration, displayed as a function of interference visibility in plot a) and the b-
parameter in plot b). Gaussian pulses with degraded interference and different pulse intensities are
indicated as solid blue curves, whereby their Sech counterparts are indicated as solid red curves. Situations
with equal pulse intensities, yet still having a degraded interference as described by eqs. (5.66) and (5.67),
are drawn as a dashed grey curve for the Gaussian and a dashed black curve for the Sech scenario.

models the conversion factors are shown in fig. 5.5 as a function of visibility on the left hand side and
the b-parameter on the right hand side, each evaluated numerically within a range of 0.01 ≤ (V, b) ≤ 1
and with stepsize of ∆b = ∆V = 0.01. The dependencies on both parameters have been depicted
since from a measured autocorrelation curve, the b-parameter can be determined very easily, whereby
in terms of an interference measure, the visibility is generally considered. Gaussian pulses with unequal
intensities, given by eq. (5.51), are displayed by solid blue curves and with equal intensities, given by
eq. (5.66), by dashed grey curves. Sech pulses are draw in solid red lines for a situation with unequal
intensities, eq. (5.53), and by dashed black lines for a situation with equal intensities in both pulses,
eq. (5.67). From the computation and fig. 5.5 it is inferred that regardless of the intensity distribution
between the two pulses, both of the aforementioned situations20 yield the same conversion constants.
Thus γl

g2 only depends on the interference visibility. In other words: Attention only has to been paid
to the interferometric interaction between the pulses but one does not have to worry about intensity
modifications on individual pulses, if their respective interfering fraction remains constant.

5.2.4 Phases in the second order autocorrelation function

In the last part of the theoretical investigations regarding autocorrelation the appearance of phase terms,
generated by dispersive processes, are to be discussed in the context of second order correlation functions.
As we have already seen, such effects are invisible for first order interference experiments, due to their
cancellation (eq. (5.32)). It has already been mentioned, that interferometric autocorrelation functions
of second order in contrast show influences from dispersion, whereby these alterations vanish again in the
observed signal when interferometric stability is lost and the cross-over to the intensity autocorrelation
function is pursued. In order to give accurate evidence for this behaviour, we will analyse the g2(τ)-
function in its most general form (eq. (5.45)) once more under the assumption of arbitrary pulses, which
have been subject to some temporal phase addition. By considering real fields, our electric field model is
now:

E(t) = Re (A(t) exp (iφ(t)) exp (iω0t)) =
1
2

(A(t) exp (iφ(t)) exp (iω0t) + A∗(t) exp (−iφ(t)) exp (−iω0t))

(5.68)
with the pulse envelope to be taken as a real function in the following21, i.e. A(t) = A∗(t). Plugging it
into the general expression for the g2(τ)-function (eq. (5.45)) results in a lengthy calculation, which is
skipped here for brevity and the final outcome is taken over from reference ([111]), given by:

20eq. pair (5.51) and (5.53), compared with (5.66) and (5.67)
21The situation of unequal pulse intensities and/or incomplete interference between both pulses is dropped here for the

sake of simplicity, since only general properties of the autocorrelation are examined and an additional constant factor does
not change these.
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g2(τ) =
1∫∞

−∞A4(τ)dt
·
(∫ ∞

−∞

(
A4(t) + 2A2(t)A2(t− τ)

)
dt

)

︸ ︷︷ ︸
constant in τ =: term 1

+
2∫∞

−∞A4(τ)dt
· Re

(
e(iω0τ)

∫ ∞

−∞
A(t)A(t− τ)

(
A2(t) + A2(t− τ)

)
e(i(φ(t−τ)−φ(t)))dt

)

︸ ︷︷ ︸
oscillation∼cos (ω0τ) =: term 2

+
1∫∞

−∞A4(τ)dt
· Re

(
e(i2ω0t)

∫ ∞

−∞
A2(t)A2(t− τ)e(i2(φ(t−τ)−φ(t)))dt

)

︸ ︷︷ ︸
oscillation∼cos (2ω0τ) =: term 3

(5.69)

For deriving the above expression, the equality stated in eq. (5.13) has been used again. It can
thus be seen, that any second order interferometric autocorrelation for an arbitrary pulse shape ac-
commodates three different contributions, one being constant, one oscillation at the carrier frequency
as a function of pulse separation and another one oscillating at twice that frequency. The tempo-
ral phases exp (iφ(t′)), which carry the information about any pulse elongation, are furthermore only
found in the oscillating terms. Therefrom the susceptibility of the g2(τ) autocorrelation function to
dispersion is revealed. The last point is the important message here in terms of the difference between
g2(τ) and G2(τ): We have already acknowledged the ability to extract the intensity autocorrelation
from its interferometric counterpart by time averaging during the discussions regarding eq. (5.50),
corresponding to a loss in interferometric stability. So application of this kind of operation shall be
incorporated here as well, whereupon one should note τ to constitute the correct variable to aver-
age over22. By further substituting κ :=

∫∞
−∞A4(τ)dt, f1 :=

∫∞
−∞

(
A4(t) + 2A2(t)A2(t− τ)

)
dt, f2 :=∫∞

−∞A(t)A(t − τ)
(
A2(t) + A2(t− τ)

)
e(i(φ(t−τ)−φ(t)))dt and f3 :=

∫∞
−∞A2(t)A2(t − τ)e(i2(φ(t−τ)−φ(t)))dt

we compute:

〈g2(τ)〉∆tdet. =
1
κ
· lim
∆tdet.→∞

∫ ∆tdet./2

−∆tdet./2

f1dτ ′

︸ ︷︷ ︸
→f1

+
2
κ
· lim
∆tdet.→∞

∫ ∆tdet./2

−∆tdet./2

1
2

(
f2 · e(iω0τ) + f∗2 · e(−iω0τ)

)
dτ ′

︸ ︷︷ ︸
→0

+
1
κ
· lim
∆tdet.→∞

∫ ∆tdet./2

−∆tdet./2

1
2

(
f3 · e(i2ω0t) + f∗3 · e(−i2ω0t)

)
dτ ′

︸ ︷︷ ︸
→0

=

∫∞
−∞

(
A4(t) + 2A2(t)A2(t− τ)

)
dt∫∞

−∞A4(t)dt

= 1 +
2 · ∫∞−∞A2(t)A2(t− τ)dt∫∞

−∞A4(t)dt
(5.70)

Hence all the terms sensitive to temporal phases vanish in the course of time averaging and soleley the
first term remains. Consulting the assumption of having real field amplitudes A(t) only in the derivation
of eq. (5.69), which consequently implies the pulse intensity to be I(t) = 1

2ε0c|E(t)E∗(t)|2 = 1
2ε0cA(t)2,

the above expression changes, by usage of eq. (5.42), into

〈g2(τ)〉∆tdet. = 1 +

∫∞
−∞ 2I(t)I(t− τ)dt∫∞

−∞ I2(t)dt
= G2(τ), (5.71)

proving the equivalence of the time averaged interferometric and the intensity autocorrelation function.
For the reason of all temporal phase information having dropped out on the way from eq. (5.69) to

22If the interferometer, which creates both pulses for the autocorrelation, is not stable, its arm lengths fluctuate, leading
to a non-stable pulse separation ∆xint = τ

c
and therefore to an unsteadiness in the values of τ . The latter translates, by

accounting for the finite integration time of the detector used to record the autocorrelation signal, into an averaging over

all different values of τ apparent within the time interval t ∈
[
−∆tdet.

2
, ∆tdet.

2

]
. Since ∆tdet. À τ the extension to infinity

of the averaging time scale is justified.
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(5.71), the incapability of detecting dispersive pulse elongation with intensity autocorrelation has been
demonstrated as well. The equality between g2(τ) and G2(τ) states the necessary experimental means
to swap from measuring one function to the other, namely to deteriorate or respectively improve the
interferometric stability. So at the end of the day, we have shown that the intensity autocorrelation cannot
detect dispersion effects and therefore just measures the undistorted pulse duration already available in
first order correlation. To infer the proper pulse duration, sensitivity to temporal (or respectively spectral)
phases like in the case of the interferometric autocorrelation is indispensable.
As a last step it is worth mentioning the contributions from the different Fourier components of the g2(τ)-
function, oscillating at frequencies 0, ω0 and 2ω0. Referring to fig. 12.27 in reference ([111]) the constant
part can be figured out to represent G2(τ) with the appropriate peak-to-background ratio of 3 : 1. The
other two entities are found to interfere constructively with each other in the event of interferometric
autocorrelation and amount themselves together with the constant part to a peak-to-background ratio
for g2(τ) of 8 : 1. Effects due to a loss in stability can therefrom easily be imagined to spoil the
maximally constructive add-up of the oscillating parts, leading consequently to a degradation in the peak-
to-background ratio going from 8 : 1 towards 3 : 1. For that reason such autocorrelation measurements
are generally aligned by maximising this ratio up to a number close to 8 : 1, as otherwise experimental
outcomes, located somewhere between an intensity and an interferometric autocorrelation, are obtained,
recording data which does not fully account for dispersive broadening and thus underestimates the pulse
duration. Since we have a ratio of only 4.13 : 1, evidence about the interferometric stability of the pulse
duration τ in our set-up has to be provided in the first place together with some other essential primary
considerations, which will now be discussed in the framework of the experimental findings.
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5.3 Measurement of intra-cavity pulse duration

Within this section, the experimental findings concerning the UV pulse duration inside the cavity will
be discussed. The particularity of this measurement is its implementation directly within an optical res-
onator, hence not applying any sort of out-coupling mechanism, which could in itself introduce additional
pulse distortion. According to eq. (5.8), we are additionally given the opportunity to observe multiple
orders of correlation simultaneously, whereby conveniently use will be made only of the first two.
In the following, the experimental implementation of the autocorrelation measurement is introduced first.
Second proof for our ability to measure an accurate autocorrelation function is given, specifically showing
that the spectral acceptance of the cavity can be maintained throughout the measurement and proving
the sufficiency of the phase-matching bandwidth to allow down-conversion for all spectral components
within the pulse. Third, the interference of first order is examined and results therefrom are contrasted
with the additionally measured UV spectra inside the cavity. Ultimately the correlation of second order
is analysed and an estimate for the actual pulse duration is obtained.

5.3.1 Description of set-up

As mentioned in the theory section regarding the measurement of short laser pulses by autocorrelation,
one requires some type of interferometer in order to generate two pulses of variable time delay. To do so,
we include a Mach-Zehnder (MZ) interferometer23 with one fixed and one movable arm into the UV feed
beam of the cavity, providing us with the opportunity to scan the delay between the resulting pulses by
aid of a translation-stage mounted mirror in the latter arm.
Usually glass retro-reflectors are used for such kind of interferometers, comprising transverse displacement
between the forth- and back-reflected beams in the arms, to allow for precise alignment. Operating the
set-up with femto-second pulses however prevents us from using these components, as they would add
additional dispersion, yielding in a pulse broadening of approximately ([77]) 20 fs. Obviously this initial
broadening is unacceptable for a method, which is supposed to provide a value for a pulse duration free
of additional distortion imparted by the measurement. Therefore two flat mirrors at the end of either
arm are used instead. To also avoid additional broadening deriving from a beam splitter cube, a thin
beam splitter plate with a transmittance-reflectance ratio of T = 56.52% : R = 43.48% splitting ratio
is furthermore used (see fig. 5.6 for a photograph). The down-side of this back-end mirror design is its
alignment. Indeed we have not been able to achieve perfect overlap between both beams in the exit arms,
resulting in an interference visibility of approximately 77% in the interferometer output.
The optimal positioning of the interferometer requires some attention as well. Clearly one does not want
to have the interferometer set up in front of the SHG process as any slight misalignment of the beam
overlap in the output would have tremendous impact on the phase-matching in the LBO and in turn on
the UV signal strength and the cavity coupling. Locating it in front of the beam pointing stabilisation24

is not appealing either, as fluctuations on the transverse position of the input beam would deteriorate
the entire interferometer alignment and the mode overlap in the output. Accordingly it is placed behind
the aforementioned unit but in front of the cavity input-coupling optics, as can be inferred from fig.
5.6. There is however still a residual sensitivity to non-ideal interferometer alignment at this location
due to off-axis penetration through optical lenses, which can impart aberations onto the beam profile,
deteriorating the coupling efficiency into the enhancement resonator. One output of the interferometer,
referred to as output 2 is coupled into the cavity, whereby the other output, named output 1, is monitored
directly by a photodiode.
In order to measure the correlation functions within the cavity, we move the back-end mirrors in one
arm via the automated translation stage by a distance ∆xMZ , providing us with a pulse separation of
τMZ = 2∆xMZ

c between both pulses. As we have to lock the resonator to a certain part of the external
frequency comb spectrum, see 3.2.1, a non-vanishing amount of light intensity has to be available for the
Hänsch-Coulliaud lock. It has thus turned out necessary to have constructive interference between both
pulses in the cavity output of the Mach-Zehnder interferometer to have a sufficiently strong error signal
for proper stabilising the FSR of the cavity. All measurement points for the correlation functions are
therefore measured at translation stage positions providing the appropriate interference condition. These
are found by observing an intensity level corresponding to an interference minimum on the photodiode
in output 2. At such a stage position, we measure the averaged UV power level inside the cavity as

23There are various definitions in use on what exactly to call a Mach-Zehnder interferometer and what to consider as the
Michelson version. In this work we will follow the convention that the Mach-Zehnder is an interferometer, which does not
reflect the beams in its arms back into themselves. Thus, although comprising only one beam splitter, our device will be
regarded as such a type.

24See explanation in subsec. 3.1.2 in this unit.
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Figure 5.6: Left: Schematic drawing of SPDC autocorrelation set-up: The MZ is positioned in front of the
cavity, generating two delayable pulses, which are coupled into the resonator and produce down-converted
photon pairs of which four photon coincidences are counted to acquire the autocorrelation function g2(τ).
Right: Experimental implementation of the MZ interferometer.

well as the amount of two- and four-fold photon coincidences with one horizontally and one vertically
polarised photon or with two horizontally and two vertically polarised photons, respectively, in our lin-
ear optical set-up25, which is set for observation in the σZ-basis and thus works as a photon counting
device26. Hence interference fringes can neither be seen in gcavity

1 (τ), gHV
1 (τ)-correlation functions, nor in

the gHHVV
2 (τ)-correlation counterparts. The minima of the fringe patterns were not measurable because

the cavity was not lockable on a stable level for a time period long enough to record sufficient data.
Leaving the cavity free running was not feasible either for exactly the same reason only with an even
shorter time window available for photon detection. However sampling solely interference maxima does
not cause any information loss, since the pulse duration is just determined by the FWHM of the fitted
g1(τ)- and g2(τ)-functions onto the aforementioned datapoints anyway and the visibility is implicitly
included too by the overall maximum to background ratio of the resulting curves, as we will see later on.
The interference filter in front of the photon counting unit, which is normally applied to gain indistin-
guishability between different photon pairs, as explained further in subsec. 6.2.2, must be taken out as
it would otherwise filter out parts of the SPDC photon spectrum and hence influence the width of the
correlation functions and the pulse duration calculated thereof. One possibility to think about this effect
is to consider what happens if only photons from the central part of the down-conversion spectrum are
impinging onto the photodetectors in the linear optical set-up and the entire rest is filtered out. Accord-
ingly all frequency parts in the UV pump spectrum, which down-convert into photons lying within the
filter’s spectral pass band, are detected, but all other frequencies are neglected. From Fourier transform
(FT) theory this smaller spectrum results in a longer Fourier transform limited pulse duration, scaling
reciprocal to the spectral width. However as a laser pulse cannot be shorter than the FT limit, spectral
narrowing of the down-conversion photons would result in an artificial elongation of the measured pulse
length. This is an analogue effect to the one, which is expected if the phase matching bandwidth of the
non-linear process is not sufficiently broad in order to maintain conversion of all spectral components
contained in the pump pulse (see subsec. 5.3.3).
In a first measurement run, data has been taken for the average intra-cavity UV level, HV- and HHVV-
coincidences by measuring at 17 translation stage positions27 for a time of approximately 8 s each, while
additionally recording the intra-cavity UV spectrum. In a second run, the interference pattern of the
g1(τ)-correlation function has been measured separately by the photodiode in output 1 of the Mach-
Zehnder interferometer with a translation stage step size of approximately 19.53nm, corresponding to
the smallest resolution available.
Before discussing the outcomes of these measurements, the essential conditions for conducting a sensible

25See section 3.3.
26See also discussion in subsec. 6.3.1.
27These have been: −271.54 µm, −91.4 µm, −66.28 µm, −48.14 µm, −39.12 µm, −35.18 µm, −23.04 µm, −16.18 µm

,0 µm, 8.84 µm, 13.82 µm, 28.92 µm, 37.48 µm, 46.54 µm, 65.36 µm, 94.58 µm, 228.8 µm with 0 µm corresponding to an
equal arm length. These values represent a pulse separation time of: −1810 fs, −609 fs, −442 fs, −321 fs, −261 fs,
−235 fs, −153 fs, −108 fs, 0 fs, 59 fs, 92 fs, 193 fs, 250 fs, 310 fs, 436 fs, 631 fs, 1525 fs
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autocorrelation experiment will be discussed in the first place.

5.3.2 Discussion of cavity locking condition

-1.0 -0.5 0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1

-1.0 -0.5 0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1

-1.0 -0.5 0 0.5 1.0 1.5

0

0.2

0.4

0.6

0.8

1

-1.0 -0.5 0 0.5 1.0 1.5

0

0.2

0.4

0.6

0.8

1

-1.5-1.5

-1.5-1.5

Wavelength [nm]

Wavelength [nm]

Wavelength [nm]

Wavelength [nm]

In
te

n
s
it
y
 [
a
rb

. 
u
n
it
s
]

In
te

n
s
it
y
 [
a
rb

. 
u
n
it
s
]

In
te

n
s
it
y
 [
a
rb

. 
u
n
it
s
]

In
te

n
s
it
y
 [
a
rb

. 
u
n
it
s
]

Figure b)
Spectrum at -35.18 micro meter:

Figure a)
Spectrum at -271.54 micro meter:

Figure c)
Spectrum at -16.18 micro meter:

Figure d)
Spectrum at 94.58 micro meter:

Figure 5.7: Measured oscillations in UV spectra as a function of translation stage displacement together
with fits according to the derived model, stated in eq. (5.75). Black points and lines indicate measured
data, solid blue lines represent a fit for Gaussian pulses according to eq. (5.78) and solid red lines
represent the analogue fit for Sech pulses, eq. (5.79). The dashed lines are fits to the broadest spectrum
at xMZ = −16.18 µm, with blue standing for a Gaussian and orange for a Sech pulse amplitude. For
further details see main text.

Since it is the purpose of this experiment to measure the intra-cavity pulse width, it is absolutely essential
to have a similar spectral acceptance range by the cavity for each measurement point in the correlation
functions. Spectral acceptance means the amount of external UV frequency comb modes that can couple
into the cavity. If that was not fulfilled, one would end up with a different spectral width and, by the FT
connection, with a different pulse length at each measurement point. Obviously in such a scenario the
g2(τ)-function would not provide the proper pulse length inside the cavity as it is apparent also without
the Mach-Zehnder interferometer. But why should the cavity locking condition change at all during the
correlation measurement?
Taking a look at the UV spectra in the interferometer output, measured with the translation stage
position away from perfect temporal pulse overlap, one recognises oscillations on these, causing the
expected Gaussian shape to evolve into a pattern with fringes of narrowing FWHM widths, as can be
seen in fig. 5.7. Since the cavity has to be locked separately at each translation stage position, this
could on the one hand lead to a problem, if the same frequency comb tooth is chosen for the locking
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signal at each datapoint: As the cavity locking process just works on a small part of the spectrum and
the stability of the locking is very susceptible to the Hänsch-Coulliaud error signal, choosing a locking
position, through which such a minimum in spectral intensity is dragged, would result in the requirement
for a different locking point28 at positions of too small an error signal intensity. In turn this causes a
different dispersion compensation condition, a different external and internal frequency comb matching
and thus a different spectrum or respectively pulse length inside the resonator. On the other hand, if
different teeth/spectral regions are used for locking the cavity at different stage positions, one has to
be certain to establish the same amount of external and internal frequency comb matching each time,
ensuring that the spectral width of pulses inside the resonator is maintained for the different dispersion
compensation conditions. In order to prove the constance in mode matching, a closer examination of the
aforementioned spectral oscillations is necessary.

Modelling the output spectrum of the Mach-Zehnder interferometer Considering the Mach-
Zehnder interferometer (fig. 5.6), one can observe its output pulse train to consist of two electric fields

E(t) =
E0√

2
f(t) exp(iω0t) (5.72)

E(t− τ) =
E0√

2
f(t− τ) exp(iω0(t− τ)), (5.73)

whereby conveniently a 50 : 50 splitting ratio for the beam splitter has been assumed and f(t) represents
an arbitrary electric field amplitude function. The Mach Zehnder’s output field amounts to

Etot(t) = E(t) + E(t− τ) =
E0√

2
f(t) exp(iω0t) +

E0√
2
f(t− τ) exp(iω0(t− τ)) (5.74)

with the spectrum of this field superposition being obtained by taking the Fourier transform and subse-
quently calculating the absolute square of the result. The detailed calculation is stated in the appendix
C.2.1 with an outcome for the spectrum in terms of wavelength given by

S(λ, λ0) = S0(λ− λ0) cos2
(

2π(λ− λ0)
λ2

0

∆xMZ

)
(5.75)

with S0(λ−λ0) being the spectrum of the pulse amplitude function E0√
2
f(t). In order to apply our results

(eq. (5.75)) to the measurements, a concrete pulse shape has to be considered; therefore the spectra
derived for a Gaussian- or a Sech-pulse, given by eqs. (5.35) and (5.37), computed by Fourier transform
(see subsec. 5.2.2), are used:

SGauss
0 (ν, ν0) = exp

(
−4π2 (∆t)2 (ν − ν0)2

)

⇐⇒ SGauss
0 (λ, λ0) ≈ exp

(
−4π2 (∆t)2 c

(
(λ0 − λ)

λ2
0

)2
)

=: exp

(
−

(
(λ− λ0)

w

)2
)

(5.76)

SSech
0 (ν, ν0) = sech2(π2∆t(ν − ν0))

⇐⇒ SSech
0 (λ, λ0) ≈ sech2(π2c∆t

(
λ0 − λ

λ2
0

)
)

=: sech2

(
λ− λ0

w

)
(5.77)

giving the final theoretical formulae for the spectral intensity distribution:

SGauss(λ, λ0) = exp

(
−

(
(λ− λ0)

w

)2
)

cos2
(

2π(λ− λ0)
λ2

0

∆xMZ

)
(5.78)

SSech(λ, λ0) = sech2

(
λ− λ0

w

)
cos2

(
2π(λ− λ0)

λ2
0

∆xMZ

)
(5.79)



5.3. MEASUREMENT OF INTRA-CAVITY PULSE DURATION 97

-300 -200 -100 0 100 200 300

0.2

0.4

0.6

0.8

1.0

1.2

0

Interferometer arm length difference [micro meter]

F
W

H
M

 [
n
m

]

Figure 5.8: FWHM values of the central fringes in all spectra for varying translation stage positions.
The black boxes represent the widths extracted from the measured spectra, as they are obtained at the
respective positions xMZ , exemplarily shown in fig. 5.7. The blue curve shows the FWHM values of the
central fringe in the model function (5.78) for Gaussian pulses, whereby the red one depicts the FWHM
for the Sech pulse case, given by eq. (5.79). The green curve displays the width of the central oscillation
fringe in the cos2

(
2π(λ−λ0)

λ2
0

∆xMZ

)
part of the spectrum model for the interferometer output, given by

eq. (5.75).

Discussion of the model in comparison to experimental spectra By taking a closer look at
eqs. (5.78), (5.79) and their derivation one readily recognises the spectra at each measurement point of
the correlation curves to comprise contributions from an undistorted envelope function, depending on
the respective pulse form with a constant width, and a modulation function, determined by the relative
path length difference between the interferometer arms. Thus the latter can be expected to be negligible
once ∆xMZ = 0 and to dominate if ∆xMZ > 0. In order to reveal any information about the cavity’s
wavelength acceptance range, we can now regard the unmodulated part of the above expressions as a
spectrum of the pulse apparent for τMZ ≈ 0, i.e. with only a single pulse to be coupled into the resonator.
If the acceptance range remains the same throughout the experiment, all that changes in the spectra at
different measurement points is the part proportional to cos2, adding a modulation, but still showing an
envelope which is described by a Gauss- or Sech-pulse spectrum. As can be seen in fig. 5.7, multiple
oscillation maxima are only present for displacements of the translation stage lying already outwith the
interference region of both pulses (see fig 5.11 in subsec. 5.3.4), causing the spectra within the relevant
range for the g2(τ)-correlation measurement29 to exhibit not enough such points for reading out the
proper FWHM value of the envelope function. Therefore we look instead at the FWHM of the central
fringe within all UV spectra, that have been obtained for the different translation stage positions. These
widths are determined first from directly reading out the measured data (black points and curves in fig.
5.7) and second from the expected spectra, given by eqs. (5.78) and (5.79) each with the respective value
for ∆xMZ (red curve for a Sech pulse, blue curve for a Gaussian pulse in fig. 5.7). While in fig. 5.7
four representative datasets are shown, all FWHM values of the central spectral fringe in every measured
spectrum are displayed in fig. 5.8 as a function of the translation stage setting. The experimental
FWHM values show the greatest width at a position −16.18 µm, i.e. τ = −108 fs off the perfect pulse
overlap. However as it will turn out later on (see table 5.5), this spectrum corresponds more closely to the
expected one derived from Fourier transforming the g1(τ)-function. In the following we will thus treat it
as a measure for the unmodulated amplitude function S0(λ− λ0) in eqs. (5.76), (5.77). Fitting it with a
Gauss- and Sech-envelope, according to eqs. (5.76), (5.77), yields the values wGauss = 0.663 ± 0.002 nm
and wSech = 0.6± 0.003 nm, which are to be plugged into eqs. (5.78) and (5.79). The theoretical spectra
are shown in figs. 5.7 and 5.8 as red curves for Sech-pulses and blue curves for Gauss pulses. Within
fig. 5.8 the expected central oscillation fringe’s FWHM, described solely by the cos2

(
2π(λ−λ0)

λ2
0

∆xMZ

)

term in eqs. (5.75), (5.78) and (5.79), is provided as well, represented by a green curve. It narrows
down the FWHM due to increasing oscillation frequencies with greater stage displacements. The FWHM
determined by the envelope functions are of course constant over the entire travel range and thus provide

28This means the frequency comb tooth whose dispersion compensation is perfect and onto which the cavity length is
stabilised.

29i.e. from −400 fs ≤ τMZ ≤ 400 fs or −100 µm ≤ ∆xMZ ≤ 100 µm
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an upper boundary for decreasing oscillation periods30, which are represented by the respective y-axis
values for the red (Sech-pulse) and blue (Gauss-pulse) curves at ∆xMZ = 0 in fig 5.8, corresponding
by construction to the experimental FWHM at xMZ = −16.18 µm. The full model functions (5.78),
(5.79) resemble the FWHM from the measured data rather closely, especially for small differences in the
interferometer arm lengths. For the outermost stage positions the modelled behaviour does not exactly
fit to the observed one, which is mainly due to an incomplete modulation depth of the oscillations on
the spectra (see fig. 5.7) providing an underestimate of the central peak’s FWHM by the theoretical
prediction. This lowered modulation depth might e.g. result from unequal electric field amplitudes of
the laser pulses leaving the interferometer. However, these spectra comprise enough oscillation maxima
to fit the envelope function directly to them, which is also shown by dashed lines in fig. 5.8 a), for the
spectrum at ∆xMZ = −271.54 µm, whereby the orange curve represents a Sech-pulse and the blue curve
a Gauss-pulse. The FWHM values of these two fits for the datapoints at ∆xMZ = −271.54 µm and
∆xMZ = 228.8 µm can now be compared with the reference spectrum at ∆xMZ = −16.18 µm:

∆xMZ [µm] FWHM with Gauss pulse [nm] FWHM with Sech pulse [nm]
−271.54 0.986± 0.037 0.954± 0.047
−16.18 1.104± 0.003 1.058± 0.006
228.8 1.014± 0.041 0.982± 0.064

These values show a quite good resemblance as well31. Consequently spectra at greater pulse separations
also constitute an envelope function of constant width.

Conclusion for cavity’s spectral acceptance The important message here is that the spectra com-
prise a Gauss- or Sech-pulse envelope of constant width over the entire relevant pulse delay range, mod-
ulated only by an oscillating function according to cos2

(
2π(λ−λ0)

λ2
0

∆xMZ

)
which results from the Mach-

Zehnder interferometer. For that reason, the cavity locking condition does not vary during the alteration
of xMZ and always the same spectral portion of the external pulse can couple to cavity resonances. That
is to say that the spectral acceptance of resonator is constant throughout scanning the pulse separation,
since otherwise some frequencies would be missing at certain stage positions, narrowing down the FWHM
of the spectral envelope32 by an additional mechanism on top of the cos2 function. We therefore do not
artificially alter the pulse spectrum and the pulse duration by relocking the resonator at each measured
translation stage position while performing the autocorrelation experiment.

5.3.3 SPDC phase-matching bandwidth

Besides showing the insensitivity of the pulse length measurement to the cavity locking parameters, there
is another very important issue to be taken care of before one can regard an autocorrelation measure-
ment to provide accurate information about the underlying pulse duration. It concerns the non-linear
process involved in generating the g2(τ)-signal, i.e. the SPDC leading to the emission of HV-photon pairs.

Phase-matching bandwidth We will have to show the FWHM phase-matching bandwidth of the
BBO crystal to be at least as spectrally broad as the pump pulse of ∆λp ≈ 1.1 nm, centred around
λp,0 = 390nm. If that is not the case, the analogue scenario to including an interference filter occurs,
and parts of the pumping pulse spectrum are cut off by not being able to participate in the frequency
conversion. Hence the retrieved data from the autocorrelation functions would imply having a spectrally
narrower and, in turn, temporally elongated pump pulse. For commonly available autocorrelator devices,
working with SHG, it is rather easy to get an estimate about the phase-matching bandwidth and it is
also straight-forward to fulfil the aforementioned requirement. However for SPDC things are not as clear
cut. In that respect, a short derivation of the phase-matching bandwidth in the SHG case shall be given,
outlining the unsuitability of this approach for SPDC, and subsequently a possible manner to show its
sufficiency for the latter process shall be presented.

30i.e. decreasing pulse separation ∆xMZ
31They do not totally coincide within their error boundaries, which have been calculated only from the statistical error

in w by the fitting routine. Yet, as we see later on, there is also some additional systematic error present, not yet included
here.

32and therefore the FWHM of the central spectral fringe
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Phase-matching bandwidth in SHG The derivation for the bandwidth in the SHG case can e.g.
be found in ([104]) and commonly follows a single mode description, which is extended to broadband
pumping by approximations made upon the single mode phase matching condition. Assuming perfect
phase matching at a pump wavelength λp,0, the phase mismatch at any other wavelength can be expressed
as

∆k(λp) = 2k(λp)− k(λs) = 2
(

2πn (λp)
λp

)
−


2πn

(
λp

2

)

λp

2


 =

4π

λp

(
n (λp)− n

(
λp

2

))
, (5.80)

whereby for the signal wavelength λs = λp

2 has been used. If a Taylor expansion is performed for eq.
(5.80) around λp,0, assuming a deviation of δλp = λp − λp,0, one receives:

∆k(δλp) =
4π

λp,0

(
1− δλp

λp,0

)(
n(λp,0) + δλp

d

dλ
n(λp,0)− n

(
λp,0

2

)
− δλp

2
d

dλ
n

(
λp,0

2

))
(5.81)

By considering the pumping bandwidth δλ to be much smaller than the central wavelength λp,0, eq.
(5.81) can be further simplified to:

∆k(δλ) =
4π

λp,0

(
n(λp,0) + δλp

d

dλ
n(λp,0)− n

(
λp,0

2

)
− δλp

2
d

dλ
n

(
λp,0

2

))
(5.82)

Applying the assumption of perfect phase-matching for λp,0, i.e. n(λp,0
2 ) = n(λp,0), eq. (5.82) becomes

∆k(δλ) =
4π

λp,0

(
δλp

d

dλ
n(λp,0)− δλp

2
d

dλ
n

(
λp,0

2

))
. (5.83)

The intensity dependence of the SHG signal for finite crystal lengths L is given by ([104])

ISHG = const. · sinc2

(
∆k

L

2

)

which decreases by a factor of 2 for argument values of ∆k L
2 = ±1.39 ⇔ ∆k = 2.78

L in the sinc2-function.
The phase-matching bandwidth, defined as the wavelength range at whose boundaries sinc2(α) = 1/2,
can thus be expressed by aid of eq. (5.83) as ([104]):

δλSHG
phasematch =

0.44λp,0
L

| d
dλn(λp,0)− 1

2
d

dλn
(

λp,0
2

)
|

(5.84)

Within the above equations an intrinsic property of the SHG process has been used, namely the change in
signal wavelength by δλ

2 for changing the pumping wavelength by δλ. In the SPDC process this is however
not the case, rendering the SHG approach for calculating the phase matching bandwidth unsuitable. The
reason for the breakdown is the spectral broadening of the down-converted photons with respect to the
pump, which results in δλs,i À δλp and especially δλs,i 6= δλp

2 . For SPDC eq. (5.82) consequently
changes into

∆k(δλ) =
4π

λp,0

(
n(λp,0) + δλp

d

dλ
n(λp,0)− n(λs,i)− δλs,i

d

dλ
n(λs,i)

)

and cannot be resolved for δλp with simultaneous elimination of λs,i anymore, which is necessary to
extract information about the phase-matching bandwidth from this approach.

Phase-matching bandwidth in SPDC Since the most simple approach to calculate the bandwidth
is not applicable for the non-linear process of choice, another way of estimating the appropriate value is
to take advantage from the multi-mode description of SPDC, specifically the expression for the spectrum
of the down-conversion photons. The formulae, applied in the following text, are derived in a thorough
manner in reference ([101]), wherefore outlining their origin is skipped here. The relevant expression for
the spectra of the signal and idler beams are ([101])

Sj(νj) = const.
∫ ∞

∞
dνp|E+

p (νp)|2L2sinc2

(
L

2
αj

)
(5.85)
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whereby j ∈ {s, i} and the abbreviations νp = ωp − ωp,0, νs = ωs − ωs,0, νi = ωi − ωi,0 have been used.
Ep(ν) represents the spectral electric field amplitude of the pumping pulse, derived in eqs. (C.1) and
(C.2) of the appendix C.1.1 for both pulse models. The constants αs and αi are defined by ([101]):

αs =
νp

Vp
− νs

Vs
− νp − νs

Vi
+

Dpν
2
p

2
− Dsν

2
s

2
− Di(νp − νs)2

2
(5.86)

αi =
νp

Vp
− νi

Vi
− νp − νi

Vs
+

Dpν
2
p

2
− Diν

2
i

2
− Ds(νp − νi)2

2
(5.87)

Within this expression, Vj assigns the group velocity, experienced by the beam j ∈ {p, s, i} inside the
BBO crystal, and Dj is the group velocity dispersion parameter of the field j. Both quantities are given
by ([101]):

1
Vj

=
dkj(ωj)

dωj
=

1
c

(
n (λj)− λj

dn (λj)
dλj

)
; Dj =

d2k(ωj)
dω2

j

=
d

dωj

1
Vj

=
λj

2πc2

d2n (λj)
dλ2

j

(5.88)

The width limiting quantity in eq. (5.85) is the phase-matching bandwidth, the value we would like to
figure out, which is present implicitly within the sinc2 term, in a similar way as in the expression for the
second harmonic intensity. One way to extract it is to use the theoretical description (eq. (5.85)) and
calculate the spectra for signal and idler. Subsequent comparison with experimentally recorded spectra
of the SPDC photons, impinging onto the linear optical set-up, proves the absence of spectral cut-off
if both datasets coincide with one another. Such a comparison also takes into account the coupling
effects of the down-converted photons into the SM fibre behind the cavity’s output coupler (see fig. 3.1).
Since the signal and idler photons also posses a certain spatial distribution depending on their respective
wavelengths ([101]), the numerical aperture of the fibre could in principle disregard photons with certain
frequencies and thereby cut off parts of the down-conversion spectra.
Before beginning with the analysis, the reader should acknowledge the simplification originating from
ignoring pump beam focussing on the down-converted spectra. Since differently orientated ~k-vectors
would be introduced this way, more frequencies could fulfil the phase-matching condition, resulting in a
broader down-conversion spectrum ([101]).
In order to calculate Ss(νs) and Si(νi), one has to decide on what to call signal and idler photons in the
following, which will be important for choosing the correct refractive index, group velocity and group
velocity dispersion. As BBO is a negative uniaxial crystal and mounted with its effective extraordinary
axis in V-direction33, the pumping photons obviously have to be V-polarised. Conveniently the signal
photons will be chosen in V-direction as well, experiencing the effective extraordinary refractive index,
which in turn makes the idler photons H-polarised and subject to the ordinary refractive index.
Plugging the appropriate directions into eqs. (5.86), (5.87) and rewriting all values as functions of
wavelength34 leaves one, after some trivial replacement steps, with

αs =
1

Vext(λp,0)

(
2πc

λp
− 2πc

λp,0

)
− 1

Vext(λs,0)

(
2πc

λs
− 2πc

λs,0

)

− 1

Vord

(
λs,0λp,0

λs,0−λp,0

)
(

2πc

λp
− 2πc

λp,0
− 2πc

λs
+

2πc

λs,0

)

+
1
2
Dext(λp,0)

(
2πc

λp
− 2πc

λp,0

)2

− 1
2
Dext(λs,0)

(
2πc

λs
− 2πc

λs,0

)2

−1
2
Dord

(
λs,0λp,0

λs,0 − λp,0

) (
2πc

λp
− 2πc

λp,0
− 2πc

λs
+

2πc

λs,0

)2

(5.89)

and the according αi by replacing s → i, Vext(λs, 0) → Vord(λi, 0), Vord

(
λs,0λp,0

λs,0−λp,0

)
→ Vext

(
λi,0λp,0

λi,0−λp,0

)
,

Dext(λs, 0) → Dord(λi, 0), Dord

(
λs,0λp,0

λs,0−λp,0

)
→ Dext

(
λi,0λp,0

λi,0−λp,0

)
. Within these expressions, variables

designated ext represent quantities for the effective extraordinary refractive index and such identified ord
stand for the ordinary refractive index. If the correct BBO crystal length of LBBO = 1 mm is considered,
the sinc2-function part of eq. (5.85) can be calculated for signal and idler. The resulting graphs are

33See subsec. 6.1.1 for details on these terms.
34That means: νj = ωj − ωj,0 = 2πc

λj
− 2πc

λj,0
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Emission direction in BBO Experimental FWHM [nm] Theoretical FWHM[nm]
extraordinary 9.18 10.35

ordinary 8.2 8.48

Table 5.1: Theoretically calculated and measured FWHM values of SPDC photon spectra in signal and
idler direction.

show in fig. 5.9 with an appropriate pump and signal/ idler wavelength range of 370nm ≤ λp ≤ 410 nm
and 755 nm ≤ λs ≤ 805 nm as a 3 dimensional plot and, for a better observability of the wavelength
dependence, as a contour plot, in which bright regions indicate lower phase mismatch and thus greater
SPDC conversion efficiency35. It shall be noted here, that the phase-matching curves are not the same
for the signal and idler directions, thereby do neither have the same widths nor gradients d

dλp
λs,i(λp),

leading towards two different spectra to be expected for signal and idler. This has furthermore some
implications on the quantum mechanical correlations between signal and idler photons as well as their
indistinguishibility, which are both described in more detail in reference ([102]). For our way of discussing
the phase-matching bandwidth it is however sufficient to just use these sinc2-functions, inserted into eq.
(5.85). The pump envelope function |Ep(νp)|2 is assumed to be a Sech-pulse with a spectral amplitude
for the relevant positive frequency part, given by the FT of the electric field in the time domain, of:

|Ep(νp)|2 = sech2

(
π2∆t

(
c

λp
− c

λp,0

))
(5.90)

Its width parameter ∆t is determined from fitting eq. (5.90) to our reference spectrum obtained at
the translation stage position ∆xMZ = −16.18 µm, yielding ∆t = 85.75 fs, and the central wavelength
is fixed at λp,0 = 390 nm. From the former, a FWHM value for the fitted UV pumping spectrum of
∆λp ≈ 1.12 nm can be obtained.
The integrals for the signal and idler spectra are solved by numerical integration within a pump wavelength
range of 370 nm ≤ λp ≤ 410 nm and a step size of δλp,int = 0.01 nm, reaching well beyond the region
of considerable UV intensity. Calculations provide the signal and idler spectrum given by the red and
blue curve in fig. 5.10, respectively. The experimentally measured data is displayed in the same plots by
the black points and the black curve. In comparing both datasets, particular attention has to be paid to
the allocation of the correct experimental spectra with respect to their theoretical counterpart. Since the
polarisation of the SPDC photons gets rotated by the λ/2-waveplate behind the cavity output coupler
(see fig. 3.1) to cancel beam walk-off36, the spectrum for the extraordinary refractive index direction in
the BBO, generating V-polarised photons, has to be compared to the spectrum recorded for H-polarised
photons, detected in arm a of the linear optical set-up; vice versa for the ordinary spectrum. If one fits
the calculated spectra, shown as green curves in fig. 5.10, and the experimental ones, drawn as grey
curves in fig. 5.10, with a Sech proportional to eq. (5.90), followed by calculating the FWHM values of
all four fitted functions, the values stated in table 5.1 are yielded.
The data-sets show good resemblance between the expected and actually measured values. For a quan-
titative comparison, the resolution of the single photon spectrometer, used to record the experimental
data, has to be taken into account, which is ∆λspec ≈ 0.5 nm at λ ≈ 780 nm. Keeping that in mind, the
FWHM values for the ordinary refractive index direction in the BBO coincide and the numbers for the ex-
traordinary direction are only slightly deviating from each other. We can therefore regard the calculated
SPDC spectra to be in agreement with the ones present during our experiment and accordingly assume
phase-matching over the entire pumping pulse bandwidth, indicating the absence of spectral cut-off and
associated pulse broadening by the non-linear process.
Nevertheless, for completeness, a quick estimation about the additional error on the pulse width, im-
parted by the extraordinary spectral mismatch δλ from the experimental value ∆λFWHM

exp = 9.18 nm,
shall be conducted: Conceiving the worst case with the entire δλ = 1.17 nm being the spectral cut-off
caused by the non-linear process

αspec−cut−off =
δλ

∆λFWHM
exp

· 100 ≈ 12.7%

of the SPDC spectrum are discarded by phase-mismatch. Simplifying the spectral dependence between
pump and signal/ idler as linear, that would mean a non-consideration of ≈ 12.7% of the input spectrum.

35The ranges for λp and λs have been chosen according to the values applied in the numerical integration of eq. (5.85)
stated below. Also the curvatures of the phase-matching is better visible for such a broader range.

36See discussion in subsec. 6.2.2 for details.
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a) Phase matching (~sinc  ) signal beam:
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b) Phase matching (~sinc  ) idler beam:
2
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c) Phase matching (~sinc  ) signal beam:
2

d) Phase matching (~sinc  ) idler beam:
2

Figure 5.9: Sinc2 phase matching functions for a 1mm BBO crystal as incorporated in the expression for
the SPDC spectra, eq. (5.85). The left column shows calculations for the signal beam and the right one
for the idler beam. The three dimensional plot in the upper row shows the increase of the Sinc2 term as
a function of pump and signal/ idler wavelength, whereby the two dimensional contour plot in the lower
row gives better estimation about the bandwidths available for converting the pump to signal/ idler. For
further details see main text.

Since the relationship between errors in the expression connecting tbe FT limited pulse duration and
the bandwidth is linear as well, i.e. δτ ∼ | ( d

dν τ(ν)
) · δν| and δν ∼ (

d
dλν(λ)

)
δλ, giving δτ ∼ δλ, a

pulse of roughly 12.7% longer duration would result from this mismatch. With the FT limited pulse
duration, calculated later on from the g1(τ)-function, of ≈ 150 fs (see table 5.3), the potential cut-off
would result in a pulse elongation of δτ ∼ αspec−cut−off · 150 fs ≈ 19 fs. Referring to later results,
the pulse duration from the g2(τ)-function will be shown to have an error boundary of ≈ 20 fs from
spectral mismatch and fitting uncertainties (see table 5.8), which implies that even in the worst case
of phase-mismatch, the pulse would not be too severely broadened to cause serious deviations in the
resulting pulse duration, preventing the applicability of the underlying measurement itself. Ultimately
the autocorrelation experiment is only devised to provide an estimation about the pulse length and not to
achieve absolute accuracy in the range of a few femto-seconds anyway. From this perspective the spectral
resemblance and associated phase-matching is good enough.
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Figure a): Idler spectra Figure b): Signal spectra

Figure 5.10: Comparison between the calculated SPDC spectra by eq. (5.85) and the experimentally
measured spectra for signal and idler photons in our linear optical set-up. Plot a) represents the ordinary
and plot b) the extraordinary direction in the crystal, which accord to vertically and horizontally polarised
photons, respectively. Black points correspond to the recorded data. The Sech spectrum along the
extraordinary direction is shown as a red line, and its counterpart along the ordinary axis is drawn in
blue. The green lines represent fitted Sech pulse shapes to the calculated spectra, given by eq. (5.90).
The grey lines are analogous Sech fits to the experimental data.

5.3.4 Interference of first order

After showing, that all necessary prerequisites are fulfilled, we can now proceed to the actual experimental
findings. These are discussed by first looking at the interference of first order, which does provide a
lower boundary for the possible UV pulse length and also carries some information about how well the
interferometer is aligned. The data obtained for the g1(τ) correlation function (eq. (5.9)), measured by
the photodiode in the output arm 1 of the Mach-Zehnder interferometer is presented in fig. 5.11 indicated
by black points. The x-axes in these plots represent the femto-second time separation between both pulses
τMZ = 2∆xMZ

c with interference taking place inside an interval of roughly −400 fs ≤ τ ≤ +400 fs. As
the individual interference fringes are too narrow to be resolved in a plot over the entire interference
range, a small portion around −10 fs ≤ τ ≤ +10 fs pulse delay has been cut out and shown separately
in fig. 5.11 b). These fringes will be evaluated first, followed by an analysis of the visibility and the
g1(τ)-function.
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Figure 5.11: Interference function of first order as measured by the photodiode in output arm 1 of the
Mach-Zehnder interferometer. Plot a) shows the entire interferogram, which is narrowed down to an
interval around −10 fs ≤ τ ≤ +10 fs pulse delay in plot b). The black points represent experimental
data, the blue curve is the fitted g(τ) function for Gaussian pulses, according to eq. (5.16), whereby the
red curve displays its Sech-shaped counterpart following eq. (5.20).
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Interference fringes From the interference fringe pattern (fig. 5.11) one can infer the carrier wave-
length λ0 of the optical pulses by aid of the fringe width. The distance between two fringe nodes37

corresponds to a time separation of τMZ = λ0
2 c between both pulses. In order to determine this duration,

the widths of 51 interference fringes, lying within the range of −32.1 fs ≤ τ ≤ 32.2 fs, has been evaluated
for maxima and minima of interference38 with subsequently calculating their common average value and
the standard deviation. For the latter, we obtain

∆x̄fringes = 189± 54 nm, (5.91)

resulting in a pulse carrier wavelength of

λ0 = 2 ·∆x̄fringes = 378± 107 nm. (5.92)

Not surprisingly the outcome in eq. (5.92) ties in with the expected λ0 = 390 nm within its error bound-
aries, since these are quite large rendering this method to conclude back on the carrier wavelength rather
unsatisfying. It does not really matter for the determination of λ0, because the UV spectra have been
recorded for the correlation measurement as well (see fig: 5.7) enclosing λ0 as their respective maximum
value.
In terms of the accuracy in translation stage positioning, the error thereon is considered to be on the
order of 1 step, which amounts to a distance of approximately δ(∆xMZ) = 20 nm. The resulting uncer-
tainty in pulse separation is δτ = 2δ(∆xMZ)

c ≈ 0.3 fs. Having a FWHM value for the g2(τ)-function of
FWHMSech

g2
≈ 305 fs (see fig. 5.16), the precision of the translation stage would add a maximum cumu-

lative error of δτstage = 0.6 fs, constituting an uncertainty on the order of 0.2%. Since the dependence
between FWHMSech

g2
and the pulse duration τSech

pulse (see table 5.8) is linear, an error of δτSech
pulse ≈ 4 fs

is to be expected on the latter, which is small compared to the errors of 21 fs from other sources of
uncertainty. Hence this systematical error will be neglected.

Interferometer stability Since the Mach-Zehnder interferometer is not actively stabilised, it is fur-
thermore important to certify the constancy of the pulse separation during measuring each datapoint.
In other words constancy in pulse interference over time is necessary. For this purpose the optical power
level impinging onto the photodiode in output 1 of the Mach-Zehnder interferometer (see fig. 5.13) has
been monitored while measuring the correlation curves for the intra-cavity signals. Accordingly, at the
maximum of the correlation curves gcavity

1 (τ), gHV coinc.
1 (τ), gHHVV coinc.

2 (τ), the signal on the photodiode
reaches its minimal level. To show the constance of the interference condition, the power on the photo-
diode is displayed in fig. 5.12 as a function of its constituting sampling points, whereby one datapoint
in the correlation functions corresponds to 8 sampling points of 1 sec duration, for the exemplary pulse
separations of τMZ = −1810 fs (red curve) and τMZ = 0 fs (black curve). Additionally the entire inter-
ference signal on the photodiode, measured in the second run, has been shown as a function of pulse delay
time by a grey curve. The power levels for τMZ = −1810 fs and τMZ = 0 fs must be analysed in their
fluctuations, whose amplitudes should be negligible for achieving interferometric stability. Comparing
those with certain points on and the height of the g1(τ)-curve shows that the intensity on the photodiode
is rather constant throughout the measurement. Hence the interferometer arm lengths do neither drift
away, nor vibrate around the appropriate length for constructive interference considerably. The former
effect would reveal itself in a steadily increasing/ decreasing power-level, whereas the latter would result
in oscillations about an average value. Both are not apparent to an extend requiring active stabilisation of
the Mach-Zehnder interferometer and we can proceed towards the actual measurements of the correlation
functions.

Interference visibility and b parameter The interference visibility is commonly defined as:

Vint =
Imax − Imin

Imax + Imin
, (5.93)

whereby Imax is the maximal intensity (at constructive interference) achieved within the overall inter-
ference region and Imin is the corresponding minimal one (at destructive interference); these are in our
particular case Imax = 1.794 and Imin = 0.235 yielding a visibility of V = 0.7681. The visibility is
a measure for the fractions of both pulses, that interfere with one another, yielding V = 1 for perfect

37or anti-nodes as well
38Use was made of the nodes in the interference pattern as the precision of the chosen step size of the translation stage is

not accurate enough to reliably hit the interference maxima and minima at each instant, whereby the nodes are precisely
defined by the background signal level outside the interference region, measured with high statistics.
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Figure 5.12: Interferometer stability: Power level on photodiode at pulse separations of τMZ = −1810 fs
represented by the red curve and τMZ = 0 fs represented by the black curve, normalised to the background
signal provided by the average of the combined power level data at pulse separations τMZ = −1810 fs
and τMZ = 1525 fs. The normalised g1(τ)-correlation function, depending on pulse delay time, is plotted
in grey as well, providing a means for comparison of the variations in the power level.

interference and V = 0 for its absence. Having V < 1 indicates the interferometer to be not perfectly
aligned, which can be due to three reasons:
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Figure 5.13: The Mach-Zehnder interferometer set-up incorporated in the experiment, including the
transmitted and reflected electric fields, which derive from the input field Ein by application of the
reflectivity r and transmittivity t of the beam splitter.

1. The splitting ratio of the beam splitter within the interferometer might not be 50 : 50, i.e. R 6=
T 6= 1

2 . However this flaw would just affects the output arm, which back-reflects the beam (output
1 in the fig. 5.13) into the incoming spatial mode. In order to see that, the visibility for both arms
in an arbitrary interferometer shall shortly be calculated. In output 1 it is expected to be

V ′
1 =

((t2 + r2)2 − (t2 − r2)2)E2
in

((t2 + r2)2 + (t2 − r2)2)E2
in

=
1− (T −R)2

1 + (T −R)2
,

therefore having V < 1, if T 6= R. Yet for output 2, with
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V ′
2 =

((rt + tr)2 − (rt− tr)2)E2
in

((rt + tr)2 + (rt− tr)2)E2
in

= 1,

it turns out to be independent of r and t. Since in our experiment the photodiode measures V1 for
the apparent beam-splitter reflectivity r =

√
R = 0.7518 and transmittivity t =

√
T = 0.6594, a

maximally visibility of still V ′
1 = 0.967 could in principle be expected.

2. The polarisation state of light between both arms might not match. Most likely such a deviation is
caused by some residual birefringence in the beam splitter39, an effect we are already familiar with
from the linear optical set-up discussed in section 3.3, where it gets cured by inserting additional
pairs of Y V O4 crystals. In order to check for it, a Glan-Thomson prism ([84]) has been placed
in output 2, generating a walk-off between the components of the incoming light polarised along
the prism’s ordinary or extraordinary refractive index axis. The optical power achieved for each
polarisation direction is given below, whereby the respective electric field amplitudes have been
calculated by Pk = α · |Ek|2 = Abeam · 1

2cε0nair|Ek|2, with k representing the polarisation, Abeam

the beam diameter, ε0 is the permittivity of vacuum, nair the refractive index of air and α the
proportionality constant between the time averaged electric field and the time averaged optical
power.

MZ Arm Pord [mW ] Pext [mW ] Eord [1/α] Eext [1/α]
1 53 15 7.3 7
2 49 15 3.9 3.9

Thus the polarisation in the interferometer is only slightly mismatched. Unfortunately it has not
been possible to get rid of this misalignment, because inserting another birefringent optical element
available to us40 added absorption and thereby degraded the visibility to an extend exceeding
the gain from polarisation compensation contribution. Nevertheless the theoretically achievable
visibility can be calculated from the aforementioned polarisations, requiring the treatment of the
electric field contributions to the maximal and minimal intensity with respect to their polarisation.
With Eord,j := γord,jα and Eext,j := γext,jα, the intensities at extremal constructive and destructive
interference become

Ioutput1
max = (t2Eord,2 + r2Eord,1)2 + (t2Eext,2 + r2Eext,1)2

= α2((t2γord,2 + r2γord,1)2 + (t2γext,2 + r2γext,1)2)
= 66.2α2

Ioutput1
min = (t2Eord,2 − r2Eord,1)2 + (t2Eext,2 − r2Eext,1)2

= α2((t2γord,2 − r2γord,1)2 + (t2γext,2 + r2γext,1)2)
= 1.4α2

Ioutput2
max = (rtEord,2 + trEord,1)2 + (rtEext,2 + trEext,1)2

= RTα2((γord,2 + γord,1)2 + (γext,2 + γext,1)2)
= 263.83RTα2

Ioutput2
min = (rtEord,2 − trEord,1)2 + (rtEext,2 − trEext,1)2

= RTα2((γord,2 − γord,1)2 + (γext,2 − γext,1)2)
= 0.08RTα2

yielding visibility values in both output arms of:

V ′
1 = 0.9585 ; V ′

2 = 0.9994 (5.94)

As expected, the visibility is degraded for unmatched polarisations, however the effect for our set
of parameters is rather small and V ′

1 = 0.9585 is still greater than the experimentally determined
value of V1 = 0.7681.

39Of course under the assumption of having no birefringent media in either interferometer arm.
40Which would have either been a Y V O4-crystal or a quartz-glass plate.
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3. Incomplete spatial mode matching also reduces the interference and therefore its visibility, due to
the absence of interference between non overlapping parts of the respective electric fields from both
pulses. We can estimate the non perfect transverse mode overlap in output 2 of the interferometer
by the amount of light coupled into the cavity from each interferometer arm: As we have seen
in subsec. 3.1.2 the resonator operates as a spatial mode filter. From the signal strengths of
the internally excited resonances for the free-running cavity41 we can infer a difference between
the coupling efficiencies for light from both interferometer arms, which leads to an expectation
for a degraded interference of V = 74 %. It shall thus be noticed, that the major contribution,
degrading the visibility of the Mach-Zehnder interferometer, stems from a non perfect transverse
mode matching. Unfortunately it has not been possible to improve the interference by further
alignment.

After understanding where the flaws in the implemented Mach-Zehnder interferometer lie, the g1(τ)-
correlation function shall now be evaluated in output 1 and 2. In the theory part, subsec: 5.2.1, the
fitting functions by assumption of Gauss- or Sech-pulses, with a variable electric field amplitude for
each pulse, have been calculated. The results for fitting curves derived for intra-cavity quantities, i.e.
HV-coincidences and the cavity level, are stated in eqs. (5.16) and (5.20). The fitting functions for the
interference pattern on the photodiode are obtained in the same way as computing eqs. (5.66) and (5.67)
in subsec. 5.2.3, by setting a2 = b2 in the denominator of eqs. (5.16) and (5.20). The reason is the
absence of spatial mode filtering outside of the resonator, which necessitates to have different background
level contributions from both pulses for intra-cavity correlation function. In the following analysis, we
furthermore normalise the contributions from both pulses to the gi(τ) functions by conveniently setting
a = 1. For fitting the interference pattern observed on the photodiode (fig. 5.11), the HV coincidence
rates as well as the cavity level, both shown in fig. 5.14, the maximum of the fit-function is fixed to
the maximum value in the dataset. Since gl,output1

1 (0) = 1 + b and gl,output2
1 (0) = 1 + 2b

1+b2 . We can
extract the respective parameters b from the measured data and conclude from the ones obtained for
intra-cavity quantities onto an interference visibility within the resonator. The latter is calculated42 from
the following electric fields

Earm1
ord = r · b · γord,1α ; Earm2

ord = t · a · γord,2α

Earm1
ext = r · b · γext,1α ; Earm2

ext = t · a · γext,2α,

providing a visibility in output mode 2 of:

V2 =
((rEarm2

ord + tEarm1
ord )2 + (rEarm2

ext + tEarm1
ext )2)− ((rEarm2

ord − tEarm1
ord )2 + (rEarm2

ext − tEarm1
ext )2)

((rEarm2
ord + tEarm1

ord )2 + (rEarm2
ext + tEarm1

ext )2) + ((rEarm2
ord − tEarm1

ord )2 + (rEarm2
ext − tEarm1

ext )2)

Inserting the relevant expressions for r = 0.7518, t = 0.6594, a = 1, γord,1 = 7.28, γext,1 = 3.87,
γord,2 = 7, γext,2 = 3.87 gives the visibility inside the cavity as a function of the b parameter:

V2 ≈ 1.94 · b
0.94 + b2

(5.95)

Evaluating the datasets for all measured b parameters as well as visibilities (eq. (5.95)) yields the values
shown in table 5.2, in which the b parameter for HHVV coincidences43 and the first order interference
visibility, deduced thereof, have additionally been included in order to allow for a complete discussion of
the visibility at this point. The b parameter for output 1 is obviously different to the cases of examining
HV coincidences or the cavity level, which is associated with the different denominators in the fitting
functions for g1(τ) and their underlying experimental situations.
One can deduce from table 5.2 a close resemblance between the visibility values for output 1 and output
2 observing four-fold coincidences. The results for the cavity level lie slightly below and the ones for HV
coincidences above the latter; these should however also coincide with bHHV V and V2(HHV V ), since the
optical mode inside the cavity is well defined. Unfortunately the reason for this mismatch is still unclear.
In the following the values for all three first order interference cases will thus always be provided44.

41i.e. while the FSR of the cavity is scanned by moving the fast PZT over its entire range
42taking into account the transmittivity and reflectivity of the beam splitter in the interferometer as well as the polarisation

mismatch in terms of γord,j and γext,j .
43Stemming from fitting the HHVV coincidence data by eqs. (5.51) and (5.53) as discussed in subsec. 5.3.5.
44i.e. signal on photodiode in output 1, cavity power level and HV coincidences
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Out 1: Int. max. Out 2: Cavity level Out 2: HV coinc. Out 2: HHVV coinc.
b 0.79 0.41 0.58 0.44
V 0.77 0.71 0.88 0.75

Table 5.2: b parameter and visibilities for the interference of first order in both output of the MZ
interferometer. The visibility for output 1 is a measured value, whereas the other three are calculated
according to eq. (5.95) by aid of their experimentally determined b parameter.

Fourier transform limited pulse duration By fitting the obtained datasets for the HV-coincidences
and the intra-cavity power level with the g1(τ)-functions (5.16) and (5.20), the minimal achievable pulse
duration within the cavity, referred to as Fourier transform limited pulse duration, can be obtained. The
measured data is shown in fig. 5.14 by black squares, the fitted gSech

1 (τ) by a red line and the fitted
gGauss
1 (τ) by a blue line. Additionally the interference pattern obtained in output 1 has also been fitted45

with the results displayed in fig. 5.11 by the same colour coding for Sech- and Gauss-pulses.

The results for the width parameters ∆t from fitting the gl
1(τ)-functions to the three datasets can now be

used to conclude onto the minimal possible FWHM pulse duration τFT,l by application of the conversion
factors αl

g1
, eqs. (5.27) and (5.28), providing the FWHM of the respective g1(τ) function and subsequent

multiplication with γl
g1

, stated in eqs. (5.29) and (5.30), to yield τFT,l, whereby l ∈ {Sech, Gauss}. The
resulting values for ∆t and τFT

pulse are displayed in table 5.3, itemised according to the various pulse shapes
and datasets.
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Figure a): Cavity power level Figure b): HV coincidences

Figure 5.14: Intra-cavity g1(τ) correlation functions. Plot a) shows the outcomes for the cavity level and
plot b) the ones for HV coincidences. Black boxes indicate measured data, red lined the fitted g1(τ)
function for Sech pulses and blue lines the fitted g1(τ) function for Gaussian pulses.

Photodiode [fs] Cavity level [fs] HV coinc. [fs]
τSech 126.3± 5.6 149.8± 10.9 140.06± 11.68
τGauss 162.4± 10.2 192.8± 16.8 182.09± 18.36
∆tSech 71.7± 3.2 85± 6.2 79.5± 6.6
∆tGauss 97.5± 6.1 115.8± 10.1 109.4± 11

Table 5.3: Fourier transform limited pulse durations.

Regarding first the interference pattern sampled by the photodiode in output 1, the quantities in table
5.3 shall be noted to represent the maxima of interference only. The minima have also been evaluated,
as shown in fig. 5.11, delivering approximately the same numbers (τSech = 129.05± 5.61 fs and τGauss =
163.59 ± 10 fs) as expected and are therefore neglected in the further discussion. The errors for both
quantities comprise two contributions, one statistical and one systematic in nature. The former is received
simply from the fitting error of the gl

1(τ)-functions to the respective measurement curves. It provides

45With functions analogue to (5.16) and (5.20) with a2 = b2 in their denominator, as outlined in the last paragraph.
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an uncertainty in the parameter δstat(∆t), which is further taken care of by Gaussian error propagation,
leading to an error in the minimal pulse duration δstatτ

FT
pulse of:

δstatτ
FT
pulse =

√(
∂

∂(∆t)
γl

g1α
l
g1∆t

)2

δstat(∆t)2 = γl
g1α

l
g1δstat(∆t) (5.96)

As this error is different for each measurement, the individual values are as follows:

Photodiode [fs] Cavity level [fs] HV coinc. [fs]
δstat(∆tSech) 0.16 3.17 3.6

δstatτ
Sech 0.28 5.6 6.35

δstat(∆tGauss) 0.34 4.31 5.25
δstatτ

Gauss 0.57 7.18 8.74

The much smaller numbers for the measurement by the photodiode compared to the intra-cavity quan-
tities are due to the larger number of recorded interference maxima, yielding better statistics and less
uncertainty (see fig. 5.11 and 5.14).
The systematic error adds another uncertainty δsys(∆tSech) = 3.06 fs and δsys(∆tGauss) = 5.78 fs, leading
to δsysτ

Sech = 5.33 fs and δsysτ
Gauss = 9.62 fs via systematic error propagation given by:

δsysτ
FT
pulse = |

(
∂

∂(∆t)
γl

g1α
l
g1∆t

)
· δsys(∆t)| = γl

g1α
l
g1δsys(∆t) (5.97)

The derivation of this type of uncertainty is not as straight forward as the statistical one and stems from
the spectral information inherent in the correlation functions for first order interference. It will be worked
out in the next paragraph. For the moment however only its value will be important, which is the same
for all datasets. To yield the entire error the minimal pulse length is subject to, given in table 5.3, the
systematic and statistical contributions have to be added up linearly, i.e.

δtotτ
l = δstatτ

l + δsysτ
l (5.98)

If we now compare the results for the minimal pulse lengths with one another, the difference between Sech-
and Gaussian-pulses becomes obvious. It is well understood by the different conversion factors in eqs.
(5.29) and (5.30) or more generally known by the time-bandwidth-product46, just telling us that pulses
with equal spectral width are shorter in the time domain if they are Sech-shaped. By far more interesting
is the difference for τpulse within and outwith the resonator showing a pulse broadening of approximately
20 fs being picked up during input coupling. This is a direct result of the frequency comb matching
requirement, discussed in subsec. 2.1.4. The difference between τphotodiode

pulse and τ cavity
pulse / τHV coinc.

pulse implies
that several frequencies in the external pulse are not in resonance with the resonators longitudinal modes,
getting reflected and thereby shortening the spectral width of the internal pulses. In turn, a longer pulse
in the time domain is to be expected. This ties in with the results for the spectral coverage ΓBBO (eq.
(4.13)) of the intra-cavity UV spectrum with respect to the external pumping spectrum, as discussed in
4.2.4.

Spectral information from g1(τ) in comparison with the UV spectra Before proceeding to-
wards the autocorrelation measurement, there is still the spectral information contained in the first order
correlation function g1(τ) which is worthwhile being examined. In subsec. 5.2.2 the Fourier transform
connection between g1(τ) and the underlying pulse spectrum has already been described. The normalised
spectra for Sech- and Gauss-pulses, eqs. (5.35) and (5.37), consequently are:

S(ν)Gauss = exp
(
−4π2 (∆t)2 (ν − ν0)2

)
(5.99)

S(ν)Sech = sech2
(
π2∆t(ν − ν0)2

)
(5.100)

Since the widths of these spectral functions only depend on the parameter ∆t, which has been obtained
from fitting the g1(τ)-functions to the first order correlation measurements, we can plug the previous
outcomes for ∆t (table 5.3) into eqs. (5.99) and (5.100) in order to compare them with the directly
measured UV spectra inside the cavity. In doing so, we receive the spectra shown in fig. 5.15. Therein
the three experimental spectra around zero pulse delay, namely at τ = −108 fs, τ = 0 fs and τ = 59 fs,
are presented as black squares. The spectral functions for the cavity level, with ∆tCavity, are shown

46See subsection 5.2.2.
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as red lines, the ones for the HV coincidences, ∆tHV, as blue lines and the functions resulting from
the interference maxima in output 1, ∆tInt. max., are displayed as green lines. In order to once more
compared FWHM values of these, the measured datapoints have therefore also been fitted by a Gauss-
or respectively a Sech-spectrum, according to eqs. (5.99) and (5.100) with ∆t as a free fitting parameter.
Furthermore fig. 5.15 is split up according to the underlying pulse shape assumed, with the left column
enclosing fits for Sech-pulses and the right for Gauss-pulses.

Spec. τ = −108 fs Spec. τ = 0 fs Spec. τ = 59 fs
∆νexp 2.2 THz 2 THz 2.04 THz
∆λexp 1.115 nm 0.986 nm 1.034 THz
∆νSech 2.08± 0.01 THz 1.945± 0.008 THz 1.939± 0.012 THz
∆λSech 1.058± 0.005 nm 0.986± 0.004 nm 0.983± 0.006 nm
∆νGauss 2.174± 0.009 THz 2.023± 0.006 THz 2.02± 0.011 THz
∆λGauss 1.102± 0.005 nm 1.026± 0.003 nm 1.023± 0.006 nm

Table 5.4: FWHM values for measured intra-cavity UV spectra and fitted Sech-, Gauss-spectra, according
to eqs. (5.99), (5.100), around zero pulse delay.

We start evaluating fig. 5.15 by analysing the spectral widths of the UV pulses: The green curves are
clearly broader than all the others, which represent intra-cavity pulses. This ties in with the previous
discussion about the cavity coupling condition (subsec. 2.1.4), according to which the absence of the
reflected modes leads to a spectral shortening of the intra-cavity spectra. Consequently the mismatch
between the spectral function for ∆tInt. max. in comparison with the other curves is well understood.
Moving on towards a more quantitative discussion, the FWHM values for the measured spectra are read
out in the first place. Here, on the one hand, a direct determination from the measured data is performed,
while on the other hand the respective widths of Sech- and Gauss-fits to these are evaluated as well. All
three sets of quantities are stated in table 5.4, whereby the conversion from frequency to wavelength
has been carried out according to ∆λ = λ2

0
c ∆ν, assuming a carrier wavelength at λ0 = 390 nm. It is

justified to use this centre wavelength since the fitted values only slightly deviate from it by not more
than the fourth leading order. To gain some information about the accuracy of our correlation and
spectra measurements, to figure out, which pulse shape appears to be the most accurate one and to
justify the choice of the reference spectrum, made during modelling the Mach-Zehnder output spectra
with eqs. (5.78) and (5.79), it is intriguing to compare the values in table 5.4 with the FWHM of the
spectral functions derived from the g1(τ)-fits. The latter are provided in table 5.5, whereby the given
errors again present statistical uncertainties from δsys(∆tSech) and δsys(∆tGauss).

g1(∆tCavity) g1(∆tHV coinc.) g1(∆tInt. max.)
∆νSech 2.1± 0.08 THz 2.25± 0.1 THz 2.49± 0.01 THz
∆λSech 1.07± 0.04 nm 1.14± 0.05 nm 1.264± 0.003 nm
∆νGauss 2.29± 0.09 THz 2.42± 0.12 THz 2.72± 0.01 THz
∆λGauss 1.16± 0.04 nm 1.23± 0.06 nm 1.378± 0.005 nm

Table 5.5: FHWM values of spectral functions derived from g1(τ) functions.

We infer from this table the widths between the spectral functions for ∆tCavity and ∆tHV coinc. to coincide
within their statistical error boundaries. The broader FWHM for ∆νl(∆tInt. max.) is not surprising either.
However all FWHM, stemming from the first order correlation measurement, exceed the ones originating
from direct determination by the spectrometer (table 5.4). Due to the Fourier transform connection
between the g1(τ)-function and the spectrum, there must nevertheless be a strict resemblance between
the measured spectra and the ones derived from the first order correlation. In other words, since these do
not match within their statistical error boundaries, there has to be an additional source of uncertainty
within the dataset. Unfortunately it is not entirely clear, which part is affected by the aforementioned
additional error. In any case, what is important here is the FWHM for the spectrum at ∆τMZ = −108 fs
pulse delay to be still very close to the expected width by the correlation function. For that reason,
it has been appointed the spectrum of reference for the previous examination of the cavity’s frequency
acceptance range as well as for further error considerations. The reason why the spectra at smaller time
separation between both pulses are narrower than the one at ∆τMZ = −108 fs is also not ultimately
clear. In the worst case it might be due to a residual variation in the acceptance range of the cavity47,

47It cannot be explained by the spectrometer though, since the impinging beam onto this device is determined by the
cavity mode geometry, which has been constant during the experiment.
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which would subsequently accumulate to roughly an uncertainty of ∆νcav. acc. ≈ 0.16 THz equal to
∆λcav. acc. ≈ 0.08 nm. This is still more than an order of magnitude smaller than the UV pulses’
FWHM in frequency space. By application of the same reasoning used to estimate the influence the
down-conversion spectra mismatch, during discussing the phase-matching bandwidth, i.e. ∆τ ∼ ∆ν, a
ball-park figure for the uncertainty in pulse duration of ≈ 10 fs can be inferred. Our measurements are
only precise within an interval twice as big as that anyway, so even if the spectral mismatch between
∆τMZ = −108 fs and ∆τMZ = 0 fs can be attributed to variations in the cavity’s spectral acceptance,
it would not seriously spoil the measurement.
To take the mismatch between the experimental and theoretically predicted spectra into account, the
standard deviation of all spectral FWHM values for the HV coincidences, the cavity level and the measured
as well as the fitted spectrum at ∆τMZ = −108 fs is calculated and subsequently treated as the systematic
error, inherent to the experimental set-up. Due to the way calculating it, this value is obviously equal
for all different signals leading to a first order correlation curve (i.e. cavity level etc.), but different for
both pulse shapes. It is furthermore expressed in terms of the ∆t parameter to allow usage in the error
calculations for pulse durations, yielding:

Pulse shape δsys(∆t)
Gauss 5.78 fs
Sech 3.03 fs

Since unfortunately an additional external spectrum has not been recorded in the course of the mea-
surements with the photodiode, there is no external reference spectrum to compare the spectral width
∆νl(∆tInt. max.) to. So an individual systematic error for quantities derived from the interference pattern
in output 1 of the Mach-Zehnder interferometer cannot be computed and the systematic uncertainties for
the intra-cavity measurements will conveniently be taken for these as well. Furthermore the systematic
errors just derived will also be applied for the evaluation of the g2(τ) measurement and the associated
uncertainties in the pulse durations.
Another interesting point are the time-bandwidth products between the FWHM pulse durations, originat-
ing from the first order correlation functions, and the FWHM of the experimentally measured reference
spectrum48 in comparison with the expected values from theory, i.e.

∆τ l
i ·∆νl

i = β, (5.101)

whereby l stand again for the pulse form (l ∈ {Gauss, Sech}) and i represents the underlying measured
quantity (i ∈ {cavity level, HV coincidences}). The products are provided in table 5.6, showing rather
good resemblance for the cavity level and the HV coincidences with the expected values. The constants
for the interference maxima in output 1 (fig. 5.13) are neglected in the following discussion, as there is
no measured spectrum for the g1(τ) function at hand.

Gauss-pulses Sech-pulses
αtheory 0.441 0.315
αcavity 0.424 0.3296

αHV coinc. 0.401 0.308

Table 5.6: Time-bandwidth products for the reference spectrum at ∆τMZ = −108 fs pulse delay with
the respective Fourier transform limited pulse durations obtained from the first order correlation mea-
surements.

Finally the analysis of the matching between the measured spectra and the theoretical predictions allows
us to conclude, by which pulse shape our experimental situation is described more accurately. It shall
be strongly underlined, that the following considerations do definitely not tell us, how the intra-cavity
UV pulses look like in reality. It does neither tell us, if we even have pulses of one or the other shape
nor whether the assumption of Sech- or Gauss-pulses is justified in the first place. For all these kind of
questions a proper analysis of the spectral phases involved would have to be implemented (see reference
([104]) for details). However it is still possible to give a preference towards a certain pulse model. Espe-
cially as the conversion factors and thereby the resulting pulse lengths are different for both assumptions
(deviating by ≈ 40 fs for the FT minimal pulse lengths and ≈ 30 fs for the real pulse lengths, determined
in subsec. 5.3.5), it is fortunate to have a feeling for the number which is more likely to constitute a

48For the full spectral widths at half maximum of the spectral functions (5.99) and (5.100), with the ∆ts from the fitted
g1(τ)-functions and the minimal pulse durations from table 5.3, the time-bandwidth products of course yield the expected
theoretical value by construction.
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measure for the actual pulses. In order to figure out this preference, the root-mean-square deviation,
referred to as RMSD in the following, comes in handy. It is defined as the geometrical mean of the
distances between the theoretical spectral functions and the measured data. Representing the former by
[S(νi)]∆t(gl

1)
and the latter by y(νi), the RMSD can be written as

RMSD =

√√√√
i=3648∑

i=0

(
[S(νi)]∆t(gl

1)
− y(νi)

)2

, (5.102)

whereby the sum runs over all 3648 measurement points within one spectrum dataset. According to
this definition a lower value for the RMSD consequently indicates a better resemblance of the theoretical
prediction with the experimental spectrum. The matching between both quantities has been calculated
for all three considered spectra (with time delays of τ = −108 fs, τ = 0 fs, τ = 59 fs) and all intra-cavity
correlation functions. Results are presented in table 5.7.

Spectrum at τ = −108 fs: Gauss-pulses: Sech-pulses:
RMSD(∆tCavity) 0.39 0.38

RMSD(∆tHV coinc.) 0.62 0.53

Spectrum at τ = 0 fs: Gauss-pulses: Sech-pulses
RMSD(∆tCavity) 0.66 0.54

RMSD(∆tHV coinc.) 0.93 0.79

Spectrum at τ = 59 fs: Gauss-pulses: Sech-pulses:
RMSD(∆tCavity) 0.74 0.65

RMSD(∆tHV coinc.) 0.98 0.87

Table 5.7: Root mean square deviations according to eq. (5.102) between the theoretically predicted
spectra, with parameters from the first order correlation function gl

1(τ), and the experimentally measured
spectra, at pulse delays of τ = −108 fs, τ = 0 fs and τ = 59 fs.

Examining table 5.7 we can directly note the smaller RMSD values for Sech-pulses in each and every
measurement. The absence of any ambiguities very nicely ties in with one’s expectations, since a certain
type of pulse shape should be apparent throughout the entire measurement. We can thus conclude the UV
pulses to be more likely Sech-shaped and ultimately apply rather the smaller conversion factors yielding
shorter pulses.

5.3.5 Autocorrelation within cavity by SPDC

After all the “preconsiderations” so far, we can now finally move on to the main heart of this pulse
length measurement, the interferometric g2(τ)-autocorrelation, which is given by eq. (5.45) in subsec.
5.2.3. In the following primary focus will be placed on the evaluation of the data and subsequently on
the discussion of the implications from the experimental findings. Please note furthermore: Although of
a preference for one pulse model has been deduced already, the data is regardlessly going to be examined
for Sech- and Gauss-pulses.

Intra-cavity UV pulse length determination The experimentally recorded four-photon HHVV-
coincidences are shown as a function of pulse delay in figure 5.16. From this graph we can infer a
degraded peak-to-background ration of 4.13 : 1, opposing the normally desired 8 : 1. The latter is
required in order to rule out loss in sensitivity to spectral phases and therefore being able to measure
the proper pulse duration, not just the Fourier transform limited one, as has been shown in subsec.
5.2.4. However from the aforementioned ratio, a b-parameter in the g2(τ)-correlation function, stated in
eqs. (5.51) and (5.52), of b = 0.44 is yielded, which corresponds to a first order interference visibility of
V2(HHV V ) = 0.75 according to eq. (5.95). Comparison with the numbers received for the evaluation of
g1(τ) function in table 5.2, proves similarity between V1(Int.max.) and V2(HHV V ). Thus the deviation
from the 8 : 1 ratio can be explained by the incomplete interference between both pulses, caused by a non
perfect alignment of the Mach-Zehnder interferometer. In this respect it is also clear that the underlying
reasons for imperfect interference between both pulses, namely the transverse beam displacement and
slight polarisation mismatch of the pulses, do not cause any pulse elongation. We can therefore certify
our ability to measure spectral/temporal phase effects on the intra-cavity pulses and to really perform
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an interferometric autocorrelation measurement, although having a lowered peak-to-background ratio in
the g2(τ)-function.
In order to determine the FWHM of HHVV coincidence dataset, which again carries the information
about the pulse length, the appropriate theoretical fitting functions for the g2(τ)-correlation are applied.
The relevant function have been derived in subsec. 5.2.3 and are given by the eqs. (5.51) and (5.53).
The parameter a is once more conveniently set to unity, a = 1. The fits to the measurement by the
g2(τ)-functions, eqs. (5.51) and (5.53), are presented in figure 5.16 by a red curve for Sech-pulses and
a blue curve for Gauss-pulses, yielding fit parameters ∆tGauss

g2
= 123.63 fs and ∆tSech

g2
= 99.92 fs. To

convert the ∆tlg2
s of both functions into a pulse length, the two conversion factors βl

g2
(eqs. (5.57), (5.58))

and γl
g2

(eqs. (5.60), (5.61)) have to be considered for each pulse shape, likewise to the evaluation of the
g1(τ)-function. The first one transforms the value for ∆t into ∆τFWHM,l

g2
, the FWHM of the g2(τ)-curves,

and the second one relates this value further to the FWHM pulse duration τ l. Please bear in mind here,
that in contrast to the factors for first order interference the appropriate numbers for the g2(τ)-function
are dependent on the parameter b or in other words on the interference visibility. The pulse duration is
now computed according to

τ l
pulse = γl

g2
· αl

g2
·∆tlg2

. (5.103)

The systematic error on it is calculated by consideration of δsys(∆tg1), identified previously, which is
equally employed as an uncertainty on ∆tg2 , thus δsys(∆tSech

g2
) = 3.06 fs and δsys(∆tGauss

g2
) = 5.78 fs.

The statistical contribution is once more given by the fitting error of ∆tlg2
, which is ∆tSech

g2
= 4.78 fs and

∆tGauss
g2

= 6.57 fs. All errors are propagated appropriately, according to their source of origin, resulting
in identical equations as for the first order interference (eqs. (5.96), (5.97)) by swapping g1 for g2.
So we finally end up with the pulse length for the UV light inside the cavity as presented in table 5.8.

Pulse form Pulse duration [fs]
Sech 176.1± 13.7
Gauss 205.8± 20.6

Table 5.8: Intra-cavity UV pulse lengths for Sech- and Gauss-pulses as obtained by interferometric
autocorrelation.

Discussion of pulse length The minimal pulse length, obtained from the first order interference
function and the pulse spectra, is not sensitive to small dispersion effects and sets only a lowest boundary
for the pulse duration. Solely larger contributions, which are sufficient to change the input coupling
condition of some external frequency comb modes, influence this minimal pulse length in a noticeable
fashion. Hence should there be some remaining dispersion apparent, higher order spectral phases, e.g.
some chirp or TOD, will still add to the pulse, giving raise to pulse broadening. And indeed by inspection
of the findings in table 5.8, a pulse elongation between 20 to 30 fs in comparison to the minimal pulse
durations, which have been τGauss

min ≈ 180 − 190 fs and τSech
min ≈ 140 − 150 fs, becomes evident straight

away. What does this now imply for our experiment:
First it proves dispersion effects to be present in the resonator, nonetheless they appear to be not serious
enough to distort the pulse completely. Especially since the minimal and actual pulse durations for
Gauss-pulses coincide within their uncertainty ranges, τGauss

HHVV = 206± 21 fs ≈ 182± 18 fs = τGauss
min, cavity ,

and the values for Sech-pulses are just short off to do so, τSech
HHVV = 176±14 fs � 140±12 fs = τSech

min, cavity,
the remaining dispersion will not deform the UV pump to an extend lethal for applications in ultra-short
laser physics49. Second, it gives a flavour about the limits to the dispersion analysis of the system by the
cavity input coupling. The key message here is, yes one can tell something about the pulse maintenance
within an ultra-short pulse enhancement resonator by simply comparing the internal to the external
spectra, as done in subsec. 4.2.4. However the resolution of such an analysis tool remains quite limited
and is by far too poor for being used in the context of shorter UV pulses.
We can thus conclude that the cavity is working nicely for applications using pulses in the range above
100 fs. Going to lower pulse lengths in the region of a couple of femto-seconds only, which might be
interesting due to the high repetition rates of this enhancement resonator compared to conventional
amplifier systems, it will get quite troublesome to operate without further dispersion control (e.g. by
using a chirped version of the cavity mirrors).

49Such as e.g. the generation of higher harmonics leading to XUV pulses, or as a high repetition rate amplifying system.
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Limits of this measurement and possible advancements The last thought of the preceding dis-
cussion already leads towards the great downside inherent to any autocorrelation measurement, which is
g2(τ)-interferometric autocorrelation function providing only a measure for the pulse duration but not
the pulse shape. This is all related to the fact, that within the width of the interferometric autocor-
relation, dispersion effects, such as chirp, and the temporal width of the underlying pulses contribute
simultaneously. Furthermore autocorrelation is ambiguous with respect to the underlying pulse shape
([104]), which renders it even impossible to tell how the pulse looks like if dispersion is entirely absent. In
order to move on towards operation of the resonator with shorter laser pulses or to understand precisely
what is going on inside the cavity in terms of dispersion and pulse distortion, knowledge about the optical
pulses’ actually appearance is essential.
Within the interferometric autocorrelation frame, there is at least a way to conclude something about
the pulse symmetry. Since autocorrelations of higher, odd orders are not symmetric around zero pulse
delay for non symmetric pulses, one could use e.g. the third order to measure the pulse duration instead
of the second ([104]). In this situation, the correlation would by given by eq. (5.1), taken at n = 3.
Since utilisation of SPDC as a non-linearity allows simulteaneous generation of multiple orders in the
autocorrelation function (5.1), as outlined in subsec. 5.1.2, this third order correlation has implicitly
been measured in the course of our experiment as well, since it is simply represented by the six-photon
count rates comprising three horizontally and three vertically polarised photons. The measured data for
this correlation function is shown in figure 5.17. Unfortunately the count rates for six-photon events are
much lower than their four-fold analogues, leading to much greater error bars on each datapoint, due to
Poissonian counting statistics. Therefore the third order is not further evaluated here. Nevertheless, one
could in principle use the HHHVVV coincidences with a longer measurement time at each translation
stage position, which might in turn require an active stabilisation of the Mach-Zehnder interferometer.
Further more sophisticated methods are available, allowing for the determination of the actual electric
field function. The two most commonly applied ones are on the one hand a technique termed frequency
resolved optical gating (FROG), and on the other hand an approach called spectral phase interferometry
for direct electric-field reconstruction (SPIDER). Since there is extensive literature available for both
of them, further explanations are skipped here. However the reader shall be pointed out to references
([79], [111]) for an overview over both. More information particularly about FROG can also be found in
references ([104],[115]-[120]) and more about SPIDER is provided in references ([121]-[124]).
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Figure c): Spectra with Sech fits
at 0 fs pulse timedelay

Figure b): Spectra with Gauss fits
at -108 fs pulse timedelay

Figure a): Spectra with Sech fits
at -108 fs pulse delay time

Figure d): Spectra with Gauss fits
at 0 fs pulse timedelay

Figure e): Spectra with Sech fits
at 59 fs pulse timedelay

Figure f): Spectra with Gauss fits
at 59 fs pulse timedelay

Figure 5.15: Spectra derived from the g1(τ)-correlation function combined with experimental spectra for
pulse delays of τ = −108 fs, τ = 0 fs and τ = 59 fs. Left column shows curves for Sech-pulse shapes,
the right column for Gaussian-pulse shapes. Experimental data is drawn as black squares, fits to the
experimental data as black lines, the spectra resulting from the cavity power level (∆tCavity) as red lines,
the spectra from the HV coincidences (∆tHV) as blue lines and the spectra from the interference pattern
on the photodiode as green lines.



116 CHAPTER 5. CHARACTERISATION OF PULSE DURATION WITHIN RESONATOR

-600 -400 -200 0 200 400 600

1

1.5

2

2.5

3

3.5

4

Pulse delay time [fs]

N
o
rm

a
lis

e
d
 H

H
V

V
 c

o
in

c
id

e
n
c
e
s
 [
a
rb

. 
u
n
it
s
]

Figure 5.16: HHVV coincidences and g2(τ) autocorrelation function. The measured data is shown by
black squares while the fit for Sech-pulses is represented by the red curve and the one for Gauss-pulses
by the blue curve.
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Figure 5.17: Six-fold HHHVVV photon coincidence rates, following a g3(τ) autocorrelation function.



Chapter 6

The cavity employed as a photon
source

After all important properties of the enhancement resonator have been evaluated, it is time to consider
possible applications of the device. Since its purpose is to allow the observation of multi-partite entangled
photon states, the main concern in the following chapter will be the investigations of photon production
rates depending on the available UV pumping power level established inside the resonator. Therefore a
brief summary of the relevant theoretical background regarding SPDC shall be provided in the first place.
Additionally, a convenient tool for proving the presence of entanglement, the entanglement witness, will
be introduced. Subsequently the features of the cavity, applied as a photon source, will be assessed,
whereby focus is not only placed on the bare count rate statistics, but on entanglement observed in the
resulting output states as well. Overall the discussion will show the applicability of our apparatus for
multi-qubit quantum information logic with unprecedent count rates.

6.1 Theory on SPDC emission

6.1.1 General considerations

As a common feature, all optical processes, whether linear or of arbitrary non-linear order, share their
source of origin from a polarisation of a non-linear medium. According to classical electrodynamics ([59]),
such a polarisation can be expressed as

~P (t) ∼ ε0
∑

i

χ(i) ~E(t)i = ε0χ
(1) ~E(t)︸ ︷︷ ︸

term 1

+ ε0χ
(2) ~E(t)2︸ ︷︷ ︸
term 2

+ ε0χ
(3) ~E(t)3︸ ︷︷ ︸
term 3

, (6.1)

whereby χ(i) represents the medium’s susceptibility of ith order1 and ~E(t) the electric field of the incident
light field. While term 1 in eq. (6.1) stands for linear effects like absorption, and the third term for higher
order processes, like self-phase modulation or four-wave mixing, it is the second term which concerns us
here. Considering a plane wave incidence, given by E = E0 · cos (ωt), we can infer from eq. (6.1) to
obtain an expression according to:

P (t) ∼ ε0χ
(2)E2

0 cos (ω0t)
2 =

1
2
ε0χ

(2)E2
0 (1 + cos (2ω0t)) (6.2)

According to Maxwell’s equations, the non-linear polarisation of medium gives rise to a signal field Es(t)
term in the wave equation ([59])

∇2Es(t)− 1
c2

∂2Es(t)
∂t2

= −µ0
∂2P (t)

∂t2
(6.3)

oscillating at twice the fundamental driving frequency ω. This process is regarded as second harmonic
generation (SHG) and consists, quantum mechanically spoken, of the destruction of two pumping photons,
fabricating one signal photon of half wavelength. Due to time inversion symmetry of the frequency
conversion, described by eqs. (6.2) and (6.3), it can also be expected to observe the reverse process of
down-conversion, wherein one pumping photon gets split-up into two light quanta of longer wavelength

1It is a tensor, whose structure depends on the specific material properties. For the ease of the argument, we will in the
following regard the crystal and the electromagnetic field as appropriately orientated, in order to consider both as scalars.
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118 CHAPTER 6. THE CAVITY EMPLOYED AS A PHOTON SOURCE

or respectively lower energy, commonly referred to as signal and idler. In contrast to SHG, a classical
description of down-conversion is only possible if a seeding signal or idler field is apparent to start with,
i.e. if stimulated bosonic emission into an already occupied light field mode is happening. Otherwise, in
the case of spontaneous parametric down-conversion, the initial signal and idler fields are both vacuum
states, denoted as |0〉, and a full quantum treatment has to be carried out, done in the following.
Before getting into more detail, it is clear that, in terms of occurring wavelength values involved in both
processes, energy conservation has to be fulfilled. The analogous reasoning applies to the wavevectors
associated with the conservation of momentum. Altogether this means for down-conversion

ωp = ωs + ωi (6.4)

and

~kp = ~ks + ~ki, (6.5)

whereby p stands for the pumping beam and s respectively i signify signal and idler modes. Both equations
set constraints determining the wavelength spectra and emission characteristics of the conversion process.
Eq. (6.4) is easy to comply with, since it does not introduce any limitations on the resulting frequency
distributions, however it imposes a strong correlation between signal and idler wavelengths resulting in
energy entanglement between both; see e.g. ([128]-[130]) for possible applications. In contrast eq. (6.5)
generally cannot be met in normal dispersive material with n(ω1) > n(ω2) for ω1 > ω2. Utilisation of
birefringent non-linear crystalline media2 can however solve this problem. Such materials comprise either
two or three different refractive indices along their Cartesian crystal axes; the former are considered as
uniaxial and the latter as biaxial. BBO corresponds to the first category, so only such a scenario shall
be investigated further. It leaves us with a different refractive index along the optical axis, here chosen
as z-axis, of the substance, named extraordinary direction, with respect to both remaining axes, named
x- and y-axis, referred to as ordinary direction. Since the refractive indices along x and y are equal,
the whole refractive index profile of the crystal can be modelled as an ellipsoid, depicted in fig. 6.1. In
this respect, there are once more two different types of non-linear media available, distinguished by the
ratio between ordinary and extraordinary refractive index: if next > nord, crystals are said to be positive
birefrigent, otherwise they are negative birefringent. BBO falls into the latter category. To infer how to
maintain momentum conversion with a BBO crystal, eq. (6.5) can be rewritten to3

np(λp) · ~ep · ωp = ns(λs) · ~es · ωs + ni(λi) · ~ei · ωi, (6.6)

indicating the need to have different refractive indices for pump, signal and idler, which are set by the
polarisation of either constituent together with the incidence angle of the impinging light beam with
respect to the optical axis of the crystal, as illustrated in fig. 6.1 and assigned in eq. (6.6) by the unity
vectors {~ep, ~es, ~ei} pointing into the propagation direction of the pump, signal or idler field, respectively.
There are two different schemes how to fulfil eq. (6.6) and establish phase-matching:

1. The pump is polarised orthogonal to signal and idler within the extraordinary refractive index
plane under an angle θ to the crystal’s optical axis. The latter two are parallel polarised within the
ordinary refractive index plane. Eq. (6.5) thus becomes:

next(θ, λp) · ωp = nord(λs) · ωs + nord(λi) · ωi (6.7)

This orientation is called type-I SPDC.

2. The pump is polarised parallel to either signal or idler and both polarisations are located within the
extraordinary refractive index plane under an angle θ to the crystal’s optical axis. The remaining
SPDC photon is polarised orthogonally, experiencing the ordinary refractive index. Eq. (6.5) thus
becomes:

next(θ, λp) · ωp = next(θ, λs,i) · ωs,i + nord(λi,s) · ωi,s (6.8)

This arrangement is named type-II SPDC, giving rise to a strong correlation between the polarisa-
tions in the signal and idler mode, which can be used for entanglement in the polarisation domain
between both particles4.

2Please note: this has to be a non-inversion-symmetric substance, e.g. ionic crystals like BBO or LBO, in order to allow
for χ(2) 6= 0, leading directly to χ(3) = 0.

3It should be kept in mind, that refractive indices are wavelength dependent, described by the Sellmeier eq. (2.44).
4This however requires indistinguishability between signal and idler in all other degrees of freedom in combination with

their spatial separation, as outlined later.
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Figure 6.1: Schematic representation of the refractive index profile within a positive birefrigent, uniaxial
optical crystal. The extraordinary index next is defined along the optical axis (z-axis) and the ordinary
one nord is located in the plane of the x- and y-axes. Light incident with its wavevector ~k under an angle
θ with respect to the optical axis and a polarisation within the plane defined by the optical axis and ~k
will experience an effective extraordinary refractive index next(θ). Figure a) gives a three dimensional
overview, b) is the projection onto the ordinary index plane defined by the x- and y-axes, whereas c) is
a projection onto the ordinary-extraordinary refractive index plane, set by the y- and z-axes. Source of
graphic: ([101]).

We will apply type-II phase-matching. Meeting the conditions set by eq. (6.8) is here achieved by angle
tuning of the non-linear crystal, which modifies the effective extraordinary refractive index according to
([101])

1
n2

ext(θ, λi)
=

sin (θ)2

n2
ext(λi)

+
cos (θ)2

n2
ord(λi)

, (6.9)

whereby next(λi) = next(θ = 0, λi). It shall be noted, that phase-matching can be yielded not only for a
single frequency but for an entire spectral range, as already calculated for our apparatus in subsec. 5.3.3.
Thereby type-I commonly produces broader output bandwidths than type-II ([101]). Both methods to
phase-match the conversion process also result in different spatial output patterns of signal and idler
wavelengths. Type-I generates a single emission cone for each frequency mode involved in the process,
whereby signal and idler photons are emitted into spatial directions situated diametrically opposite of
either side of the cone, see e.g. ([131], [142]). In contrast, type-II produces two separate cones, one for
the signal and one for the idler photons. Again the two constituents of a simultaneously emitted pair are
located on diametrically opposite positions of one cone with respect to its orthogonally polarised sibling.
Depending on the orientation of the crystal, both cones can on the one hand be made to intersect each
other in two points, which corresponds to an emission of say a signal photon into the first intersection,
denoted as mode a, and an idler photon into the other spatial mode b. Such an arrangement is called
non-collinear type-II SPDC, graphically visualised in fig. 6.2 b). On the other hand, for a certain tilt
angle of the BBO crystal, both emission cones can be aligned to just touch one another, defining the
common emission mode a in fig. 6.2 a). From the former composition it is clear that, by only further
processing photons emitted into modes a and b, a polarisation entangled photon state is obtained straight
away5. Contrarily, in the latter situation, both photons are located in the same spatial mode, if only the
emission direction a is retained. Thus there is no entanglement between these light quanta. Entanglement
between the photons is only generated, once both are separated into two distinct spatial modes, as done
within our linear optical set-up, described in section 3.3.
Finally, the aforementioned emission characteristics of either down-conversion process also entail corre-
lations in the spatial degree of freedom, represented by the ~k-vectors of the signal and idler photons6.
Regarding the spatial distribution of the SPDC emission, a more rigorous analysis can e.g. be found in

5See for instance ([132]) for details.
6See for instance ([133]) and ([134]) for experiments taking advantage out of this correlation.
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Figure 6.2: Spatial emission characteristics of the type-II SPDC process. Fig. a) represents the collinear
scenario, whereas b) shows the non-collinear case.

references ([101], [135], [136]). Pump beam focussing effects, which are ignored throughout this disserta-
tion, have also been considered in this context as well as in terms of the SPDC photon spectra in ([137],
[138]). We will now move on to discussing the actual photon emission rates expected from the collinear
type-II SPDC source implemented in our experimental set-up.

6.1.2 Single mode description

For the discussions in this thesis, it is sufficient to focus only on a single mode description of the conversion
process, i.e. both, the pumping beam as well as the signal and idler beams, will be restricted to a particular
wavelength only. Such a simplification is justified, since consideration of the entire frequency spectrum
within the ultra-short pulses involved will not change the fundamental functional dependence of the SPDC
photon state. As can be inferred from reference ([101]), the extension to a multimode picture introduces
an additional time integral over the entire pumping pulse’s interaction time with the non-linear crystal.
Such an operation corresponds, in the frequency domain, to an integration over all frequency components
and therefore just scales up the expected photon pair count rates by the spectral content of the ultra-short
pulses. As however the spectral widths remain constant throughout all possible orders of pair emission,
which is to say that the signal and idler spectra are equal independent of the number of simultaneously
generated pairs, the broadband situation can, in first approximation, be included by a multiplicative
factor onto the count rate statistics, expected from the cw scenario, taking the increased spectrum into
account. In order to model the observed count rates, proportionality factors are to be experimentally
determined anyway, since they are for instance also depending on the detection efficiencies of the produced
photons. So only the functional dependencies of multiphoton emission rates on the pumping power will
be relevant, which are equal in both situations. In order to establish a suitable expression for modelling
the experimentally determined count rates, a single mode description is hence sufficient for our purposes.
First, we define the annihilation and creation operators for the signal and idler photon fields of initial
photon number n, with i ∈ {signal, idler}, according to:

â†i |n〉 =
√

n + 1|n + 1〉 âi|n〉 =
√

n|n− 1〉
[
âi, â

†
j

]
= δi,j

(â†i )
n|0〉 =

√
n!|n〉 âi|0〉 = 0 [âi, âj ] =

[
â†i , â

†
j

]
= 0

(â†i )
† = âi â†i âi|n〉 = n|n〉

The analogous equations also apply for the creation and annihilation operators of the pumping field,
(b, b†), as utilised in subsec. 5.1.2. However, having seen therein that the depletion of the strong pump
by the SPDC process is negligible in terms of the photon number in the pump mode, these operators are
treated as classical fields Ep.
The relevant Hamiltonian for single mode, collinear type-II SPDC is given by7 ([125], [139])

Ĥ = i~κ
(
â†H â†V + h.c.

)
, (6.10)

whereby we have followed the convention introduced in chapter 5, assigning the signal beam as vertically
and the idler beam as horizontally polarised. The coupling constant κ is proportional to the susceptibility
χ(2) and the length LBBO of the BBO crystal as well as the electric field strengths of the pump Ep. The

7The non-collinear arrangement is for instance treated in references ([139]-[141]).
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output state |Ψ(t)〉 of the down-conversion process can be gained in the Heisenberg picture ([151]) by
application of the time evolution operator Û = exp

(
− i
~Ĥt

)
onto the vacuum state of signal and idler

photons, |vac〉 = |0H , 0V 〉, to be:

|Ψ(t)〉 = Û |vac〉 = exp
(
− i

~
Ĥt

)
|vac〉 (6.11)

If we introduce the ladder operators L̂+ = â†H â†V =
(
L̂−

)†
, the unitary operator Û can be rewritten as

([139])

Û = exp
(
κtL̂+ − κ∗tL̂−

)

= exp
(
τ̂ tanh (|τ |)L̂+

)
· exp

(
−2 ln (cosh (|τ |))1

2

[
L̂−, L̂+

])
· exp

(
−τ̂∗ tanh (|τ |)L̂−

)
(6.12)

with a redefined interaction constant τ = κt and τ̂ = τ
|τ | = κt

|κt| = 1. Inserting eq. (6.12) into eq. (6.11)
yields, after some arithmetics, the final SPDC photon state ([139])

|Ψ(t)〉 =
√

1− tanh2 |τ |
∞∑

l=0

tanhl |τ |
l!

(
â†H â†V

)l

|vac〉 =
√

1− tanh2 |τ |
∞∑

l=0

tanhl |τ ||lH , lV 〉 (6.13)

wherein l assigns the number of signal and idler photon pairs generated during the process8. One can
readily see from eq. (6.13), that all possible pair numbers are generated simultaneously during the
down-conversion process. Yet the probability amplitude ∼ tanhl |τ |, which is dependent on the pumping
strength by τ ∼ Ep, yields higher order emission for a fixed small value of Ep, since τ ¿ 1. Thus
increasing the pumping power in order to gain high emission probabilities for a desired multi-photon pair
emission of a certain number l′ does not only enhance the production rates for this expected photon state
|l′H , l′V 〉, but also for higher orders with l′′ > l′, especially the one with l′′ = l′ + 1. The effect becomes
particularly more severe, the greater the electric field strengths of the pump are, since in the limit

lim
Ep→∞

τ →∞ =⇒ tanh |τ | → 1,

equal emission probabilities for all possible photon pair numbers are achieved. This argument proves
clearly, that in order to gain multi-qubit photonic quantum states from SPDC, one cannot just arbitrar-
ily ramp up the pumping power, because, in doing so, simultaneously generated photon states of even
higher qubit numbers will cause noise to dominate over the desired state. The noise results on the one
hand from photon loss along the way from photon generation to state detection9. On the other hand it
is also due to the split-up of the photon state into different spatial modes within the linear optical set-up
(section 3.3). This can cause two light particles of the higher number state, carrying equal polarisation,
to penetrate into the same mode, detected by the same SPAPD. Hence such a coincidence contributes
to events associated with a multi-photon state of lower qubit number. Therefore an implementation of
a high power based amplifier system, like it is reported in ([75]), is not applicable for our purposes and
a compromise between pumping power strength, associated with count rate magnitude, and background
noise has to be found.
In the following measurements, likewise to the intra-cavity autocorrelation in chapter 5, correlated mul-
tiphoton count rates will be determined, which are evaluated by the conditional, normal ordered number
operator ([101]) : n̂H n̂V := a†Ha†V aV aH by

ñ =
∞∑

l=0

ñ′l = 〈: n̂sn̂i :〉 =
∞∑

l=0

〈Ψ(t)|
(
â†H â†V âV âH

)l

|Ψ(t)〉 =
(
1− tanh2 |τ |)

( ∞∑

l=0

lH lV tanh2l |τ |
)

, (6.14)

in which we have assigned the production rates of 2l photons by ñ′l. Since10 τ = α
√

PUV , we would
expect the detected coincidence events of 2l photons in our linear optical set-up (section 3.3), for an
emission of lth order, to approximately scale according to11

8i.e. l = 1 gives one H- and V-polarised photon, whereas l = 2 returns two H and V polarised quanta within the
emittance mode, etc.

9For instance by not coupling individual photons of the state into the SM fibre or by photon absorption.
10with a proportionality constant α, including the crystal parameters
11with yet another proportionality constant βl, including e.g. lH , lV , coupling efficiencies into the SM fibre, laser repetition

rate, detection efficiencies, beam splitter ratios in the linear optical set-up, etc.
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ñl = βl

(
1− tanh2

(
|α| · |

√
PUV |

))
tanh2l

(
|α| · |

√
PUV |

)
, (6.15)

if higher order contributions are absent or negligible. For low values of Ep, leading to |τ | ¿ 1, expression
(6.13) can be approximated using tanh |τ | ≈ |τ | towards

|Ψ(t)〉 ≈
√

1− |τ |2 ·
∞∑

l=0

|τ |l|lH , lV 〉 (6.16)

and even further considering
√

1− |τ |2 ≈ 1. So we end up with:

|Ψ(t)〉 ≈
∞∑

l=0

|τ |l|lH , lV 〉. (6.17)

This leaves us with expected count rates in the low pump intensity limit of

ñl = βl|τ |2l = βl|α|2l · P l
UV , (6.18)

within which the photon generation rate and the associated investigated count rates for the lth order
process scale with the UV pumping power to the power of l. The last result has already been used in
subsec. 2.2.2 and 5.1.2.

6.2 Indistinguishability and entanglement witnesses

Before moving on to the examination of the experimental findings, one major prerequisite for entanglement
and one suitable means to verify the presence of entanglement shall be briefly introduced. The former
is the requirement of indistinguishability between photons involved in the quantum state and the latter
refers to entanglement witnesses, which can also have a tight relationship to the quantum state’s fidelity.
However to get into this discussion, a quick reminder about what entanglement actually is, shall be
provided in the first place.

6.2.1 Entanglement

In general there is a lot of literature available about entanglement. Some textbooks treat this manner
([28]) and there are also some very nice reviews on the subject available, which also incorporate the
multiqubit case, see for instance ([35], [143], [144]) and references therein. Here, a brief summary of
entanglement is given sufficient to understand the following experimental results.

Bipartite pure states The proper definition of entanglement can be stated as follows: Every state
that is not separable is entangled. Mathematically speaking, every bipartite wavefunction, which can be
written as

|ψ〉 = |φ1〉 ⊗ |φ2〉 (6.19)

is separable. If |ψ〉 does not fall under the category of functions defined by eq. (6.19), it represents an
entangled state. In other words, entanglement of a bipartite system is defined as the impossibility to write
the wave function as a simple tensor product of the individual subsystems. To illustrate this point, we
focus on a two qubit scenario, which is in a pure quantum state. Each contributing particle is considered
as a two-level system with the spin as the quantum number, i.e. |s〉i ∈ {| ↑〉, | ↓〉}, with i ∈ {1, 2}
representing the respective qubit. For a photon, the qubit is encoded in its polarisation12 by associating
the horizontal state according to |H〉 = | ↑〉 and the vertical according to |V 〉 = | ↓〉. Considering the
wavefunction for the entire bipartite system, there are four possible quantum states, which are entangled
and at the same time can form a basis of the state space, called the Bell states ([28],[142]):

|Φ±〉 =
1√
2

(| ↑〉1| ↑〉2 ± | ↓〉1| ↓〉2) ; |Ψ±〉 =
1√
2

(| ↑〉1| ↓〉2 ± | ↓〉1| ↑〉2) (6.20)

From these, we can nicely see what entanglement implies: As soon as a measurement is done on one par-
ticle, which collapses the state either into | ↑〉 or | ↓〉, the state of the second particle is instantaneously

12It shall be noted, that such a treatment of polarisation by an SU(2) symmetry group is only possible because longitudinal
polarisation of light does not occur, at least not in vacuum, due to photons being massless particles.
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determined as well. This is often discussed in the context of the Einstein-Podolski-Rosen paradox ([3])
from 1935. A possible way to test this feature has been proposed by Bell ([5], [6]) and a redefinition to
the measurable polarisation of correlated photon pairs has been given by Clauser, Horne, Shimony and
Holt ([145]). The first experiment carrying out an evaluation of such a CHSH-Bell inequality has been
done by Freedman et al. ([7]) in 1972 and lots of successive work has been done since.
For our purposes it is only important to know about the requirement of having this non-classical corre-
lation, because otherwise the state would factorise, as e.g. given by

|ψ̃±〉 =
1√
2

(| ↑〉1| ↓〉2 ± | ↑〉1| ↑〉2) =
1√
2
| ↑〉1 ⊗ (↓〉2 ± | ↑〉2) ,

which is a separable state and consequently not entangled.

Multiqubit pure states So far only two qubits have been considered. In moving to higher numbers,
the situation becomes more complex as multiple different types of entanglement appear. For clarity it
is intriguing to consider a state consisting of three light quanta with wavefunctions |φ1〉, |φ2〉, |φ3〉 to
start with. Here, three forms of entanglement can be distinguished, when considering the criterion of
stochastic local operations and classical communication, SLOCC, further discussed in references ([146]-
[149]). These are referred to as completely separable, bi-separable and genuine three-partite entangled.
Altogether they differentiate further into six classes of states ([146]). The first corresponds to a state,
whose wavefunction factorises according to

|ψ〉sep = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉. (6.21)

The second, third and forth correspond to entanglement either in the qubits 1 and 2, named |φ〉bi
1−2, 2

and 3, named |φ〉bi
2−3, or 1 and 3, named |φ〉bi

1−3, in tensor product with the state of qubit 3, 1 or 2,
respectively; thus written as13

|ψ〉bi
1−2,3 = |φ3〉 ⊗ |φ〉bi

1−2 or |ψ〉bi
2−3,1 = |φ1〉 ⊗ |φ〉bi

2−3 or |ψ〉bi
1−3,2 = |φ2〉 ⊗ |φ〉bi

2−3. (6.22)

The fifth and sixth class are not separable at all, hence correlations exist between all three of their
entities. Such states are attributed the term genuine multiqubit entangled. The first one is referred to
as GHZ-class with states like

|GHZ3〉 =
1√
2

(| ↑1, ↑2, ↑3〉+ | ↓1, ↓2, ↓3〉) (6.23)

and the second is labelled W -class, comprising states like

|W3〉 =
1√
3

(| ↑1, ↑2, ↓3〉+ | ↑1, ↓2, ↑3〉+ | ↓1, ↑2, ↑3〉) . (6.24)

The former contains the highest degree of entanglement and thus shows the strongest correlation associ-
ated with the maximum violation of Bell inequalities among all three-partite entangled states ([35]). The
latter is in contrast more robust against qubit loss, i.e. partial tracing over one qubit in the wavefunction.
So there is a hierarchy in terms of entanglement between the six classes, shown in fig. 6.3.
For higher qubit numbers than three, infinitely many classes exist ([147], [148]) and quantum states are
commonly divided up into different families. A more thorough discussion of this manner can e.g. by
found in ([35], [87]). For us, only the family of Dicke states ([150]) is important, which is defined by ([35])

|DN,k〉 =
(

N
k

)− 1
2 ∑

j

Pj{| ↑〉⊗k ⊗ | ↓〉⊗(N−k)}, (6.25)

whereby N assigns the total number of qubits involved in the state and k denotes the number of excita-
tions. As our goal behind building the enhancement resonator apparatus is to generate the |D6,3〉-state,
it now becomes obvious, why we prefer to have a simultaneous emission of three photon pairs, each
comprising a horizontally and a vertically polarised photon generated by type-II down-conversion. Fur-
thermore, since one has to be able to achieve the linear superposition of eq. (6.25), all six photons have
to be split-up into different, well-defined spatial modes. This motivates the particular implementation of
the linear optical set-up, described in section 3.3.

13The states |φ〉bi
1−2, |φ〉bi

2−3, |φ〉bi
1−3 correspond to bipartite entangled states, given by the Bell states in eq. (6.20).
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Figure 6.3: Hierarchy of pure, three-partite entangled quantum states. Genuine multi-partite entangled
states are located at the top, whereas fully separable states form the bottom. Transformations from
higher towards lower levels are feasible by stochastic local operations and classical communication (see
[146]-[149] for details). Source: ([87]).

Mixed states As mentioned in subsec. 6.1.2, the SPDC process will produce additional higher orders
on top of six-photon emission, which add noise onto the desired quantum state. So the states we really
observe in the experiment are not the pure ones considered so far, but a statistical mixture of the desired
state with some background noise. Such a situation is described by utilisation of the density matrix
formalism14, whereby the density matrix is given by

ρ =
∑

i

ci|ψi〉〈ψi|, (6.26)

with the |ψi〉 representing the different states the system can be in, i.e. either our desired state or
states stemming from the noise background. The ci are probability factors with

∑
i

ci = 1. In terms of

entanglement, the criterion, eq. (6.19) for a state ρ to be entangled transforms into ([35])

ρ 6=
∑

i

piρ
a
i ⊗ ρb

i . (6.27)

In contrast, every density matrix, which can be written as a sum of product states ρa
i ⊗ ρb

i is referred to
as separable. With this short introduction, we can move on to the necessity of indistinguishability.

6.2.2 Indistinguishability

In order to have the previously mentioned indistingishability needed for entanglement, we must certify
not to have another way, i.e. another physical observable available, which allows distinction between
the different contributing photons. Such an additional quantity would enable one to figure out in which
state the system is without a measurement on the polarization degree of freedom. This would allow
to distinguish the photons, described by a separable state. It shall be particularly stressed, that just
the mere possibility is already enough to destroy the quantum correlations, independent of an actual
measurement being performed or not15. Thus, despite the actual polarisation entanglement, all other
properties of the photons have either to be equal or smeared out in terms of their quantum uncertainty
to an extend preventing distinction between quantum states, i.e. they have to be indistinguishable. We
now consider experimental effects that could lead in principle to distinguishability of photons produced
by SPDC. Since we are concerned about multi-qubit states, made up of several SPDC photons, there are
two subsets to be analysed: first single photon pairs, second different pairs.

Indistinguishability between a signal and idler photon pair Explained in a simplified picture not
taking into account the biphoton amplitudes of the down-conversion photons, as e.g. done in references
([101], [153]), the distinguishability between the signal and idler photon arises from the birefringence of
the BBO crystal. Due to the difference between extraordinary and ordinary refractive index, photons
polarised along either direction will experience walk-off effects between one another. There are two con-
tributions: The first stems from differing spatial propagation angles between the extraordinary polarised

14More information about density matrices can e.g. by found in ([28], [151], [152]).
15In other words: Quantum mechanical state preparation does not account for how a measurement is performed or if

the applied measurement apparatus is accurate enough to gain the required precision for a distinction in this additional
parameter.
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pump and signal beam with respect to the ordinary polarised idler wave, causing a transverse displace-
ment between both emission modes. The second is a temporal separation imparted by the differing group
velocities the signal and idler wavepackets experience, whose magnitude is increasing along the crystal
with the greatest time delays occurring for photons generated in the front part of the BBO crystal. More
information about both effects can be found in reference ([154]). The resulting effect on the quantum
state of the photons is the introduction of an additional mode, or respectively quantum number, denoted
for instance t1 for horizontally (| ↑〉) and t2 for vertically (| ↓〉) polarised light. In turn the generated two
photon Bell state16 |Ψ+〉 in eq. (6.20), would modify to

|Ψ′+〉 =
1√
2

(|(↑, t2)a, (↓, t1)b〉+ |(↓, t1)a, (↑, t2)b〉) , (6.28)

which clearly allows distinction between both terms without a measurement performed on the polarisation
degree of freedom, thereby destroying entanglement17. The remedy for this problem ([132]) is to include
a λ/2-waveplate and another BBO crystal of half thickness behind the SPDC source, as done within our
set-up depicted in fig. 3.1. The waveplate swaps the polarisation of the signal and idler, which hence
experience the opposite transverse walk-off directions and group velocity differences in the second crystal.
In other words, both wavepackets move together again and the effects of birefringence in the first crystal
are compensated for. However things are more subtle than described in this outline and more elaborate
discussions can be found in references ([101], [153], [154]).

Indistinguishability between different SPDC pairs For generating a state of higher photon num-
ber than two, multiple emissions from the SPDC process have to be indistinguishable from one another.
So there must not be an opportunity to distinguish between different emission times of the produced
down-conversion pairs. Such a situation has been studied e.g. in references ([155], [156]), whereby it
has turned out to be necessary to increase the coherence time of the pairs to exceed the pump pulse
duration. The coherence time18 is regarded here as the FWHM of the temporal intensity profile of the
SPDC photons, i.e. the FWHM FT-limited pulse duration. As done previously in subsec. 5.3.3 already,
we will again assume a Sech intensity profile for the down-conversion spectrum and achieve, by utilising
eqs. (5.24) and (5.39), a relation between the coherence time TC and the spectral widths ∆νSPDC of

TC = ∆τFT
FWHM =

4 · arcsech
(

1√
2

)

π2∆νFWHM
. (6.29)

Using furthermore the relation ∆νFWHM = c
λ2

0
∆λFWHM with λ0 = 780 nm and a spectral width for

signal and idler as given in table 5.8, we can infer their coherence times to be

TH
C ≈ 79 fs ; TV

C ≈ 88 fs, (6.30)

i.e. much smaller than the temporal width of the pumping beam of τSech
pulse ≈ 176 fs (table 5.7). Therefore

time binning, or, in other words, distinction between pairs, created in the leading edge with respect to
ones created in the trailing edge of the pumping pulse, would be possible and indistinguishability between
such pairs could not be established. Therefore we spectrally filter the SPDC photons by an interference
filter behind the SM fibre output (see fig. 3.4) with a bandwidth of ∆λ = 2.8 nm and a square-hat
transmission profile, leading to a broadened coherence time of the SPDC-photons as large as

TC = 241 fs > τSech
pulse. (6.31)

Although this picture is a simplification, it provides a good qualitative understanding about what is going
on. A detailed analysis is found in references ([155], [156]).

16As the SPDC is set-up for collinear emission, the signal and idler photons would consequently have to be spatially
separated first in order to obtain an entangled Bell state.

17Consider e.g. ti to represent the arrival time at two ultra-fast detectors, Da and Db, in the output modes a and b of
a non-polarising beam splitter positioned inserted into the SPDC output mode, in which case always one detector would
click before the other. So without retrieving any information about the involved polarisations, if Da goes first, one would
know |Ψ′+〉 to be in the state | ↓a,t1 , ↑b,t2 〉, otherwise its state would be | ↑a,t2 , ↓b,t1 〉, which are both separable

18Note that the SPDC spectrum is continuous and does not have a comb structure like the pumping beam. Therefore
defining a coherence time corresponding to the inverse spectral width is sensible and analogous to e.g. the coherence time of
atomic excitations. For mode locked laser pulses, the same argument applies for each individual longitudinal mode, whose
coherence time is defined by its linewidth. However a coherence time derived from the pulse duration does not make sense
because of the pulses’ comb structure.
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6.2.3 Entanglement witness

As a last point in this theory section, the method of entanglement witnesses shall be introduced. While
there are multiple methods to examine entanglement for a bipartite quantum system19, for higher qubit
numbers few are known to detect genuine N qubit entanglement (with N assigning the number of entities
involved in the quantum state). Here witness operators come into play, which are versatile tools to detect
the presence of entanglement even for multiqubit entangled states. Furthermore they offer the very
convenient feature not to require the entire density matrix of the state. Thus a full state tomography can
be avoided to test for entanglement, which would otherwise take a considerable amount of measurement
time. A nice review regarding entanglement detection can for instance be found in reference ([35]).

Fidelity Before focussing on witnesses, the quantity called quantum state fidelity shall be introduced
first. It is generally speaking a measure for the distance between two quantum states ρ1 and ρ2 given as
([157])

F =
(

Tr

(√√
ρ2ρ1

√
ρ2

))2

, (6.32)

whereby the operation Tr represents the trace over the resulting matrix. In other words it just indicates,
how well the experimentally generated state resembles the theoretically expected one. The last point is
evaluate by assigning ρ1 as the experimental state and ρ2 = |Ψtheo〉〈Ψtheo| as its theoretical, pure state
counterpart. As the latter is a pure state, ρ2 is a projector onto the desired state and eq. (6.32) simplifies
to ([87])

Fρexp = Tr (|Ψtheo〉〈Ψtheo|ρ1) = 〈Ψtheo|ρ1|Ψtheo〉. (6.33)

If even ρ1 is pure20, we obtain

Fρexp = |〈Ψtheo|Ψexp〉|2 (6.34)

and thus observe the fidelity just to represent the state overlap between these two states.
The experimental determination of the fidelity, as well as the one of entanglement witnesses, can be
implemented by a decomposition of the operators. I.e. the measurement operator for the quantity under
scrunity is expanded into a linear combination of operators, which are given by the unity matrix and the
three Pauli-spin matrices

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (6.35)

acting on each qubit. To illustrate this method, imagine a term for a four qubit state, e.g. given by

Ô = σx ⊗ σy ⊗ σz ⊗ 1. (6.36)

In photon polarisation Hilbert space, this operator corresponds to a measurement of the expectation
value for the first qubit in the plus-minus basis, with eigenstates | + /−〉 = 1√

2
(|H〉 ± |V 〉), for the

second qubit in the left-right basis, with eigenstates |R/L〉 = 1√
2

(|H〉 ± i|V 〉), for the third qubit in the
horizontal-vertical basis, with eigenstates |H/V 〉, and a 1 for the last qubit, whereby 1 represents simply
the detection of a photon. Expectation values are evaluated by adjusting the waveplates in linear optical
set-up (see section 3.3) to an observation in the correct basis21. Since each projection operator in eq.
(6.35) has an eigenvalue of either ±1 within the basis of its two eigenvectors, the expectation values of the
operator σi can easily be extracted from the measured count rates within each arm of the linear optical
set-up. The method to do so is described in detail in reference ([87]) and shall not be repeated here.

19See e.g. ([35], [87]) for a good overview.
20It shall be noted that purity in ρ1 is a theoretical simplification and can never be achieved in an experiment, as there

is always some noise present.
21E.g. this corresponds to waveplate angle settings of

(
θ

(
λ
2

)
= 22.5◦, φ

(
λ
4

)
= 0◦

)
for the σx-basis, angle settings of(

θ
(

λ
2

)
= 0◦, φ

(
λ
4

)
= 45◦

)
for the σy-basis and angle settings of

(
θ

(
λ
2

)
= 0◦, φ

(
λ
4

)
= 0◦

)
for both waveplates to observe

the σz-basis.
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Witness plane

Figure 6.4: Graphical representation of entanglement witness operation. The system’s Hilbert space is
divided up into a set of separable and entangled states. A witness defines a hyperplane within this Hilbert
space, whereby an optimal witness places the plane tangential to the edges of the former subset. The
operator evaluates the positioning of the state under consideration with respect to this plane. If it lies
towards the side of the plane containing entangled states only, this method concisely proves entanglement.
Otherwise no conclusion can be drawn.

Witness operators In order to understand, how entanglement witnesses work, we will rely on a
geometrical exemplifications of these tools. The set of all separable states, defined in eq. (6.19), forms a
convex set, positioned within the system’s entire Hilbert space of separable and entangled states. There
is furthermore a sharp boundary between entangled and separable states, as shown in fig. 6.4. A witness
operator defines a hyperplane within this Hilbert space, which is tangential to the separable subset ([35]).
Furthermore the witness operator, denoted as Ŵ in the following, assesses the location of a specific state
under study, here ρexp, with respect to the aforementioned plane. Depending on the sign of the outcome,
one can tell on which side of the hyperplane ρexp is located at. So clearly if it lies in the hemisphere only
comprising entangled states, ρexp is also an entangled state. However if it is positioned within the other
area, no information about the entanglement of ρexp can be extracted, since it can in principle be within
either subset, as fig. 6.4 indicates. In such a situation, another witness operator has to be used, which
is better optimised for the system at hand. In other words the expectation values of witness operators
constitute a sufficient, but not a necessary criterion for entanglement.
In terms of their mathematical definition, different types of witnesses exist ([35]). An intriguing species
are the generic witnesses, defined as

Ŵgen = α · 1− |Ψ〉〈Ψ| (6.37)

whereby |Ψ〉 is a pure entangled quantum state. The constant α = |〈Φsep|Ψ〉|2 is the distance between the
aforementioned state and the closest separable state. States are detected as entangled, if the expectation
value of eq. (6.37) with the experimental, mixed state ρexp obtains a value smaller that 0:

〈Ŵgenρexp〉 < 0 → ρexp entangled (6.38)

Observing this expression in more detail and using eq. (6.33), provides us with the connection between
the generic witness and the fidelity:

〈Ŵgenρexp〉 = Tr
(
Ŵgenρexp

)
= α Tr (1ρexp)︸ ︷︷ ︸

=1

−Tr (|Ψ〉〈Ψ|ρexp)︸ ︷︷ ︸
Fρexp

= α− Fρexp (6.39)

The witness can consequently be thought of as checking for the minimal fidelity (eq. (6.33)) required to
still be able to detect ρexp as entangled.
For the evaluation of entanglement in the following experimental section regarding photon pair generation
rates, we will however utilise a two-setting spin squeezing witness for four qubits ([50], [158]-[160]):

Ŵ 4
spin = Ĵ2

x + Ĵ2
y , (6.40)

with Jk = 1
2

4∑
i=1

Pi

(
σi

k ⊗ 1⊗ 1⊗ 1
)

and Pi assigning all symmetric permutations of σk over all four qubit

locations i, with k ∈ {x, y, z}. In contrast to the generic witness (eq. (6.37)), the expectation value of
this operator has to be larger than the positive bound of ([50])

〈Ŵ 4
spin〉 = Tr

(
Ŵ 4

spinρ|D4,2〉
)

= 〈J2
x〉+ 〈J2

y 〉
!
>

7
2

+
√

3 ≈ 5.23 (6.41)
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with a maximally possible value of 〈Ŵ 4
spin〉 = 6 for the |D4,2〉 state. Furthermore a lower bound for the

fidelity of the |D4,2〉 can be yielded by utilising yet another, three setting based witness operator, defined
as ([47])

Ŵ|D4,2〉 = 2 · 1+
1
6

(
J2

x + J2
y − J4

x − J4
y

)
+

31
12

J2
z −

7
12

J4
z , (6.42)

whereby the Ji assign operators as defined above. The fidelity F can consequently be estimated to be
greater as ([47])

F ≥ 2
9
− 〈Ŵ|D4,2〉〉

3
. (6.43)

6.3 UV cavity as pump source for multi-photon generation

6.3.1 Experimental implementation

In the following we will examine the achievable count rates for different emission orders of the SPDC
process as a function of the UV pump power. We are particularly concerned about single, double and
triple pair emission rates, wherefore these will be subject of the following investigations. Therefore the
resonator is locked at certain cavity levels, and the SPAPDs in the linear optical set-up (see fig. 3.4) are
applied as photon counters for registering two-, four- and six-fold coincidence events. Since we would
also like to evaluate witness operators in order to detect entanglement and estimate the fidelity of the
|D4,2〉 Dicke state, we investigate every cavity-level setting in all three bases, {H/V }, {+/−} and {L/R}.
Regarding the amount of data taken for a specific cavity level, it has turned out, that particularly the
highest and lowest cavity levels tend to be less stable in terms of the intra-cavity UV power, wherefore
the acquired data has been registered in a shorter measurement time. This results, especially for the
witness analysis, in larger error bars for smaller cavity levels. Besides knowing the integrated intra-cavity
UV power level, observed by the photodiode behind mirror M4, also the spectral content of the intra-
cavity pulses is monitored by the spectrometer positioned behind the same mirror (see fig. 3.1). Before
analysing the coincidence data, we will examine these associated UV spectra, as they are important for
the relevance of the observed photon count rates.

6.3.2 Multi-photon count rates

UV spectra In terms of the SPDC photon count rate yield provided by our source, one should be
aware of its dependence on the properties of the intra-cavity pump spectra. If the spectral width of
pumping pulses changes, there are in turn also modifications introduced in the count rate level. The
reasons therefor are as follows22:

• For a smaller spectral width, less frequency comb modes will couple into the resonator (see discussion
in subsec. 2.1.4). While each excited cavity mode still experiences the same power enhancement,
which is solely defined by the cavity finesse (see section 4.3), there are altogether less modes. So
the intra-cavity pump power will drop as well and correspondingly lower SPDC photon emission
rates are achieved, according to eq. (6.15).

• A spectral change of the pump alters the spectral width of the down-conversion photons (see
subsec. 5.3.3). As explained in reference ([101]), this will change the spatial distribution of the
SPDC photons as well, since their angular positioning is wavelength dependent. Consequently their
coupling efficiency into the SM fibre, guiding them to the linear optical set-up, will be modified.
Such an alteration becomes the more serious the higher the photon number n of the coincidence
event under study is, since the fibre coupling efficiency scales to the power of n for the simultaneous
coupling of all n photons.

• Another possible alteration in the observed SPDC photon count rates relates to the applied in-
terference filter at the SM fibre output (see subsec. 5.3.3 and 6.2.2). If the SPDC spectrum is
broader due to a broader pumping spectrum, the interference filter will cut-off a higher spectral
portion in the spectrum’s leading and trailing edge, whereby a greater amount of photons is lost
than compared to a situations with a spectrally narrower initial pumping beam.

22The wavelength dependence of transmission and reflection properties of optical components as well as that of the
SPAPD-detectors are neglected. However these can of course also influence the count rates, if the spectrum of the pump
and the SPDC photon spectrum drifts.
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Figure 6.5: Examples of intra-cavity UV pumping spectra. Their numbering 1 − 4 and colour coding
corresponds to the datapoint labelling in figs. 6.6, 6.8 and 6.9. Spectra 1, 2 and 4 have approximately
equal spectral widths, whereby spectrum 3 is a lot narrower than the other three. Spectrum 1 corresponds
to the lowest averaged UV pumping power of PUV ≈ 2.8 W still entering the SPDC count rate analysis,
whereby spectrum 2 is associated with the second highest pumping power of PUV ≈ 7.2 W applied for
this measurement.

In summary, changes in the intra-cavity UV spectrum will lead to variations in the observed correlated
SPDC photon count rates. Since we would like to compare count rates for different UV pumping power
levels, it is hence vitally important to have a similar spectrum present throughout the entire measurement.
To this end, we monitor the UV spectrum as well, recording a dataset with the spectrometer behind mirror
M4 (see fig. 3.1) at approximately every second. This allows to keep track of changes in the intra-cavity
spectrum throughout the count rate measurements. Therefore only count rate measurements coming
along with spectra of approximately equal spectral content are considered any further here.
For all spectra, recorded during the count rate measurement for a particular cavity level, an averaged
representative has been calculated. The result is shown in fig. 6.5 for the lowest and second highest
UV power levels entering the count rate analysis. The spectra are represented by the two black curves,
showing the same full width half maximum, although their amplitudes are of course different, due to the
gross difference in pulse power. To asses the stability of the UV spectra, all averaged datasets for the
cavity level values, used in the following count rate analysis, as well as the ones additionally incorporated
later in the discussion concerning entanglement, have been normalised to their maximum value and
subsequently fitted by a Sech spectral function according to23 (eq. (5.37)).

S(ν)Sech = sech2
(
π2∆t(ν − ν0)

)
.

We calculate the FWHM spectral width ∆ν and, by using the relation ∆λ = λ2
0∆ν/c with λ0 = 390 nm,

the spectral width ∆λ in wavelength terms. The resulting values for the latter are shown in fig. 6.6,
whereby the black data indicates the spectra corresponding to data used for the following count rate
evaluation. The red points are smaller spectra for lower cavity levels, considered later on during discussing
the presence of entanglement. We see, that over the relevant UV power range, the black curve is nearly
flat with a mean spectral width of ∆λ ≈ 1.03 ± 0.07 nm. Such a behaviour is good enough for our
purposes and the recorded count rates relating to them can be utilised to characterise the cavity as a
source for SPDC photons.

Count rates and fit by SPDC model To analyse the count-rate statistics of the cavity as a source for
SPDC photons, all two-, four-, six-fold coincidences will be considered. In other words, counts resulting
from two detectors within the same arm of the linear optical set-up clicking, one detecting an |H〉- the
other one a |V 〉-polarised photon, are taken into account alongside the coincidences between detectors in

23It shall be noted, that the values stated here deviate from the ones obtained in the discussion regarding pulse duration
(chapter 5). The mismatch is due to the time difference of half a year between both measurements, during which not only
the laser system’s output spectrum has changed but also the set-up has been realigned several times. So both datasets are
not comparable to one another.
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Figure 6.6: Spectral widths of averaged intra-cavity UV spectra recorded during measuring the coinci-
dence count rate levels of the cavity as a function of pumping power. The black points represent spectra,
entering the SPDC photon count rate evaluation. Since they are nearly constant in their widths, they
enable the simultaneously observed SPDC photon count rates to be used for characterising the emission
properties of the photon source. Furthermore they also have appropriate spectral widths to allow for the
observation of multi-photon entanglement. The red points correspond to spectrally smaller pulses, which
result in gradually increasing distinguishability between photon pairs towards lower UV power levels (see
also the discussion in subsec. 6.3.3). The black horizontal line represents the average spectral width of the
pump in the SPDC photon count rate measurement. The numbers at individual datapoints correspond
to the labelling in figs. 6.5, 6.8 and 6.9, introduced to contrast the pump’s spectral width with genuine
four photon entanglement and the required coherence length of the SPDC photons, discussed in the main
text of subsec. 6.3.3.

different arms. Such data processing is not sensible in terms of detection of entanglement within the multi-
photon states, as it is carried out in the next subsec. 6.3.3. However, since we are here only concerned
about count rates, all possibilities shall be included to yield as much statistics as possible, particularly as
some lower cavity levels have turned out difficult to be maintained over longer time periods. For further
evaluation, the total count rates per minute for i-fold coincidences are referred to as ci. Errors onto these
derive from Poissonian counting statistics24. All the resulting datapoints with the appropriate spectral
width indicated by the black points in fig. 6.6, are shown in fig. 6.7 as a function of the respective UV
pump power levels.
Therein we have on the one hand the desired processes with equal numbers of H- and V-polarised photons,
represented by boxes and assigned as HV, HHVV, HHHVVV for two-, four- and six-fold coincidences,
respectively. On the other hand events deriving from higher order emissions after photon loss, comprising
coincidences with the correct number of photons, however with an unequal number of H and V photons,
are depicted by diamonds25. Plot a) shows all three types of coincidences together in a double logarithmic
plot, which enables a comparison between the strengths of the different emission orders. Plots b)-d) focus
onto the individual outcomes for a particular number of detected photons, presented with a linear axis
scaling. From the latter figures we can nicely infer a behaviour of the count rates with respect to the
pumping power as we would expect it from the theoretical model, stated in subsec. 6.1.2: All coincidence
rates between equal numbers of H and V polarised photons show different gradients compared to their
higher order counterparts. Particularly for the two-fold HV count rates a linear scaling with the pump
power can be inferred, whereas the notHV data shows a non-linear behaviour. A comparison between the
strengths of the different emission orders in fig. 6.7 a) reveals furthermore a narrowing separation between
the desired events of equal H and V polarisation and higher orders. However pumping powers are still low
enough to avoid intersections between both sorts of coincidences. This means, that at modest pumping
powers, higher orders are still at a sensible level with regard to the desired event rates (HV, HHVV,

24The values for ci are obtained by taking the total amount of counts Ci,tot, summed over all possibilities to detect the
particular coincidence, renormalised by the amount of measurement runs m, the number of measurement settings per run,

9, and the total measurement time t in minutes according to: ci =
Ci,tot

9·m·t . Errors are derived by substituting the errors on

the total count numbers
√

Ci,tot for Ci,tot into the aforementioned expression
25Please note, that higher order contributions could in principle also contribute to the count rates considered as desired

here, if they are generated by a two orders higher process and have been subject to a loss of two photons, one H and the
other V in polarisation. However the probability for these events is low.
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HHHVVV), consequently not spoiling the observation of the |DN,k〉-Dicke states (eq. 6.25) by too much
background. Nevertheless by moving towards a high UV power level, the separations, particularly between
the third and fourth order (HHHVVV compared to notHHHVVV), but also pronounced for second and
third order (HHVV compared to notHHVV), converge together considerably. In such a situation, there
will be influences of eight photon emissions apparent on top the six-photon ones or six-photon emission on
top of four-photon ones, respectively. Altogether the rise in higher order contributions with respect to the
desired emissions for growing pump levels has to be taken into account, when applying the enhancement
resonator as a source for multi-partite entangled photon states. Thus to generate quantum states with
a high fidelity (eqs. (6.32)-(6.34)), operation at rather intermediate or even lower pump power levels is
required ([43]).
We can furthermore compare the measured count rates with the predictions from the theoretical SPDC
model, introduced in subsec. 6.1.2. Therefore the data in fig. 6.7 a) has been fitted in two different
manners: On the one hand the linearised version for low pumping power levels, eq. (6.18), and on the
other hand the full expected behaviour for a particular emission order l, eq. (6.15), have been utilised.
The latter is also applied for fitting the linear datasets, shown in the plots 6.7 b)-d). Since we expect from
eq. (6.18) the gradient of each dataset in the logarithmic plot 6.7 a) to scale according to the emission
order of the underlying event, i.e.26 log10(ñl) = γl + l · log10(PUV ), we can check the behaviour of the data
by fitting with a fixed l. The results are included in fig. 6.7 a) by solid grey lines for the desired events
of equal H- and V-polarised photon numbers and by dashed grey lines for the higher orders. All six fits
resemble the data really well, showing that pumping the SPDC process yields emission as expected.
As we however already achieve rather high UV powers, a simulation of our experimental apparatus,
presented in ([139]), reveals the approximation tanh τ ≈ τ , the linear fit is based on, to be at the edge
of its applicability. Therefore an investigation with the tanh-behaviour of the SPDC emissions, but still
neglecting influences of higher order terms, has been undertaken as well. Truncation of the sum in eq.
(6.15) to a single value of l, yields the fit-functions

ñl = βl ·
(
1− tanh2

(
|α| · |

√
PUV |

))
tanh2l

(
|α| · |

√
PUV |

)
(6.44)

for the l-fold coincidence count rates. An analysis also taking into account higher order emission processes
on top of the desired order, i.e. a sum over terms with l′ ≥ l, can be found in ([139]). The parameter βl

in the above expression constitutes a free fitting parameter, which changes for different emission orders,
due to different SM fibre coupling efficiencies, detector efficiencies, beam splitter parameters, etc. In
contrast the parameter α is supposed to be of the same value for all orders, as it is just proportional to
the pump pulse and the BBO’s crystal parameters, which enter each emission order equally. To work out
a sufficient value for the latter, all data has been fitted first by leaving this parameter free as well and
subsequently an averaged ᾱ has been computed, resulting in

ᾱ = 0.03± 0.01,

which is used for finally fitting the data once more. The outcomes for fitting the linear datasets are
displayed in fig. 6.7 b)-d) by drawing solid black lines for the HV, dotted black lines for the notHV, solid
red lines for the HHVV, dotted red lines for the notHHVV, solid blue lines for the HHHVVV and dotted
blue lines for the notHHHVVV emissions. Also with this model, we achieve a very nice resemblance with
the data. Even more interesting is the outcome of the tanh-fit for the logarithmically plotted data in fig.
6.7 a) indicated by the same colour coding. We see here a close matching between the previous linear fit
and the tanh version. Therefrom we can conclude that deviations from the linearised model, due to the
tanh behaviour, are still negligible for our pumping power values. In other words, this implies the SPDC
emissions to still be situated within the low pump power regime, whereby no levelling-off in the emission
rates for increasing pumping powers can be seen yet, i.e. the SPDC process is still far off being driven
towards saturation.

6.3.3 Entanglement of four qubit states

For observing entanglement, indistinguishability of photons has to be guaranteed. In the following we
will analyse how the pump spectrum in combination with the filtering of the SPDC photons influences
the indistinguishability. To this end, we focus on the four photon case (2nd order SPDC emissions), which
can lead to the observation of four qubit Dicke states. We will analyse their entanglement for different
pump spectral widths. Conveniently four-qubit events are chosen, since count rates for the six-photon
state would require longer measurement times resulting in stability issues of the cavity level for certain

26γl is a free fitting parameter including the constants βl and |α|2l from eq. (6.18)
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Figure 6.7: Coincidence count rates over UV power level of the SPDC pump. Plot a) shows a logarith-
mic plot, allowing comparison between all three orders. Plots b)-d) comprise separate linear plots of
the individual orders together with counts deriving from higher emissions, depicting the expected tanh
behaviour. Within all graphs, the desired coincidences equal in numbers of H- and V-polarised photons
are represented by boxes, whereby higher orders with unequal distributions between both polarisation
types are indicated by diamonds. The fitted curves to the former are drawn by solid lines and the ones
to the latter by dashed lines. Two-fold coincidences are represented in black, four-fold in red and six-fold
in blue.
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Figure 6.8: Fig. a) provides expectation values of the witness operator (6.40). Black diamonds correspond
to the datapoints used for the coincidence rate evaluation presented in fig. 6.7 with spectral widths of
the black points in fig. 6.6. The red points correspond to the narrower spectra in the latter plot and
indicate the increasing effect of distinguishability for spectral narrowing. The points associated with the
numbers 1−4 correspond to the UV spectra shown in fig. 6.5. The dashed grey line indicates the minimal
fidelity required in order to still have four photon entanglement, whereby its solid counterpart provides
the maximally possible witness expectation value 〈Ŵ 4

spin〉, see reference ([50]). Fig. b) shows the lower
bounds on the fidelity of the |D4,2〉 Dicke state, eq. (6.43), as a function of UV pumping power. The
black points represent the broad UV spectra in fig. 6.6, appropriate for the count rate analysis displayed
in fig. 6.7. The red points are spectra of smaller width, indicated by the red points in fig. 6.6. The
datapoints marked with numbers 1− 4 correspond to the analogously labelled UV spectra shown in fig.
6.5. The dashed grey line indicates to the minimal fidelity required in order to still have four photon
entanglement, see reference ([50]).

pump powers. It shall be noted, that within these measurements, opposing to the previous analysis, only
four-fold coincidences between different arms in the linear optical set-up are considered. Only in this case
a |D4,2〉 Dicke state is observed upon conditional detection.

Fidelity of the four-qubit Dicke state The fidelity of the four photon |D4,2〉 state can be estimate
by evaluating the lower bound values, according to eq. (6.43) for the data recorded in the course of
the coincidence rate measurement. The outcomes as a function of pumping powers are presented in
fig. 6.8, whereby the black points represent the cavity level values also entering the coincidence rate
measurement, being shown in fig. 6.7, and hence comprising a broad spectrum as shown in figs. 6.5, 6.6.
The red boxes correspond to measurements for lower UV powers with narrower spectra, as depicted by the
same colour coding in figs. 6.5, 6.6. From this plot, we can infer the fidelity to increase for lower pumping
levels, whereby after some turning point, it drops down again. Ignoring the last part for a moment, one
can readily acknowledge the influences of higher order emissions, which obviously increase for growing
pumping powers, adding more noise to our desired state |D4,2〉. Thereby they cause the fidelity of the
pure state |D4,2〉 to decrease, as can immediately be understood by referring to eq. (6.34). However fig.
6.8 also shows, that for intermediate power levels quite high quantum state fidelities can be obtained.
The roll off in quantum state fidelity for low pumping powers, represented by the red points in fig. 6.8, is
due to a degradation in entanglement of the quantum state, which results from the narrower UV pumping
pulse spectra of the red points in fig. 6.6. These narrower spectra correspond to longer pumping pulses
and in turn also narrower SPDC spectra. The interference filter’s transmission bandwidth is therefore
not tight enough anymore to elongate the coherence times of the SPDC photons by an extent sufficient
cover all possible generation times underneath the UV pumping pulse and thus enable indistinguishability
between separately emitted pairs. This causes the deterioration of entanglement, as we will see in more
detail within next paragraph below, and thus also a degradation in the quantum state’s fidelity. The
minimum fidelity, required to still detect entanglement according to the generic witness requirement,
introduced in eq. (6.39) and outlined for the |D4,2〉-state in reference ([50]), is included in fig. 6.8 a) by
the dashed grey horizontal line.
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Entanglement as function of pump power and pump spectral width The aforementioned roll-
off in entanglement can be further analysed by looking at the expectation value of the witness operator
(6.40). The outcomes for all datapoints shown in figs. 6.6 and 6.8 a), are provided in fig. 6.8 b). The
upper horizontal, solid grey line therein indicates the maximally possible value of the witness, indicating
the furthest separation between a genuine four-qubit entangled state and the separable subset of states27.
The lower horizontal, dashed grey line indicates the bound above which the expectation value (eq. (6.41))
has to lie in order to detect entanglement of the state under consideration. Again referring first to the
broader UV spectra, indicated by black diamonds in fig. 6.9 a), we can see a slight degradation of
the witness, likewise to the fidelity. This is once more caused by higher order contributions arising for
larger pump powers. Further the behaviour of the red datapoints in fig. 6.9 a), represents the narrower
spectra from fig. 6.6. We can see those decreasing sharply with a loss of entanglement detection for
the smallest pump power intensity (datapoint 3 in fig. 6.9 a)) by application of the witness (6.40).
However as it can be inferred from fig. 6.8 a), these states are still detected as entangled under the
fidelity criterion ([50]). Nevertheless a clear trend towards lowered entanglement and thus less separation
between the state under study and the separable subset is observed for spectral narrowing. By looking
at the pumping pulses, exemplarily examined at the extreme locations of either set of datapoints, the
spectra associated with the datapointes numbered 1− 4 in figs. 6.6 and 6.8 are shown in fig. 6.5 by the
already familiar colour coding. The spectral width for the data entering the coincidence rate evaluation
(spectra 1 and 2 in fig. 6.5) does of course not change. Also spectrum 4, with the largest pump power of
all the red data, possesses a spectrum comparable to the aforementioned black ones. However spectrum
3 at the low pump power end has a much narrower spectral width. This observation explains the rapid
degradation of entanglement towards lower cavity powers for the red data in fig. 6.9, which is caused by
the narrowing of the pump spectrum, as shown in fig. 6.6. The explanation for this correlation relates
to the requirement for indistinguishability between different SPDC pairs and goes as follows: According
to chapter 5 narrower spectra translate into longer pumping pulse, meaning that the SPDC photons
have a broader time window across which they can be generated. In terms of the requirement regarding
their indistinguishablility, explained in subsec. 6.2.2, a broader delocalisation of their wavepackets would
hence be needed. However the interference filter within our set-up is not sufficiently narrowband enough
to provide such filtering, wherefore the pairs, originating from different emission locations underneath
the pump envelope, start to become distinguishable from one another. That of course deteriorates the
entanglement between them and leads to the observed drop in the fidelity and witness expectation value
in fig. 6.8. A quantitative argument for this explanation is presented in fig. 6.9, where red and black spots
correspond to the FT limited pulse duration of the UV pumping pulses, derived from their spectral widths
in fig. 6.6 by utilisation of eq. (6.29). These times constitute the required temporal smear-out of the
SPDC wavepackets, or in other words the lengthening of their coherence times, in order to render different
emission processes throughout the pumping pulse indistinguishable from one another. The maximally
achievable coherence time of TC = 241 fs (eq. (6.31)), from spectral selection by propagation through
the interference filter, is indicated by the horizontal grey line in fig. 6.9. This value is sufficient to achieve
SPDC wavepacket overlap for all black datapoints as well as the red one indicated as number 4. For the
others however, the overlap between different SPDC pairs is not large enough anymore, leading to the
observed decrease in entanglement. It shall in this respect also be noted, that narrower pump spectra in
principle results in narrower SPDC spectra (see eq. (5.85)), nevertheless the SPDC spectra are always
more broadband than the pump, because of the phase-matching conditions. Even if the pump spectrum
is continuously narrowed down towards the cw limit, the SPDC spectrum stops following at some point
and levels off to a constant width, determined by the phase-matching function. Thus the coherence time
of the down-conversion photons is always shorter than the FT limited pulse duration of the pump, so
there will always be an element of distinguishability unless filtering is applied.

27Refer to the discussion in context of fig. 6.4 for details.
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Figure 6.9: Coherence times of SPDC photons necessary to achieve indistinguishability between different
pair emissions. The maximum value the interference filter, applied in our set-up, can smear out the SPDC
wavepackets is indicated by the grey, horizontal straight line. Thus all black and the red point numbered
by 4 should constitute completely indistinguishable photon pairs, whereby this property degrades towards
lower pump power levels and hence narrower spectra.
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Chapter 7

Summary

In this work, the design and the experimental implementation of a novel pumping source for spontaneous
parametric down-conversion has been presented in order to achieve long term stable multi-photon emis-
sion with high count rates. The experimental set-up is based on an enhancement cavity for femtosecond
mode-locked laser pulses in the ultra-violet regime, operating at a repetition rate of 80 MHz. It has been
applied for the observation of symmetric Dicke states.
The SPDC pump pulses are coherently superimposed inside the cavity, pumping the non-linear frequency
conversion process in a 1mm thick BBO crystal, positioned therein as well. In a first step, we have laid
out the necessary design parameters for the resonator, considering scenarios with and without the BBO
crystal. A bow-tie shape is chosen with an entire resonator length of Lcav = 3.71 m and a convenient
beam waist for SPDC pumping of w0 ≈ 100 µm is calculated to be present in the focal plane between
two curved mirrors. A second waist of w1 ≈ 330 µm lies in the middle between two plane mirrors. A
maximally achievable, spectrally integrated power enhancement of 33 has been calculated for the presence
of the BBO crystal, while a number of 341 has been yielded for its absence, under the consideration of
perfect spatial mode matching in input coupling. The group velocity dispersion inside the cavity has been
estimated to approximately 378 fs2 for the former of the aforementioned situations and approximately
190 fs2 for the latter.
In a second step, the resonator has been characterised experimentally. Thereby the spectrally resolved
and the integrated power enhancements have been determined by measurements of the internal and ex-
ternal UV power levels as well as the associated internal and external pulse spectra. The outcomes result
in an integrated power enhancement of 13 with the non-linear medium and 38 without it. Appropriate
scaling of the spectra indicated furthermore a respective coupling fraction of 78 % and 86 % from the
frequency comb of the external pulse into the cavity. The deviations from perfect spectral resemblance
are caused by dispersion, which deteriorates the matching between the external and internal frequency
comb, as has also been described in the course of this thesis. Enhancement stability has been shown
to be maintainable at the high end for more than 3.5 h at an average UV power level of approximately
7.2 W , whereas even longer time durations on the order of days have been observed for intermediate
power levels. Additionally the resonator’s finesse has been estimated independently by the ring down
technique, which provided values of 72 for a scenario with, and F noBBO ≈ 250 for one without the BBO.
Although this measurement has been troubled by the utilisation of a spectrally broadband laser beam,
the figures for the expected power enhancements, derived from the finesse outcomes under the assumption
of impedanced-matched cavity coupling, tie in with the directly investigated numbers. The resonator has
also be shown to operate in a regime close to single transverse TEM mode, with a beam quality factor
of M ≈ 1.07, as desired for SPDC pumping. However the low mode quality beam profile of the external
pump degrades the coupling efficieny into the enhancement resonator to around 50 % only.
To infer the real duration of the internal UV pulses, we have carried out the first intra-cavity autocor-
relation measurement by employing down-conversion as the required non-linear process, which has until
now not been considered for this purpose. It offers simultaneous measurability of multiple correlation
functions in the small pumping power limit and a pulse duration of τ ≈ 176 fs has been obtained under
the assumption of having Sech-shaped pulses, whose spectral amplitude better resembles the actual in-
ternal pulses than their Gaussian counterparts. The time difference of 36 fs in comparison to the Fourier
transform limited pulse duration τFT ≈ 140 fs, extracted from the first order correlation function, reveals
the presence of residual dispersion inside the resonator.
Application of the enhancement cavity as a source for multi-photon pair emission has been investigated
by registration of two-, four- and six-fold coincidences in a linear optical set-up built for photon state
observation. At the high end of averaged pump powers around 7W , detected coincidence count rates on
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the order of 2 ·107 counts
min for two-photon, 7 ·104 counts

min for four-photon and 150 counts
min for six-photon events

have been recorded. Here already considerable contributions from higher order noise have been recorded
as well. However operating the system at intermediate power levels has been proven to reduce their
influences to a level bearable for observation of multi-photon entangled quantum states with sufficient
fidelity.
Furthermore, the fidelity of Dicke |D4,2〉-states, observed with a symmetric distribution of four emit-
ted SPDC photons, has been estimated as a function pumping power and spectral width. Thereby the
achievement of high fidelities in an intermediate power regime has been shown. Effects on the quality
of the entanglement, stemming from the increase of distinguishability between photon pair emissions
from the SPDC process, have been monitored as well. Finally, to improve on the fidelity of the observed
Dicke states, a proposal on noise reduction based on higher repetition rate enhancement cavities has
been investigated. Such systems have been proven to only provide a sensible alternative, if also the pulse
repetition rate of the pumping laser system is scaled up, as otherwise considerable degradation in photon
production rates occur.
Despite these operational parameters, which serve well for the desired applications of the resonator, there
are nevertheless chances for improvements to be made to the set-up. Immediate advances can be obtained
for instance by reshaping the transverse beam profile of the external UV pump mode to achieve TEM0,0

quality and in turn to enhance the coupling efficiency into the cavity. By the same token, dispersion
compensation can be introduced into the resonator e.g. by substituting some cavity mirrors with chirped
versions ([74]). Thereby more external frequencies could couple into the resonator, enhancing the pump-
ing power, and less pulse distortion inside the cavity would be present. On a longer time scale in terms
of available technology, of course photon number resolving detectors and increased detection efficiency
would improve the experimental apparatus regarding the aforementioned aspect as well.
Concerning applications, the enhancement resonator has in the meantime already been used to study the
entanglement properties of the six-photon Dicke state |D6,3〉, whereby a detailed description of the exper-
imental results is given in reference ([43]). With an average pumping power of PUV ≈ 5.3 W , resulting in
an event rate of approximately 3.7 counts

min , we have been able to detect genuine multipartite entanglement
in the observed state and we have achieved a quantum state fidelity of F|D6,3〉 ≈ 0.654 ± 0.024. This
number compares well to the outcomes from other experiments characterising six-photon quantum states,
which achieved fidelities of F

([44])
|D6,3〉 ≈ 0.56± 0.02 and F

([45])
|G6〉 ≈ 0.593± 0.025 at much lower count rates1.

In the course of the experiment we have also been able to show the usability of the |D6,3〉-state as a
resource for genuine multipartite entangled states of lower qubit numbers, details are given in reference
([43]). Another possibility to incorporate the enhancement resonator in combination with Dicke states is
found in phase measurements with a precision below the shot noise limit. This is currently under investi-
gation, and further details can be found in reference ([139]). Also the cavity could be employed as a pump
source for other experiments, focussing on multiqubit entangled quantum states, such as for instance an
extension of the set-up described in reference ([166]) towards higher qubit numbers. However there are
potential applications outside the field of quantum information processing as well, whereby one particular
example would be the utilisation as a source for light squeezing. This is especially convenient, since the
output of the collinear type-II SPDC is a two mode squeezed state ([167]) already. Commonly known
squeezing of the quadrature components in the electromagnetic output field of the down-conversion could
be realised by changing the crystal geometry towards a type-I down-conversion source ([167], [168]). An
example in yet another area of research would be the generation of ultrashort XUV pulses, by performing
up-conversion inside the resonator, as is e.g. described in references ([169], [170]) for the application of
infra-red pulses in combination with a gas jet.
Altogether the enhancement resonator presented in this thesis provides a versatile tool for quantum op-
tical experiments, allowing to observe multipartite entangled photon states from down-conversion with
very high count rates and also offering potential in other areas of physics. Therefore it constitutes a valu-
able advance towards the actual implementation of quantum-optical networks and quantum computation,
hopefully enabling further research in this regard in the future.

1Approximately lower by an order of magnitude than the count rates reported in reference ([43]).
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Appendix A

Cavity design

A.1 Geometrical cavity design parameters for resonator of 80 MHz

repetition rate

Summary of all important geometrical design parameters of the UV enhancement resonator, operating
at a repetition rate of frep = 80 MHz:

• Total cavity length: Lcav = 3.71 m

• Length of sector 1, i.e. distance between mirrors M1 and M2: dM1,M2 = 0.982 m

• Length of sector 2, i.e. distance between mirrors M2 and M1: dM2,M1 = 2.728 m

• Distance between M2 and M3 (freely choose): dM2,M3 = 0.872 m

• Distance between M3 and M4: dM3,M4 = 0.928 m

• Distance between M4 and M1: dM4,M1 = 0.928 m

• Radius of curvature mirrors M1 and M2: RM1 = RM2 = 0.8 m

• Radius of curvature mirrors M3 and M4: RM1 = RM2 = ∞m

Furthermore the relevant beam parameters, which are wavefront radius R(z) and spot radius w(z), for
the most distinctive locations within the resonator are stated in table A.1 below.

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 610 µm −50.5 cm
zM2 610 µm 50.5 cm
zM3 369 µm −2.201 m
zM4 369 µm 2.201 m
z0 101 µm ∞ cm
z1 330 µm ∞ cm

Table A.1: Beam waist w(z) (see eq. (2.4)) and wavefront curvature R(z) (see eq. (2.5)) at the locations
of the four cavity mirrors M1-M4 and the two focal planes z0 and z1.

A.2 Geometrical cavity design parameters for resonators of higher
repetition rates

A.2.1 f = 246 MHz repetition rate and Lcav = 1.2195 m length

• Mirror radii of curvature: RM1 = RM2 = 0.24 m result in:

– An excess parameter of a = 0.044 m

– A sector 1 distance of dM1,M2 = 0.284 m
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– A sector 2 distance of dM2,M1 = 0.936 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 351.72 µm −14.5 m
zM2 351.72 µm 14.5 m
z0 50.65 µm ∞
z1 201.37 µm ∞

• Mirror radii of curvature: RM1 = RM2 = 0.26 m result in:

– An excess parameter of a = 0.057 m

– A sector 1 distance of dM1,M2 = 0.317 m

– A sector 2 distance of dM2,M1 = 0.902 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront curvature R(z)
zM1 350 µm −16.3 m
zM2 350 µm 16.3 m
z0 57 µm ∞
z1 191 µm ∞

• Mirror radii of curvature: RM1 = RM2 = 0.28 m result in:

– An excess parameter of a = 0.076 m

– A sector 1 distance of dM1,M2 = 0.356 m

– A sector 2 distance of dM2,M1 = 0.864 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 350 µm −18.4 cm
zM2 350 µm −18.4 cm
z0 64 µm ∞
z1 178 µm ∞

• Mirror radii of curvature: RM1 = RM2 = 0.3 m result in:

– An excess parameter of a = 0.106 m

– A sector 1 distance of dM1,M2 = 0.406 m

– A sector 2 distance of dM2,M1 = 0.814 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 353 µm −21.2 cm
zM2 353 µm 21.2 cm
z0 73 µm ∞
z1 161 µm ∞

• Mirror radii of curvature: RM1 = RM2 = 0.305 m result in:

– An excess parameter of a = 0.116 m

– A sector 1 distance of dM1,M2 = 0.421 m

– A sector 2 distance of dM2,M1 = 0.798 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront curvature R(z)
zM1 355 µm −22.1 cm
zM2 355 µm 22.1 cm
z0 75 µm ∞
z1 155 µm ∞
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A.2.2 f = 328 MHz repetition rate and Lcav = 0.915 m length

• Mirror radii of curvature: RM1 = RM2 = 0.2 m result in:

– An excess parameter of a = 0.047 m

– A sector 1 distance of dM1,M2 = 0.247 m

– A sector 2 distance of dM2,M1 = 0.668 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 303 µm −12.7 cm
zM2 303 µm 12.7 cm
z0 51 µm ∞
z1 162 µm ∞

• Mirror radii of curvature: RM1 = RM2 = 0.22 m result in:

– An excess parameter of a = 0.07 m

– A sector 1 distance of dM1M2 = 0.29 m

– A sector 2 distance of dM2M1 = 0.624 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 304 µm −15.1 cm
zM2 304 µm 15.1 cm
z0 60 µm ∞
z1 145 µm ∞

• Mirror radii of curvature: RM1 = RM2 = 0.229 m result in:

– An excess parameter of a = 0.0.087 m

– A sector 1 distance of dM1,M2 = 0.316 m

– A sector 2 distance of dM2,M1 = 0.686 m

– Beam waists and wavefront radii of curvature according to the table below:

z position Beam waist w(z) Wavefront radius of curvature R(z)
zM1 307 µm −16.5 cm
zM2 307 µm 16.5 cm
z0 65 µm ∞
z1 134 µm ∞
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Appendix B

Characterisation of cavity
parameters

B.1 Conversion factor between voltage on photodiode and power
in cavity

Here, the correspondence between UV power stored inside the resonator and the voltage on the photodiode
behind mirror M4 is calculated. As this number will be involved whenever cavity levels are considered
in this dissertation, its derivation shall be stated for clarity. We figure it out by blocking the cavity and
recording the power at measurement points P1 in front of mirror M4, PP1 = 11.575 ± 0.035 mW , and
measurement point P2 in front of the photodiode, PP2 = 511 ± 2.5 nW . Therefrom the transmission
through the cavity mirror M4 and the BS onto the photodiode can be inferred to

TP1−P2 =
PP2

PP1
= 4.415 · 10−5

with an error of

∆TP1−P2 =

√
(
PP2

P 2
P1

)2 · (∆PP1)2 + (
∆PP2

PP1
)2 = 0.025 · 10(−5)

Subsequently we observe the voltage generated by the photodiode. Since a lower intensity is transmitted
through the cavity mirrors M3 and M4 for the arrangement without the BBO, due to having an input
coupler of higher reflectivity, the resistor in the diode has to be changed. With an input coupler of
RIC = 97.36% reflectivity, a RBBO

PD = 51 kΩ resistor is used and a voltage reading of V BBO
PD,all = 7 mV ,

with a dark voltage of V BBO
PD,dark = 2.7 mV and thus a UV light signal of V BBO

PD = 4.3 mV is yielded.
The UV power incident on the photodiode is furthermore given by the spectral responce of the device,
Sλ,PD = 0.17 A

W , the utilised resistor RPD and the generated voltage VPD by PPD = VPD
Sλ,PD·RP D

. By
knowing the transmission TP1−P2, the connection between the power PPD and the intra-cavity level Pcav

is obviously given by PPD = TP1−P2 · Pcav, and in terms of voltage

Pcav =
1

Sλ,PDRPDTP1−P2︸ ︷︷ ︸
=:αPD

·VPD (B.1)

whereby α is the desired conversion constant. From the above stated values, the result for Pcav ≈
11.76±0.07 can be checked which is in good resemblance with PP1. The appropriate conversion constant
for an arrangement with the BBO crystal is hence:

αBBO =
1

Sλ,PDRBBO
PD TP1−P2

= 2.61± 0.02 (B.2)

with the error computed from the transmittance error ∆TP1−P2 according to ∆α = ∆TP1−P2

Sλ,PD·RPDT 2
P1−P2

.
For the scenario without a BBO crystal hosted by the resonator, with an applied input coupler of RIC =
98.72% reflectivity, a resistive load of RnoBBO

PD = 20 kΩ is used. We are consequently left with a constant
for an empty cavity of:
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αnoBBO = 6.66± 0.04 (B.3)

These conversion factors are always applied, when dealing with UV power levels inside the resonator.

B.2 Laser repetition rates from ring down signal

From the ring down data, the laser repetition rates can be inferred by Fourier analysis of the fast
oscillations on top of the slowly varying ring down signal. Since both cavity arrangements, with and
without crystal, have been measured at different days, an idea about the stability of frep can be gathered
therefrom and the appropriate numbers can be used in application of eq. (4.17) to the individual datasets.
The respective numbers are:

Piezo freq. [kHz] frep with BBO [MHz] frep without BBO [MHz]
7 80.82± 0.21 80.66± 0.17
10 − 80.81± 0.15
15 − 80.81± 0.15
20 80.64± 0.35 80.67± 0.17
20 80.68± 0.32 80.69± 0.19
25 80.77± 0.52 80.79± 0.2

whereby the errors originate from the full widths at half maximum of the laser frequency peaks in the
ring down spectra. Comparison of the frequencies clearly proofs their coincidence within their error
boundaries. The mean value of the laser repetition rate throughout the ring down time measurements is
f̄rep = 80.73 ± 0.24 MHz. We can hence consider frep to be stable over a time scales of days, which is
relevant all experiments to be discussed in this work.

B.3 Flaws in the finesse measurement

There have been two major simplifications made during recording and evaluating the ring down signal,
affecting precision and appearance of itself and all quantities derived thereof:

1. The first one concerns the pumping of the resonator during the experimental runs. We have con-
veniently applied our Ti:Sa laser for that purpose, although commonly it is advised to utilise a cw
light source. This is due to the multimode nature of the pumping beam, which obviously comprises
many frequencies matching cavity resonances and thereby exciting multiple ring down signals si-
multaneously. To get a feeling about the order of magnitude involved here, the mode number N
can be estimated by considering the separation between adjacent modes of νFSR = 80 MHz and
the overall width of the internal spectrum of ∆νint. spec.

FWHM ≈ 2.5 THz, yielding N ≈ 31000. Yet for
ring down spectroscopy, it is generally desired to have just a single frequency contributing to the
observed signal, if feasible. So a narrowband pump should be used, which does not necessarily have
to have a bandwidth ∆ωpump smaller than one resonance, but still less than ωFSR. The underlying
physical reason for the requirement stems from the superposition of the individually excited ring
down signals. These do not interfere because of their different frequencies, but their intensities are
still added up, when measuring a signal transmitted through one of the cavity mirrors. Every signal
for each individual frequency however shows a different oscillation period in the ring down signal,
which can be seen in the most simple way by eq. (4.27). On top of that come the different phase
velocities of the individual ring down signals due to dispersion, which leads to a displacement in the
time domain between them. So a superposition of the intensities of all modes can be regarded as an
averaging operation over the oscillations in the ring down signals. In other words, the oscillations
are expected to wash out for a multimode signal in exactly the way as it is apparent in comparison
between the ring down signals shown in figs. 4.11 and 4.12.
The modifications in the oscillations of the ring down signals are worsened even more by observa-
tion of the leakage through the input coupler, as here interference between the transmitted electric
fields with the directly reflected pump field might add extra beat frequencies. But as we neglect
the interference term (term 3 in eq. (4.23)) for reasons stated in the next point, the data might not
be troubled too severely.
It is now also understandable, why all quantities, derived from the ring down signal, seem to ac-
cord better with their counterparts received from other measurements, for an arrangement with an
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empty cavity. Since the BBO approximately doubles the dispersion inside the cavity, the blurring
of the oscillation maxima is enforced and precision in ring down time determination is sacrificed
due to erasement of information about the oscillation extrema (like the comparison between figs.
4.11 and 4.12 reveals).
In implementing the experiment, we unfortunately did not yet know about these troublesome impli-
cations, our choice of a pumping source comes along with. So it shall be particularly stressed in this
respect, that all numbers, derived from the ring down time, constitute estimations for the proper
figures only, whose resemblance with numbers from other approaches proofs them be positioned
in the correct magnitude range, but also shows their insufficiency for being treated as a precision
measurement.

2. The second approximation has been done in the data analysis by neglecting the interference between
the directly reflected pumping field and the ring down signal transmitted through the input coupler
(term 3 in eq. (4.23)). The reasoning for that is of absolutely practical nature and based on the
additional factor of 2 in the ring down time τ the interference would result in (see eq. (4.25)).
Inclusion of this additional factor of two would approximately half all quantities τ has influence on.
For instance, the finesse numbers would change to F̄ τ ′,BBO = 36±9 and F̄ τ ′,noBBO = 134±29. The
reflectivity of the cavity without the input coupler would be modified to R̄noIC,BBO = 94± 3% and
R̄noIC,noBBO = 98.7±0.3%, which would even worsen the mismatch between implications by the ring
down signal and the expectations from the experimentally optimised input coupler choices or the
loss calculations, respectively. Most significant however is the alteration of the power enhancement
to ¯PE′′τ ′,BBO ≈ 6±1 and ¯PE′τ ′′,noBBO ≈ 21±5, whose numbers are in complete disagreement with
the previously derived PEBBO

max (λ = 390.92 nm) = 17±3 and PEnoBBO
max (λ = 391.11) = 45±10. They

are exactly too small by the factor of 2, introduced in recognition of the interference term in eq.
(4.23). Yet the numbers for PEmax are the ones to believe in. So we expect the power enhancement,
retrieved from the finesse, to be at least situated in the proximity of the directly measured figures.
Since taking into account the interference between the external pump and the ring down signal
would precisely counteract such a resemblance, we have concluded the interference to be negligible
and utilised the pure ring down signal with its associated ring down time τ , as given by eqs. (4.21)
and (4.22), respectively. It shall also be noted in this respect, that all attempts to fit experimental
data with eqs. (4.19), (4.20) and (4.23) did not succeed; furthermore the authors of reference
([51]) reckon by themselves the respective equations to be troubled by some yet undiscovered error.
However the exponential decay of the ring down signal, as expressed in eq. (4.16), (4.17), (4.21) and
(4.22) can be regarded correct, since it has been obtained independently with a different Ansatz
([91]).
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Appendix C

Characterisation of pulse duration in
resonator

C.1 Theory on correlation functions of first and second order

C.1.1 Fourier transforms of pulses’ electric fields

Gaussian pulses By assuming the pulse model for Gaussian pulse, as given in eq. (5.14) by

EGauss(t) = a · exp

(
−t2

2 (∆t)2

)
· cos (ω0t)

we can calculate its Fourier Transform accordingly to ([112]):

FT{E(t)} =
∫ ∞

−∞
a exp

(
− t2

2 (∆t)2

)
cos (ω0t) exp (iωt)dt

=
a

2

∫ ∞

−∞
exp

(
− t2

2 (∆t)2

)
(exp (iω0t) + exp (−iω0t)) exp (iωt)dt

=
a

2

(∫ ∞

−∞
exp

(
− t2

2 (∆t)2

)
exp (i(ω + ω0)t)dt +

∫ ∞

−∞
exp

(
− t2

2 (∆t)2

)
exp (i(ω + ω0)t)dt

)

=
a

√
2π (∆t)2

2




∫ ∞

−∞

exp
(
− t2

2(∆t)2

)
√

2π (∆t)2
exp (i(ω + ω0)t)dt +

∫ ∞

−∞

exp
(
− t2

2(∆t)2

)
√

2π (∆t)2
exp (i(ω − ω0)t)dt




=
√

π

2
a∆t

(
exp

(
−1

2
(∆t)2 (ω + ω0)2

)
+ exp

(
−1

2
(∆t)2 (ω − ω0)2

))

(C.1)

Sech Pulses Fourier transforming of the Sech pulse model ESech(t) = a · sech (−t
∆t

) · cos (ω0t) delievers
a spectral electric field amplitude of ([112]):
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FT{E(t)} =
∫ ∞

−∞
a · sech

(
t

∆t

)
cos (ω0t) exp (iωt)

=
a

2

∫ ∞

−∞
sech

(
t

∆t

)
(exp (iω0t) + exp (−iω0t)) exp (iωt)

Subst: t′ =
t

∆t
; dt′ =

dt′

dt
dt =

1
∆t

dt

=
a

2∆t

(∫ ∞

−∞

exp (−i∆t(−ω − ω0)t′)
cosh (t′)

dt′ +
∫ ∞

−∞

exp (−i∆t(ω0 − ω)t′)
cosh (t′)

dt′
)

=
a

2∆t


 π

cosh
(
−π∆t(ω+ω0)

2

) +
π

cosh
(
−π∆t(ω−ω0)

2

)



=
aπ

2∆t


 1

cosh
(

π∆t(ω+ω0)
2

) +
1

cosh
(

π∆t(ω−ω0)
2

)



(C.2)

The result for the complex conjugate is equal to eq. (C.2), i.e. FT{E(t)} = FT{E∗(t)} and the constant
scaling factor aπ

2∆t can be dropped due to normalisation. By substitution of eq. (C.2) into eq. (5.32) and
considering ω = 2πν, the theoretically expected spectrum for Sech-pulses is:

S(ν)Sech =


 1

cosh
(

2π2∆t(ν+ν0)
2

) +
1

cosh
(

2π2∆t(ν−ν0)
2

)



2

S(ν)Sech =
1

cosh2 (π2∆t(ν + ν0))
+

1
cosh2 (π2∆t(ν − ν0))

+
2

cosh2 (π2∆tν) + cosh2 (π2∆tν0)
(C.3)

C.1.2 Second order correlation function

Wit the pulses’ electric fields, as they are stated in eqs. (5.46) and (5.47), the interferometric autocorre-
lation function g2(τ), eq. (5.45), can be simplified as follows:

g2(τ) =

∫∞
−∞

(
E1(t)2 + E2(t− τ)2 + 2E1(t)E2(t− τ)

) (
E∗

1 (t)2 + E∗
2 (t− τ)2 + 2E∗

1 (t)E∗
2 (t− τ)

)
dt∫∞

−∞(E1(t))2(E∗
1 (t))2dt +

∫∞
−∞(E2(t− τ))2(E∗

2 (t− τ))2dt

=

∫∞
−∞

(
E1(t)4 + E2(t− τ)4 + 6E1(t)2E2(t− τ)2 + 4E1(t)3E2(t− τ) + 4E1(t)E2(t− τ)3

)
dt∫∞

−∞E1(t)4dt +
∫∞
−∞E2(t− τ)4dt

=

∫∞
−∞E1(t)4dt +

∫∞
−∞E2(t− τ)4dt∫∞

−∞E1(t)4dt +
∫∞
−∞E2(t− τ)4dt

+ 6 ·
∫∞
−∞E1(t)2E2(t− τ)2dt∫∞

−∞E1(t)4dt +
∫∞
−∞E2(t− τ)4dt

︸ ︷︷ ︸
=3·G0

2(τ)

+4 ·
∫∞
−∞E1(t)E2(t− τ)3dt +

∫∞
−∞E1(t)3E2(t− τ)dt∫∞

−∞E1(t)4dt +
∫∞
−∞E2(t− τ)4dt

(∗)
= 1 + 6 · a2b2

a4 + b4
·
∫∞
−∞E′(t)2E′(t− τ)2dt

2
∫∞
−∞E′(t)4dt

+ 4 · ab3 + a3b

a4 + b4
·
∫∞
−∞

(
E′(t)E′(t− τ)3 + E′(t)3E′(t− τ)

)
dt

2
∫∞
−∞E′(t)4dt

,

(C.4)

whereby the equality of
∫∞
−∞E1(t)4dt =

∫∞
−∞E2(t − τ)4dt, proven in eq. (5.13), has been used again to

calculate the denominators in step (∗)

C.2 Measurement of intra-cavity pulse duration

C.2.1 Calculation of output spectra from the Mach-Zehnder interferometer

Considering the two electric fields (5.72), (5.73) and the associated Mach-Zehnder interferometer output
(eq. (5.74))
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Eges(t) = E(t) + E(t− τ) =
E0√

2
f(t) exp(iω0t) +

E0√
2
f(t− τ) exp(iω0(t− τ))

as stated in subsec. 5.3.2, applying a Fourier transform to Eges(t) leads to the following expression:

FT{Eges(t)} =
∫ ∞

−∞

(
E0√

2
f(t) exp(iω0t) +

E0√
2
f(t− τ) exp(iω0(t− τ))

)
exp(iωt)dt

=
∫ ∞

−∞

E0√
2
f(t) exp(iω0t) exp(iωt)dt

︸ ︷︷ ︸
term 1

+
∫ ∞

−∞

E0√
2
f(t− τ) exp(iω0(t− τ)) exp(iωt)dt

︸ ︷︷ ︸
term 2

(C.5)

Looking at the individual terms 1, 2 and defining g1(t) = E0√
2
f(t), g2(t) = exp (iω0t), g3(t) = E0√

2
f(t− τ),

g4(t) = exp (iω0 (t− τ)), we can see both terms to be

Term 1 :
∫ ∞

−∞

E0√
2
f(t) exp(iω0t) exp(iωt)dt = FT{g1(t)g2(t)} (C.6)

Term 2 :
∫ ∞

−∞

E0√
2
f(t− τ) exp(iω0(t− τ)) exp(iωt)dt = FT{g3(t)g4(t)}, (C.7)

whereby FT assigns the Fourier transform. The property, that a Fourier transform of the product of
two functions is equal to the convolution of the Fourier transforms of each individual function ([171]),
i.e. FT{gi(t) · gj(t)} = FT{gi(t)} ⊗ FT{gj(t)} with ⊗ standing for the convolution, will now be used.
Therewith term 1 simplifies to

term 1 =
∫ ∞

−∞

E0√
2
f(t) exp(iω0t) exp(iωt)dt

= f(ω)⊗ δ (ω − ω0)

=
E0√

2

∫ ∞

−∞
f(ω̃) · δ ((ω − ω0)− ω̃) dω̃

=
E0√

2
f(ω − ω0)

=: E0(ω′) (C.8)

and term 2 results in

term2 =
∫ ∞

−∞

E0√
2
f(t− τ) exp(iω0(t− τ)) exp(iωt)dt Subs:t− τ = t′

=
∫ ∞

−∞

E0√
2
f(t′) exp(iω0(t′)) exp(iωτ) exp(iωt′)dt′

=
E0√

2
(exp(iωτ)FT{f(t′)})⊗ FT{exp(iω0(t′))}

=
E0√

2
(exp(iωτ)f(ω)⊗ δ (ω − ω0))

=
∫ ∞

−∞

E0√
2

exp(iω̃τ) · f(ω̃) · δ ((ω − ω0)− ω̃) dω̃

= f(ω − ω0) exp(i(ω − ω0)τ)
= f(ω′) exp(iω′τ), (C.9)

with the substitution ω − ω0 = ω′ carried out in each last step. Herein E+
0 (ω′) is the Fourier transform

of an arbitrary pulse’s electric field. The entire expression (C.5) hence simplifies to
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FT{Eges(t)} = E0(ω′) (1 + exp(iω′τ))

= 2 · E0(ω′) exp
(

iω′τ
2

)
cos

(
ω′τ
2

)

=
√

2E0f(ω − ω0) exp
(

i(ω − ω0)τ
2

)
cos

(
(ω − ω0)τ

2

)

= Eges (ω − ω0) (C.10)

The relevant part of the spectrum is given by the absolute square of eq. (C.10):

S(ω − ω0) =| Eges(ω′) |2

= 2 | E0f(ω − ω0) |2︸ ︷︷ ︸
S0(ω−ω0)

cos2
(
(ω − ω0)

τ

2

)
exp

(
i
(ω − ω0)τ

2

)
exp

(
−i

(ω − ω0)τ
2

)

= S0(ω − ω0) cos2
(
(ω − ω0)

τ

2

)
(C.11)

As one can see from figure 5.6, the time separation between both pulses can be expresses as τMZ =
2∆xMZ

c . Swapping from angular frequencies ω to wavelengths, by ω = 2πc
λ , with λ0 = 390 nm being the

central wavelength of the UV spectra, leaves us with a general expression for the spectral output of the
interferometer:

S(ω − ω0) = S0(ω − ω0) cos2
((

2πc

λ
− 2πc

λ0

)
2∆xMZ

2c

)

= S0(λ− λ0) cos2
(

2π(λ0 − λ)
λλ0

∆xMZ

)

≈ S0(λ− λ0) cos2
(

2π(λ− λ0)
λ2

0

∆xMZ

)

= S(λ, λ0) (C.12)

The approximation made in the last step shall be explicitly pointed out only to be valid for narrowband
spectra, i.e. spectral widths much smaller than central wavelength1. If the reader intents to apply any
of the above and following outcomes for pulses with durations in the region of a few femto-seconds only,
e.g. with an octave spanning spectrum as required for an f-2f interferometer ([73]), these simplifications
do not hold anymore.

1With our spectral FWHM values of ∆λ ≈ 1 nm, and central wavelengths of λ0 ≈ 390 nm, the approximation λ ≈ λ0 is
fulfilled pretty well.
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