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1 Introduction

It is more than 100 years ago that the first step across the border to the quantum
world was done. Max Planck studied the blackbody radiation and found an expla-
nation that made him feel extremely uncomfortable — it involved the hypothesis of
the quantization of energy. Five years later it was Einstein who made the next step
by proposing a return to the particle theory of light which allowed to explain the
photoelectric effect.

This was just the beginning of a revolutionary process and in those days it was
not foreseeable at all which changes in the world of physics, and even in everydays
life would follow. But not new toys like CD-players or digital cameras are the
reason why even people from outside the physicists community get more and more
interested in quantum physics. Experiments like quantum teleportation [1] and
quantum cryptography [2, 3] excite them and trigger the association with futuristic
scenarios.

Yet, where are the connections between and where is the transition from the
classical to the quantum world. ”We cannot, however, do with such old, familiar,
and seemingly indispensable terms as "real”...” ([4], Schrédinger in his Nobel lecture
in 1933). Quantum mechanics does not fit to the intuition we learn from a (at a
first glance) classically appearing world. It was also Schrodinger who introduced
the term ”Verschrinkung” [5] — Entanglement, triggered by the paper of Einstein,
Podolsky and Rosen (EPR) [6] in 1935, often referred to as the EPR-paradox. In
this famous paper, EPR analyze the predictions of a two particle system, where the
particles cannot be described independently. Based on the possibility of predicting
measurement results of remote particles and, of course, based on locality, i.e. that
a measurement on one particle cannot influence the result of a measurement on
another one over a large distance, they argued that quantum mechanics cannot be
considered complete.

The debate about entanglement and the EPR-paradox was purely philosophical
for a long time, and only in 1964 Bell came up with an experimentally testable in-
equality, that described bounds on the so-called local hidden variable theories (LHV
— theories, that should complete quantum mechanics). Bounds that are violated by
quantum mechanics [7].

The research on the foundations of quantum mechanics was no more only of
theoretical nature. There was an ongoing effort to experimentally violate Bell’s
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inequality and, even until today, it was not possible to really proof the violation
beyond all doubts. The research on possible extensions of quantum mechanics was
— and still is — extremely useful to sharpen our intuition on quantum mechanics and
the understanding of what entanglement means.

Nowadays the research on entanglement is no more only a research on the foun-
dations of quantum mechanics. The combination of quantum mechanics and infor-
mation theory proofed to be extremely productive, and applications like quantum
cryptography and quantum computation were developed [8]. This, however, does
not mean that all of the novel concepts are fully understood. While the entangle-
ment for two spin 1/2 particles (qubits) is well understood, and in the past few years
the efforts were focused more and more onto higher dimensional systems and sys-
tems consisting out of more particles, it is only two years ago that the entanglement
of three qubits has been classified mathematically by Diir.[9].

Experimentally, the development towards higher numbers of entangled particles
is an even bigger challenge. It became quite simple to generate entangled pairs of
photons. However, only very few experiments achieved entanglement between three
and four photons, and only in two experiments with atoms and ions three and four
particle entanglement was deduced.

In this work a three-photon entangled state is experimentally analyzed — the
W-state (W for Wolfgang Diir who analyzed three particle entanglement in the
above mentioned classification). The interest in the W-state arises from the fact,
that the entanglement for three particles shows to faces. On the one hand there
is the GHZ-state (GHZ for Greenberger, Horne,and Zeilinger who discussed a new
kind of violation of predictions of LHV by quantum mechanics for more than two
particles) which violates a generalized Bell theorem maximally. On the other hand
the entanglement in the W-state (which doesn’t show such a strong violation of
Bell’s theorem) does not completely vanish (in contrast to the GHZ-state) if one
out of the three particles is lost. The three-photon entangled GHZ-state has been
experimentally realized in 1999 [10], and also the violation of Bell’s inequalities for
three particles [11] was experimentally approved, but an experimental observation
of the W-state was still missing.

The goal of this work therefore was the observation and analysis of the W-state
and its characteristic properties. The thesis will begin with a short description of the
basic ideas when considering two particles. The concept of qubit and entanglement
will be explained and a short introduction of Bell’s theorem is given. The following
chapter describes the classification of three-qubit states, and the differences between
the properties of the W-state and the ones of the GHZ-state. A theoretical descrip-
tion of the scheme for the preparation of the W-state follows in order to explain the
basic ideas and the conditions on the experimental realization of the setup. After
explaining the actual setup and its alignment the first observation of the W-state is
described.
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A new impulse was given to the discussion about the EPR paradox when Bohm
presented a new and simpler version of it. While EPR were discussing momentum
and position of two particles, Bohm looked at another degree of freedom — the spin.
Two spin 1/2 particles (qubits) are the simplest quantum system to look at, because
a von Neumann measurement will give four possible outcomes. The door was open
for Bell to formulate his theorem, following EPR’s program, that allowed even for
experimental tests on whether quantum mechanics is fundamental or an extension of
the theory by the so called local hidden variables. In this chapter I will introduce the
concept of qubit and entanglement in two-particle systems. The EPR paradox will
be presented in the Bohm’s formulation. Furthermore Bell’s theorem in it’s most
common form, namely the CHSH! inequality, will be presented and its violation by
quantum mechanics demonstrated.

2.1 Qubits

Let us first consider an experiment on a classical system with two possible results,
for example the tossing of a coin. The two possible outcomes of the measurement
are head or tail. The coin is in no other state than head or tail. As a quantum
mechanical counterpart one could choose the spin of an electron, a two level atom or
the polarization of a photon, which will be our choice. A polarization measurement
on a photon can be realized by sending it at a polarizing beam splitter with detectors
in each output arm. If a detector, mounted in the transmitted (reflected) output,
clicks, horizontal (vertical) polarization is measured. The corresponding states are
denoted by |H) and |V). In contrast to the classical example of the coin these are

LClauser, Horne, Shimony and Holt published the inequlity in [12]



2 Entanglement of two Particles

Figure 2.1: The Bloch sphere representation of the Hilbert space of one qubit. The circle
with the bold line at the border denotes equally weighted sums of |H) and |V)

not the only possible states the photon can have. The superposition principle allows
any superposition of the two basis vectors as a state as well. The most general state
is [¢) = p|H) + ve'?|V) with real parameters p, v and +. In other words, the basis
vectors |H) and |V') span a two dimensional Hilbert space H?. It can be represented
by a vector on the so-called Bloch sphere (see fig. 2.1). Such a two-state system is
called ’qubit’.

Similar to the state preparation, the projection measurement can be performed
in any other basis. One might choose the basis:

+\ i 6ia
o) = \/5(|H>+ V) (2.1)

— 1 io
o) = ﬁ(w) — V), (2.2)
where (at|la®) = (a7 |a") =1 (2.3)

and (af|a”) =0. (2.4)

This is a set of basis vectors described by the parameter . It lies on the great circle
of the Bloch-sphere in fig. 2.12. In a consistent way with the definitions made in
A.1 the vectors |at) and |a~) are eigenvectors of the observable

0o = cos(a)oy + sin(a)oy (2.5)

2The circle in the plane orthogonal to the line |H) — |V)



2.2 Entanglement

The probabilities to find a certain measurement outcome in the basis {|a™),|a™)}
is given by the projection of the state, for example |L) = %(|H> +i|V)), onto the
basis:

PHa) = (@ |L)P = 5(1 +ie™) (1 —ie™) = £(1 ~sin(a),  (26)
P (a) = [{a”|L)* = %(1 —ie"®)(1 +ie™") = %(1 + sin(a)). (2.7)

The expectation value of the measurement in this basis, i.e. the expectation value
of o, is then:
(0o) = E*(a) = Pl (a) — P (a) = —sin(a). (2.8)

Let us move forward to two-particle systems composed by the particle ”A” and
"B”. Classically, the system might be composed of two coins. There are four
possible outcomes of the measurement (head-head, head-tail, tail-head, tail-tail).
They correspond to the four possible states of the classical system.

In a system consisting of two qubits there are also four possible outcomes of
a measurement (e.g. |HH),|HV), |VH) and |[VV)). But in quantum mechanic
the superposition principle allows a two qubit system to be in any superposition
of the states corresponding to these outcomes. They are vectors in the Hilbert
space H? ® H?. The joint probabilities for measurement results on two qubits are
calculated in the same way as for one qubit — by a projection onto a basis. A possible
choice as basis is a combination of the tensor products ') ® |a’) for i, je{+, —}.
In this basis the joint probability for a two qubit state [¢)) to be found in |a}) and
lag) is:

P!, = (% @ (Dl = [(akafhe) (2.9)
where Pff,,Pip 4 and PY_ are defined in the same way. The measurement outcomes
of two particles (A and B) can be correlated. Therefore, we need to define a two
particle correlation function:

<UaAUaB> :CAB:P$+_P_|1{)__P1/)++P1Z}_ (210)

If the measurements on both qubits always give the same result, then Cyg = 1; they
are perfectly correlated. If C'yg = —1 they are said to be perfectly anticorrelated
and for C4p = 0 there is no correlation at all.

2.2 Entanglement

An interesting concept arises if one studies general forms of two-qubit systems.
There are pure states that cannot be written as tensor product of states of two
single particles,

[12) # |b1) @ |91), (2.11)
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where [1)5) is a two-qubit state and |¢;) and |@]) are one-qubit states. |is) is called
an entangled state. An example : [¢p7) = %(|HV> — |VH)).

Let us calculate the correlations for this measurement results of this state in
the basis {|a™), |a™)}. First we need the four joint probabilities for getting results
+ and - in joint measurements. For ++4 we get

- 1 . . . .
PY. (a4, 0p) = 5(6’”‘3 — ') (e — ') =1 — cos(ap — aa). (2.12)
P,_ P, and P,_ are calculated in the same way. Out of these probabilities one
obtains with equation 2.10:

C(aa,ap) = —cos(aa — ap) (2.13)

The two qubits are anticorrelated for any choice of angles where a4y = ag. It is
worth mentioning that this is true for the whole Bloch sphere. Only maximally
entangled states behave like this. Starting with [¢)~) one can define a basis for two
qubit states out of four maximally entangled states, the so-called Bell-basis.

5 = 5 (HH) +VV) (2.14)
67 = 5(HH) = [VV) (2.15)
) = (V) + V) (2.16)
) = S5 (HV) = V) (2.17)

Why are these states called mazimally entangled? A reason for this is explained in
the context of the next section.

2.3 The EPR-Paradox and Bell’'s Theorem

Now we arrive to the point to follow Einstein, Podolsky and Rosen and ask: ”Can
Quantum Mechanical description of the Physical Reality be Considered Complete?”
. In [6] their answer is "NO”. They presented an argument based on perfect an-
ticorrelations in momentum and position of two locally separated particles. Bohm
offered a new formulation of the gedankenexperiment involving the state [1)~) con-
sidered before. The heart of the argument, though, was still the same. I want to
present only a short outline of the argument here (there’s a big amount of literature
- to mention just some: [13, 14]) Befor the argument is presented it is necessary
to present a term, that EPR introduced: element of reality. In their opinion any
complete physical theory must have a counterpart to each element of reality, where
their definition of elements of reality is [6]:

10



2.3 The EPR-Paradox and Bell’s Theorem

"If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical
quantity.”

If two particles are in the state [¢)7) and far apart, then assuming locality the
measurement on one particle cannot influence the outcome of the measurement on
the other one. The perfect anticorrelation allows the prediction of the measurement
outcome on one qubit for any basis by a previous measurement on the other qubit.
Thus, the polarizations (or spin components — but our notation is the one used for
the polarizaton of photons) of each photon are elements of reality. But there is no
quantum state, that defines all polarizations of one photon. Under the plausible
assumption that a complete theory includes a counterpart of any element of reality,
quantum mechanics cannot be considered complete.

A seemingly promissing way to complete quantum mechanics was the assump-
tion of local hidden variables (LHV) to be intrinsic to the particle. These variables
include the information on the possible outcome a measurement performed and they
are local — this means, that the outcome of a measurement is predefined while the
particle do not interact anymore. Because they are hidden we are not able use them
for any prediction. Bell was the first to make an experimental approach feasible.
He derived an experimentally testable inequality from the statistical predictions of
LHV-theories, that was violated by the predictions of quantum mechanics. I rather
refer to [7] for the original argument and the deduction of the inequality and rather
introduce the most common form of a Bell inequality, the so called CHSH inequality
[12]:

B(A,a, B,b) := |C(A, B) — C(A,b) — C(a, B) — C(a,b)| < 2, (2.18)

where A and a denote two different bases for the measurements on one particle and
B and b the bases for the other one. To give a reason, why the upper bound is 2 if
the values of the measurement outcome are predefined, there is a simple argument
described in [15]. The result of a single measurement on the first qubit in basis
A shall be denoted by v,. The results on the other possible measurements shall
be denoted analogous by v,,vp,v,. The possible results are either +1 or —1. If a
state like 1)~ is chosen, then the result of a measurement in any basis is an element
of reality and already predefined. Therefore one can calculate the combination of
correlations for an individual system as:

VAUB — VAU — VagUB — VgUp =

vp(va — v) — Up(va — v,) = £2

There is no other possible result for each individual pair than +2 or —2. For many
measurements on many pair the average of these outcomes cannot exceed a modulus
of two.

11
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An example will show that [¢)~) violates the inequality for the right choice of
angles. The correlation function for |¢)~) was given in 2.13, and for the CHSH
inequality one finds:

B(0°, 45°,90°, 135°) =
| c0s(90°) — cos(135°) — cos(45°) — cos(90°)] = 2v/2 > 2

Quantum mechanics predicts, that the state |¢)~) violates the CHSH inequality! If
there is a source, producing this state (and indeed there is more than one), then
the LHV-assumption is experimentally testable. All of the four Bell-states violate
the CHSH-inequality maximally for the right choice of angle settings. This is one
reason, that justifies the denomination maximally entangled.

In principle one can imagine violations of the inequality up to B = 4, because
the correlations have values between 1 and —1. It is an interesting question, what
is the maximal value B can reach for quantum states. Cirel’son showed that the
maximal possible violation by a two qubit quantum state is 2v/2 [16]. This bound
is called Cirel’son’s bound. An easier, but less general proof is given in [15].

This chapter introduced the concepts of interest for this work: Entanglement
as a consequence of the superposition principle for two (or many) particle systems.
Two qubits, as a simple quantum mechanical system suitable for an analysis of
entanglement. The EPR-paradox was presented, which was the basis for Bell’s
analysis of the statistical predictions of local hidden variable theories. A widely
used tool for the test of Bell’s theorem, the CHSH inequality, was introduced and
it’s violation demonstrated by means of one of the four Bell-states. The maximum
of this violation is given by Cirel’son’s bound. We will continue with systems of
three entangled qubits.

12
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Contents
3.1 Classification . . . . . . . .. ... 14
3.2 Properties of the W-state . . . . . . ... ........ 16
321 Basics .. ... 19
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3.3.5 Résumé on Bell Theorems . . . . . . .. .. .. ... 28

In this chapter T will look at systems of three particles. After looking at two
qubit states, this is the logic step to a more complicated system. Indeed we are faced
with a bigger variety of possible states. The most commonly used classification of
three-qubit entanglement was first done by Diir et al.[9]. In the first section of this
chapter I will introduce the ideas and results of this classification. For an analysis
it is necessary to find out what the experimental needs are to proof the observation
of the W-state!. For that purpose the W-state will be compared to the GHZ-state?
and a mixed state pg. Furthermore the Bell-Theorems for three qubits will be
presented. I will describe the ideas that are especially interesting in respect to the
W-state. The violation of Bell’s theorem is one of the ingredients for quantum
communication schemes like quantum cryptography and quantum key distribution.
The chapter will be closed by a short overview of possible applications for the W-
state.

W like Wolfgang Diir
%for Greenberger, Horne and Zeilinger

13



3 The W-State

Claire

Alice Bob

o
5t

Figure 3.1: The three parties get each one particle. They are allowed to do any local
operation, but they can only communicate classically with each other, respectivly share
no entanglement except for the entanglement in the state itself.

3.1 Classification

Classifications are usually based on giving each particle of the state to spatially
separated parties (in our case Alice, Bob and Claire), which are able to do any kind
of Local Operations (LO). This includes any operation like measurements and local
unitary transformations on their particles and to Communicate Classically with each
other (CC). Two states (]1)) and |¢)) belong to the same equivalence class if under
LOCC (local operations and classical communication) Alice, Bob and Claire can
transform |¢) into |¢) and vice versa,

) = (). (3.1)

There are various further rules one can assign to get different classifications [17].
The classification of mixed states has been given in [18]. The case of interest here
is the one used by Diir et al. [9] deal with pure states of three particles. Similar to
LOCC, each party gets one particle but one does not require that the transformation
between the states works every time. It is only necessary that there is at least
some probability for Alice, Bob and Claire to transform the state 1 to ¢. These
transformations are called stochastic local operations and classical communication
(SLOCCQ)

The classification leads to six inequivalent classes of three-partite states. They
are depicted in fig. 3.2. If a state that belongs to one class is transformable into a

14



3.1 Classification

Figure 3.2: The hierarchy of the six inequivalent classes of pure three-partite states. The
notation A-BC means that A is a seperable from the system BC, which is entangled (and
equally for the other combinations)

state of another class (using SLOCC), then this is indicated by an arrow. One can
recognize a hierarchy with the GHZ- and the W-class on the highest level, because
no other state can be transformed into a state belonging to these classes. I will give
a representative of each of the classes to illustrate the expressions in figure 3.2:

A-B-C : The class of product states being not entangled at all.

[V)aBc=IH)®|H)®|H) (3:2)

A-BC : The class of states where two of the qubits are entangled and the third one
(here A) is separable from them. (The classes B-AC and C-AB are defined
accordingly).

[¥)a-pc = [H) ® [yT) = %Im ® (H)@[V)+[V)®|H)) (3:3)

GHZ One class showing real three-partite entanglement. One cannot separate any
of the qubits. The representative is the GHZ state[19].

1

\/5(|H>®|H>®|H>+|V>®|V>®|V>) (3-4)

|¢>GHZ -

W The other class showing real three-partite entanglement, though different to the
one of the GHZ-class. It is represented by the W-state:

1

Ww = —=(H) e [H)o|V)+|H)e V) [H)+ V) [H)®|H)) (3.5)

B

3

15



3 The W-State

To complete this presentation of classifications, I give a coarse reasoning why
|GHZ) and |W) belong to different classes. For mathematical detail I refer once
more to [9]. Under local unitary (LU)? transformations a state can be transformed
into different representatives. Each is expressed as a linear combination of a certain
number of product terms, e.g. the GHZ-state by |HHH) and |[VV'V). There is a
minimal number of product terms for the representation of each state (e.g. one for
product states and two for the states like ¢4 p¢). Let us call the minimal number
Miote. One can show that

e SLOCC-transformations do not change M. for any given state.
e My, =3 for the W-state and Mgpz=2 for the GHZ-state.

Therefore one cannot transform the W-state to the GHZ-state and vice versa by
SLOCC.

3.2 Properties of the W-state

While it is not that surprising that there are differences in the states if none, one
or two qubits are separable it is quite astonishing, that there are two classes of real
three-partite entanglement! So it will be interesting to see that this is not only a
mathematical construction, but that there are measurable differences.

As Diir etal. [9] showed, the W-class states are of measure zero in the set of
three qubit states. In other words, the typical three qubit state is a GHZ-class state.
In fact, one can always find a GHZ-class state that is almost behaving exactly the
same way as any W-class state chosen. For that reason we cannot show experimental
differences of the W-state to any arbitrary GHZ-class state, but only to the GHZ-
state itself. This way one can learn about the two different kinds of entanglement
that can be found when three qubit states are considered.

One is facing another problem, if mixed states are taken into account. A source
producing various pure states with certain probabilities (a statistical mixture) can
show similar properties as some pure state. It is hard to proof that the experimental
data obtained cannot be reproduced this way. In fact, we are not able to prepare
a completely pure state (we come to conditions for that in our experiment in 4).
Criteria are necessary that allow for tests on the observation of the state. There
has been some criticism along these lines on former experiments on the observation
of the three photon GHZ-state [20]. It was argued that the experimental data did
not proof the observation of the state. In this work I will also not be able to do
so. These arguments, however, are not taking into account the source, and I hope
that with the knowledge about how the state is prepared there will be few doubt
left that the properties observed are the properties of a W-state.

3LU are part of SLOCC. As one can show LU are equivalent to invertible LOCC

16



3.2 Properties of the W-state

However it is interesting and instructive to compare our state to another one that
could theoretically fool us. As it is a mixed state, one needs to use the density
matrix formalism:

Prool = = (Pa—Bc + pPB—Ac + po—aB) (3.6)

1
3 (
Where p4_pc denotes the density matrix of the pure state ¢4 pc introduced in
the classification above. One can think of a source that emits always an entangled
photon pair into two modes and an extra photon in the third mode. The three
photons, however, are randomly distributed to the modes.

There is an interesting way to express the W-state, which motivates the choice
of the state pror:

—(WA Be) + [UB_ac) + |c_aB)) = ( (|H>|H>|V>+|H>|V>|H>)

<] -
-3~
= Sl

+
Sl

(H)H) V) +[V)[H)|H))

(|H>|V>|H> + V) H)|H)))

Sl -

~(2IHHV) +2|HV H) + 2|V HH))

Y-l

= (|HHV) |HVH) + |VHH))
>

I
=5

where N = % is a normalization constant. This means that the W-state is a
superposition of the three representatives of the bipartite entangled classes shown
in the classification. It is composed out of the same states as the pgo, but they are
in a superposition in the W-state, whereas they are only classically mixed in pgyo;-
In the next section we will see that the two states are giving the same experimental
results when all of the photons are measured in the z-basis (which means projection
onto the basis vectors |[H) and |V); seeA.1).

Loosely spoken one could say that the entanglement of the W-state is mainly
intrinsic to the entanglement of the pairs. This is a big difference to the GHZ-state
and will be reflected in some properties introduced in this chapter.

17



3 The W-State

H\V-state
., B Dioo B GHZ-state

zzz-basis
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Figure 3.3: On the left the probability distributions in a product basis for the W-state,

and pgo respectivliey are shown. On the right, the corresponding distributions for the
GHZ-state are depicted.
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3.2 Properties of the W-state

3.2.1 Basics

I will use the simplest form of the W-state with equal phases for all three terms.
The setup as it is described later on is also producing this state.

X mnvy ¢ \mve) + vER) (3.7)
V3

Note that the state is invariant under permutation of the particles. This is also true
for the GHZ-state and pro. In fig. 3.3 (page 18) the three states are compared for
different basis measurements.

In 3.3.a) it becomes obvious, that it is not enough to look only at the zzz-
measurement, (i.e. a measurement of each particle in the z-basis A.1) to proof the
observation of a W-state. pg,, shows the same probability distribution. The W-state
shows the characteristic three terms, the GHZ-state two.

In 3.3.b) it is shown, that one still finds the same statistics for pro and the
W-state in a zzx-basis measurement.

In 3.3.c), a zxx measurement shows the first differences between pg, and the
W-state. The W-state has no contributions from |H +—) and |H —+). There is also
an interesting feature compared to the GHZ-state. One can at least predict that two
terms are missing in case of the W-state, while no prediction can be made in case of
the GHZ-state. The opposite is the case in d). In an xxx-basis measurement one can
observe every outcome for the W-state (though the contributions are not weighted
equally) but not for the GHZ-state. pr,o shows a slightly different weighting of the
terms, but in an experiment the difference would be hard to see.

W) =

3.2.2 Measurement of one qubit

Another interesting question is in which state the remaining qubits are left after a
readout of a measurement in the third qubit. The following table shows the results
for the W- and the GHZ-state:

1
EW‘/)

A<V|W>:\[(|Hv )+ [VH)) \[W A(H|GHZ>:%|HH>

A(VIW) = |HH> A(VIGHZ) =

In the case of the GHZ-state, we have the full information about the remaining two
qubits. They are not entangled anymore. This is different for the W-state. Only
in 1/3 of the measurements in the z-basis, the result is V and one knows about
the other two qubits. If instead the result of the measurement is H, then the other
two qubits are maximally entangled. This is a quite distinct difference and gives a
handy criterion for an experimental test, because one can analyze the data for the
violation of a CHSH-inequality when one particle is in the H-state. We find here an
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3 The W-State

zz-Basis xx-Basis
125
C=-100%]

z,=H -
L 25
L o

++ += =+ -

HH HV VH W

Zy=

B ._._._.
Y
++ = =+ —_

HH HV WVH W

Figure 3.4: The theoretical predictions for the state remaining after one of the particles
(e.g. a) in the W-state has the measurement outcome z, e{H,V}. For z,=H there are
perfect correlations for both, the zz- and the xx- measurement. In case z,=V there is no
correlation between the remaining paricles in the xx-basis measurement at all.

ambivalence: The stronger the correlations are in a state, the lower is its robustness.
To show the entanglement in the remaining particles one can take advantage of the
fact, that maximally entangled states show full correlations not only for one, but for
some bases. We have seen above, that the state of the remaining particles after one
is measured in H is [¢") = (J5|HV) + [V H)).The basis transformations are A.1:

) = s+ V)
1
V2
Then |1)*) can be written in the xx-basis as:
1
V2

In the xx-basis the state shows perfect correlation. When considering only pure
states, this confirms entanglement. The theoretical predictions for a measurement
of this kind is shown in fig. 3.2.2 A more general description of correlations will be
subject to the next section.

=) = —=(H =V

7)) = —(++)—1--) (3-8)

3.2.3 Correlation functions

Correlation functions in two qubits systems have been introduced in chapter 1. A
state is projected onto a general basis which consists of tensor products of basis
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3.2 Properties of the W-state

vectors |a; ), ;) (where i numbers the particles). For the correlation the sum of
the product terms is weighted with the product of the eigenvalues corresponding to
the basis vectors. One can write this in compact form:

C¥ (o, an,05) = > Y kikoks|(kr, o' [ @ (ka, 082 © (k3,05 [is)], (3.9)
k

1=+1 ko==41 ka==+1

where k;e{+1,—1}. In (2.1) the basis is defined. It is a set of basis vectors on
the great circle of Bloch-sphere. The correlation function for the W-state and the
GHZ-state are:

CW(Ozl,OZQ,Oég) =0 (310)

CM% (a9, 03) = cos(ay + ag + as) (3.11)

For any choice of basis vectors on the great circle of Bloch-sphere the correlation for
the W-state is 0, while the GHZ-state shows full correlations. An alternative choice
is the equator. We choose as the bases vectors (def. of L/V in A.1):

1

\/E(IL> +ke'|R))

|0}) =

The correlation function is calculated similarly:

CV (61,60, 05) = = cos(61+ ba+ )

—%(cos(d)l + ¢g — ¢3) + cos(p1 — P2 + ¢d3)

+cos(—p1 + do + ¢3))
and for the GHZ-state

CGHZ(¢1; P2, p3) = cos(pr + P2 + ¢3).

For the GHZ-state we find the same correlations for the equator as for the great-
circle. On the equator the W-state shows also correlations. The correlation functions
for ¢9 = ¢35 = 0 reduce to a cosine for both states.

We can define a theoretical visibility for the correlation function as the “ampli-
tude” of the cosine function. For the GHZ-state when two angles are fixed we still
get a visibility of one in the dependence of the correlation on the third angle. If two
angles are fixed in the case of the W-state there can also be lower visibilities.

3.2.4 Loss of one particle

With respect to applications it is interesting to find out what happens if one particle
is lost, because in any experiment with entangled states particle loss happens. It
may be useful if there is still entanglement left in the remaining particles.
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3 The W-State

Mathematically, this corresponds to tracing out one qubit. In the case of the
W-state the result is:

oY = Tra(p") = S| HH)(HH + [0 (0"

and again, we find a state that is entangled. Though, this time, the state doesn’t
violate the CHSH-inequality anymore. In contrast for the GHZ-state one obtains:

o417 = Tra(pO7%) = S(HH)HH| + [VV)(VV])

For the GHZ-state there is no entanglement anymore. This feature, that the W-
state is still having entanglement if one of the photons is lost, is called entanglement
robustness. It can be shown that the W-state offers the highest amount of residual
entanglement of all three-qubit states [9]. This means, that no other state leaves (in
average for loss of any of the three qubits) that much entanglement in the remaining
qubits. What happens with pg if one particle is lost?

Pt = Tra(p™) = é(QIHHMHHH |HV)(HV |+ |VH)(VH|+2[7) (7)) (3.12)
Again there is entanglement remaining, but now only in % of the cases. It is worth
looking at the correlations here: The information we get about the other two qubits
is just as little as in the case of the W-state: Only in & of the cases we know about
the polarization of both left photons. But only in g of the cases the remaining
photons are really entangled.

In the experimental part of this work the state will be analyzed for entanglement
robustness. Usually entanglement is proofed by the violation of Bell-inequalities. As
this is not possible for that state, another way has to be found. A secure way to
prove its entanglement would be a state tomography [21], and to calculate the Peres-
Horodecki criterion [22] out of the deduced density matrix. This criterion provides
necessary and sufficient criterion for entanglement.
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3.3 W and the Bell Theorem

3.3 W and the Bell Theorem

3.3.1 W'’s elements of reality

Before certain formulations of Bell’s Theorem shall be introduced, which are vio-
lated by the W-state, shall be introduced, it will be interesting to ask what are the
elements of reality in the W-state [23]. To remember, another time EPR’s definition:

"If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical
quantity.”

In the two-particle case elements of reality were identified via the perfect (anti-
Jcorrelations, that allow the prediction of a measurement outcome of one particle
by a readout of a measurement of the other one. We will have to find out how to
obtain information on one of the particles in the three-partite case. For the W-state
a first step is to look at its representation in the z-basis:

1

V3

If a measurement is performed on two particles in this z-basis, then the outcome of
a measurement in z-direction on the third one is perfectly known. If both of the
particles are measured to as |H), then the third one is |V') and if they are |H) and
|V}, the third one is |H). For this reason the outcome of a measurement in the
z-basis performed on any of the particles in the W-state is an element of reality.
The second step is to look at the W-state in the zxx-basis*.

W) (|(HHV) + |HVH) + |VHH)) (3.13)

W) =55 (V+H)+[V+)+[V—+)+[V--)
12/H ++) — 2|H — —))
=55 (M@ (+H)+|+=)+ =+ +]--)

R2H)e(++)-1--)) (3.14)

If the outcome of a measurement on the first particle is H, we can be sure that the
outcome of the x-basis measurements on the other two will produce equal results.
For this reason an x-basis measurement on the second one gives us full knowledge
about the result of an x-basis measurement on the third one without disturbing it
in any way.

But what if we had measured V (a situation that occurs in every third mea-
surement)? Then we do not gain any knowledge about possible outcomes of x-basis

4Though the first particle is chosen to be measured in z-direction, any argument given for one
particle is valid for all, because the W-state is invariant under permutation of the particles.
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3 The W-State

measurements on the remaining to particles. The situation is not as simple as in the
two-particle case (2.3), because we cannot be sure whether we get the information
about the third particle, but there is a chance to get it. One can, however, continue
arguing that it is sure that a measurement on the second instead of the first par-
ticle would have had the outcome H, as can be seen by looking at 3.13. But this
just means that in principle we could have been lucky enough to choose the other
particle for the z-Basis measurement and apply the same argument as before. The
conclusion is that the result of an x-basis measurement on a particle of the W-state
therefore shold be predefined and thus an element of reality.

But isn’t there a problem? If we want to follow the definition of ”elements
of reality”, we should be able to predict the outcome of a measurement in the x-
direction on one of the particles. But this is not possible, because we may have bad
luck and measure V on the first particle — there will be no chance to find out, what
was the value for the x-basis. Thus we cannot know the x-basis value of the third
particle.

On the other hand we are arguing from an EPR point of view. This allows us
to be sure (as seen in the first step) that the z-basis outcomes are predefined. Then
it is just bad luck if the particle we choose for the first measurement is the particle
with outcome V. Our luck, however, should not have any impact on the question
whether the x-basis measurement outcome of the third particle is an element of
reality. It is important that we could have known its value in principle to consider
it as a predefined property.

3.3.2 The Mermin Inequality

The CHSH-inequality allows for a test of local realism in the case of two entangled
particles as we have seen before. It is an interesting question what possibilities
open up for tests on states of more than two qubits. Greenberger, Horne and
Zeilinger described in 1989 [19] a gedankenexperiment for a four-qubit GHZ state
that allowed for a beautiful new test of local realism. The same argument for a
three qubit GHZ-state is presented by Mermin in [24]. Their state allows one to
directly apply EPR’s argument. By the outcomes of a certain set of measurements
(in an ideal experiment) one can conclude the outcome of another one with certainty.
But a quantum mechanical calculation of the state predicts that this outcome can
never occur. This refutation is "no longer statistical and can be accomplished in a
single run” [25]. Yet, for a real experiment it is necessary to formulate an inequality,
because one does not get perfect correlations. Mermin derived the inequality for
n spin 1/2 particles [25] and proofed its maximum violation by the GHZ-states. I
want to present here the three particle case. The inequality reads

-2<C(A,B,C)—-C(A,b,c) —Cla,B,c) — (a,b,C) < 2 (3.15)

24



3.3 W and the Bell Theorem

where A, a denote two different bases for the first and B,b and C, ¢ two bases for
the second and third particle. The maximum violation of this inequality is 4 and is
reached by the GHZ-state for A= B=C = z and a = b = ¢ = x. This is a much
stronger violation, than the one for the CHSH inequality in the two qubit case. The
W-state violates the Mermin inequality for A = B =C = z and a = b = ¢ = x with
a value of 3. The maximum violation is 3.046 for a more complicated base setting.

3.3.3 A Bell-Theorem without inequalities

In the previous subsection it was demonstrated that the W-state violates the Mermin
Inequality, and it’s behavior cannot be reproduced by local realistic theories. Still,
if one thinks of the GHZ-argument where the test of local realism becomes a test
of all or nothing (at least in theory), one longs for a plain logic argument in the
case of the W-state, too. Unfortunately a GHZ-type proof of Bell’s theorem is not
possible for the W-state [15]. Yet, also the W state admits a proof of Bell’s theorem
without inequalities as Addn Cabello demonstrated in [23]. The argument shall be
presented here in the notation used throughout this work.

In quantum mechanics it makes no sense to assign any predefined values to
the particles in the W-state. One should keep in mind that the argument is given
from the local realistic point of view where we can assign predefined values to the
measurement outcomes in the z- and x- basis, because they are elements of reality.
Then it is possible to select two particles by their polarization (usually they are
numbered by their positions a,b and ¢). The particles i and j are defined to be the
ones that have H as measurement result in a z-basis measurement . Then the last
particle (k) must have the outcome V. For the W-state it is certain that there are
two particles of that kind:

3.14 was used to proof, if the condition that one qubit has a predefined z-value of
H, than the outcomes of the other two qubits in a x-basis measurement have to be
equal:

What are the x-values of the qubits i and j?

Because z; = H by definition, one can be sure that x; = x; because of (3.14).
For the same reason also x; = x;, is true. Then we can be sure that z; = z; = x;.
This is predicted by local realism, because it allowed us to assume predefined values.
What does the quantum mechanical calculation tell us? In the xxx-basis, the state
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3 The W-State

gets the following form :
W) = Bl+++) —|++=) = [+—+) — | —++) +
H = =)+ = o)+ =) =3 - =)

The probability to measure x; =x; =x;, (which was predicted to be one) is then:
3
Py (v, =x; = x1) = 2% (3/V24)* = 1 3/4 (3.19)

Conclusion: If the state is measured in the xxx-basis one has a 1/4 chance to find the
x-basis measurement outcomes for the particles as not equal — but this is predicted by
local realistic theories. Thus, there is a contradiction between quantum mechanics
and local realism in that point.

This is not as beautiful as the GHZ-argument, where one gets an all or nothing
test in the last measurement. The difference here is that one has to wait for some
time, but as soon as such an event happens the EPR-argument can be refuted.

This result is not yet in an experimentally testable form. By simple algebraic
calculations one can deduce an experimentally testable inequality:

—1§ P(zi:H/\zj:H)—P(a:k%xj/\zi:H)
—P(xpy #x;Nzj=H)—P(r;=x;=x,) <0

If the values of the W-state are plugged into the inequality, the result is:

—PW(a:k#xi/\zj:H)—PW(:ri:xj:xk) =0.25>0

It is worthwhile mentioning that, though the argument fits so nicely to the W-state,
the maximum violation provided by the W-state is 0.25, which is the maximum
value.

3.3.4 The W-state Violating Cirel’son’s Bound

In the first chapter the CHSH-inequality was introduced. And it was argued, that
Cirel’son’s bound tells us, that two-particle quantum states reach a maximum value
of 2v/2. How should two particles out of the W-state violate that bound? Again,
one has to recall, that the Bell-inequalities are bounds deduced from a LHV point
of view. Let us analyze what happens, when looking for the violation of the CHSH-
inequality for two out of the three particles in the W-state. The argument presented
here was once more given by Adén Cabello [15]

First, the CHSH-inequality shall be written in a more general form, as the one
introduced in the first chapter:

|C(A, B) —mxC(A,b) —nxC(a,B) —mnxC(a,b)| <2
where m,ne{+1,—1}
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3.3 W and the Bell Theorem

These are four CHSH-inequalities for the four possibilities of {m,n}. The basis
chosen now is: A, B =z and a,b = .

The first step is to define, just like in the previous subsection, ¢ and j to label the
particles with a z-basis value of H (2; = H,z; = H, 2, = V). The second step is to
select one of the four CHSH-inequalities for each possible value of xj. (Remember
that the state |4+) with measurement result (+) has the eigenvalue 7, = +1 and
analogous for |—) — see A.1). The inequality is selected by defining:

m:i=n:= —Ij (3.20)

This is possible because xj, is an element of reality and has a predefined value. The
CHSH-inequalities (for both values of zy) are:

|C (21, 2j) + &g * C(25, x5) + T % C(w, 25) — Cxg, )| < 2 (3.21)

Now the different correlations shall be calculated. In [15] one can find different
arguments. By definition z; = Z; = +1 (or different z; = 2, = H):

Cl(z,zj) = +1 (3.22)

It was already previously argued that if one particle is measured in H, then the other
two have the same results in an x-basis measurement because in the zxx-basis the
W-state is reads 3.14:

1

|W>=ﬁ Mel+H+l+-)+-H+[--)+
H2H) @ (|++) == —))
Then,
C(z;, %) = C(+1, ;) = C(+1,Ty) = Ty, (3.23)
and
C(7;,Z;) = C(Z;, +1) = C(Zy,, +1) = Ty. (3.24)

Finally, from the above, one also learns that if the outcome of a measurement on
one particle is V, then the outcomes of measurements in the x-basis on the other
two particles is not correlated at all:

C(zi,z;) =0 (3.25)
Now it is finally possible to insert the correlations into the inequality:

C(zi, 25) + Tn * C2i, 75) + Ty % C(w4, 25) — *+C (w4, 25)| =
1477 +7; +0/ =3 >2V2~2.83
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3 The W-State

The two particles chosen do not only violate the value of 2 given by local realism -
they even violate Cirel’son’s bound! In [26], the analysis is done for the GHZ state,
which reaches the maximally possible violation of four. The way in which the qubits
are labeled, though, is much more natural in the case of the W-state. Again, it is not
possible to test this inequality directly, because one cannot know beforehand, which
particle is which. If the correlations are expressed in terms of joint probabilities one
can deduce an experimentally testable inequality [26]. This inequality is the same
as deduced from the argument of Bell’s theorem without inequality discussed in the
previous subsection (3.20).

—1§ P(Zi:H/\Zj:H)—P(l“k?éSUj/\Zi:H)
—P(rpy #x;Nzj=H)—P(r;=x;=x;) <0

For the violation of Cirel’son’s bound it is not enough to exceed 0. Cirel’son’s bound
for this inequality is:
V2 -1

2

~ 0.207 (3.26)

3.3.5 Résumé on Bell Theorems

The last subsections have introduced some of the possible tests of local realism that
can be done using the W-state. All of them have been introduced for z- and x-basis
measurements. A natural question is whether it is possible to a find higher violation
for other bases.

The answer is yes and the measurement bases one has to choose are the same for
both of the inequalities. A possible choice (expressed in terms ot the corresponding
operator as in [23] — see in the appendix A.1 and section 2.1) is:

M := A= B =C = co0s(0.628)0, — sin(0.628)c,
m:=a=">b=c=cos(l.154)0, — sin(1.154)0,

Expressed in basis vectors, as they have been defined before:

1 7 m
[k, M) = —=(11) + ke 02T R))

1 .
|k, m) = EUL) + ke R)).

The following table shows the necessary and the theoretically achievable violations
in all of the three cases:

| W: {x,2} | W: {M,m} | GHZ | LHV | Cirel’son | max. value

Mermin 3 3.046 4 2 4
CHSH 3 3.046 4 2 2v/2 4
CH-type 0.25 0.262 0.5 0 0.207 5
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Marek Zukowski and his group solved the optimization by using the amoeba
numerical procedure [27]. The violation they found corresponds to the one given by
Adan Cabello in [23]. He also found this violation analytically for the angles being
distributed in one circle on the Bloch-sphere [28]

This chapter was concerned with the entanglement in three qubit systems.
There are two classes of entangled states that earn special interest, because they
show entanglement between all of the three particles: The GHZ- and the W-class.
A comparison of the W-state with the mixed state pg in different bases showed the
necessity to carefully check whether a state is what it seems to be. The features, that
make the entanglement in the W-state special have been shown: On the one hand,
it’s correlations are less strong than the ones in the GHZ-state. The correlation
functions proof this. On the other hand the entanglement in the W-state is more
robust against a measurement, respectively the loss of one particle. The weaker
correlations of the W-state are also reflected by the fact that it does not violate
Bell inequalities as strongly as the GHZ-state does. Some Bell theorems that are of
special interest for an analysis of the W-state have been shown: The widely used
Mermin inequality, a Bell theorem without inequalities for the W-state, and a two
particle inequality for two out of the three particles in the W-state which violates
the upper bound for the violation by two qubit states.

The still open question how to realize the W-state in an experiment and how
to analyze it’s properties will be the subject of the next chapter.
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This chapter intends to introduce all the theoretical concepts necessary for the
preparation of the W-state. As a start, the source of the photons shall be described.
It is the process of spontaneous parametric down conversion. This method turned
out to be reliable in many experiments where two or (more recently) four entangled
photons had to be prepared. The next step will be a description of the scheme for
the W-state preparation. It shall serve to explain the idea fundamental to the latter
realization. A calculation of the setup shall give the basis for minor but helpful
changes to the scheme described first. There is not only one way to prepare the W-
state. A short overview of possible setups and an extension to W-states for higher
numbers of photons shall complete the chapter.

4.1 Spontaneous Parametric Down Conversion

This section will give a short introduction to spontaneous parametric down conver-
sion (SPDC). SPDC has been demonstrated to be an efficient source of entangled
photons and was also applied in the present experiment. Let us start the explanation
by considering the expansion of the electrical polarization in a crystal:

= eolxij - By + X0 BB + ) (4.1)
Usually this dependence can be approximated linearly, because XE?,)C (and alls higher
(1)

ij -

terms) is small compared to x;,”. But for strong fields and high optical nonlinearities,
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. 2) . ..
one can observe nonlinear processes where XE].,)C is not negligible anymore. In these

nonlinear processes the interaction of many waves becomes possible.

Suppose three waves are passing the crystal. A strong one, that will be called
the pump beam and two weaker ones, that are usually called idler and signal beam.
One observes, that the signal and the idler wave get amplified while the pump wave
gets weaker if energy and momentum are conserved:

vy = Vs + (4.2)

kp = ks + k; (4.3)

The conditions look just like conservation of energy and momentum. That effect is
called parametric down conversion and is well understood in classical electrodynam-
ics.

The process can also happen spontaneously, that means, a signal and an idler
photon are generated out of the pump beam only. This is called spontaneous para-
metric down conversion (SPDC) and cannot be described by classical electrody-
namics. It can be interpreted as the decay of a pump beam photon. Photons with
the same wavelength, are emitted onto cones. That can be deduced directly from
the conditions 4.2 and 4.3. Furthermore, two simultaneously created photons are

strongly correlated in energy and momentum. One distinguishes between two types
of SPDC:

Type I: The pump beam is extraordinary polarized inside a uniaxial crystal, while
the signal and idler photon are ordinary polarized.

Type Il: The pump beam is also extraordinary polarized, but one of the created
photons is ordinary and the other one extraordinary polarized. This is re-
markable, because except for their correlation in energy and momentum they
are now strongly correlated in their polarization [29].

extraordinary

BBO crystal

ordinary

Figure 4.1: The emission cones of the degenerate type II down conversion emission
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4.1 Spontaneous Parametric Down Conversion

If the conversion photons have the same wavelength, the process is called de-
generate down conversion. In our experiment degenerate type [T SPDC was applied.
When the optical axis of the crystal is tilted the emission cones for the photons are
shifted with respect to each others (fig. 4.1). This is due to the different indices of
refraction for the orthogonal polarizations in the crystal. In the figure 4.1 degener-
ate type II down conversion is shown. The upper cone shows the possible emission
directions for the extraordinary polarized photon and the lower one the emission
of the corresponding ordinary polarized one. On the crossing lines, however, it is
not possible to decide to what cone a photon belongs, and therefore one cannot
predict the polarization. It is only sure that if one photon is emitted in one of the
crossing modes, then the other photon is emitted in the other crossing and that the
polarizations of the photons are orthogonal. For this reason one obtains polarization
entangled photons if the modes in the crossing of the two cones are selected. The
entangled state obtained is [29]:

1
V2

If a pulsed pump beam is applied, then the emissions can only take place during
the short period when the pulses pass the crystal. The general form from which the
case of multiple emission events can be deduced is[29]:

") = —=(|HV) + [VH)) (4.4)

Z - e~ielalbl+alib) ) (4.5)

where 7 is a normalization constant, ¢ is proportional to the pump intensity and
aL,bTH,aTH and b}L, represent the photon creation operators. By expansion we obtain
[30]:
2
c
Z - (clal,bl, + albl) + g(aLb}{ +al,bl)?+..)]0) (4.6)

The first term gives the state |1)*) shown before. The second term is responsible for
the four-photon emission we are interested in. It’s expansion

al, bl + al, b7 + 2al,btal, b, (4.7)
results in the following superposition of photon number states:
|2H,,2Vy) + |2V, 2Hy) + |1H,, 1V, 1Hy, 1V4) (4.8)
One finds with equal probability each:
e Two H-polarized photons in a and two V-polarized ones in b
e Two V-polarized photons in b and two H-polarized ones in a

e H- and a V-polarized photon in both arms, a and b
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It is remarkable that the weighting for all the terms in equation (4.8) is equal. This is
not what one would expect from an emission of two pairs, where the probability for
emission of different photons into one mode would be 1/2. Equal amplitudes occur
due to an interference effect. If the two pump photon decays were distinguishable
by time of arrival of the photon pairs at the detectors, then the equation (4.8) would
not be valid. How is this indistinguishability achieved? In the experiment presented
here ultrashort pulses (130 fs) pump the down conversion crystal. The coherence
time (the temporal uncertainty) of the photons collected from the down conversin
process — given by bandwidth of the applied filter — is much larger than the time
uncertainty of creation of the two photons. Thus one cannot distinguish by time of
arrival, to which pair the photon belonged.

4.2 Two-Photon Interference

In fig. 4.2 the W-setup is shown. The following section will describe it in more
detail. T just want fo focus on the fact, that two photons are overlapped on BS;,
which causes an interference effect, which plays an important role for the design of
the setup.

Two modes m and n are overlapped on a symmetric beam splitter. The trans-
formation performed on a symmetric beam splitter can be described as [31]:

ml — (m' 4 -n) (4.9)

1

V2
1

nt = —(n'+i-mh) (4.10)

V2

where m! and n' are creation operators in mode m and n.
Two distinguishable photons are incident on the beam splitter in both input
modes:

1
mh-nt — é(mf+i-n*)(n'*+i-mﬁ) (4.11)
(4.12)

where the primed operators express the distinguishability. In a photon number state
description this becomes:

%(mT +ionf) @t 4 mt)0) = %(i|mm'> ) — [y +ilnn’)) (4.13)

There is 1/2 probability for the photons to split up and 1/4 to find both in the
mode m, respectively mode n. If they are indistinguishable we obtain out from
(4.11) (neglecting the global phase):

- (mt* + 1) (4.14)

Sl
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4.2 Two-Photon Interference

and as photon number state:
1
V2

The photons never split up. The probability to detect two photons in one mode
is 1/2 for each mode and therefore double compared to the case of distinguishable
photons.

What means indistinguishability? There are certain factors, that could make the
photons distinguishable. The time of arrival at the detector (temporal or longitudi-
nal coherence), the mode if the overlap is not perfect (transversal spatial coherence),
their color (spectral coherence) and their polarization.

It is not possible to temporally distinguish two photons if they are detected
within their coherence time. The coherence time of a photon corresponds to a
longitudinal extension of the photon (the spacelike uncertainty). For a gaussian
wave packet this is just the inverse of the bandwidth. If the delay between the
photons is varied, then one can observe the transition between distinguishability and
indistinguishabability in a dip in the coincidence rate between the output modes for
zero delay. The effect was experimentally verified by Hong, Ou and Mandel (HOM-
dip)[32]. They found the following relation for the coincidence count rate behind a
recombining beam splitter.

(mt* +n)|0) = —=(12)m + [2)n) (4.15)

9RT :
N, =C(T? + R? <1 — me—@wmz) (4.16)

where C'is the coincidence count rate far outside the dip, R and T are reflection and
transmission coefficient of the beam splitter, Aw is the bandwidth of the detected
photons and 07 * ¢ is the path length differnce.
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fs
UV-pulses

2160| @ouapIiouloD

—

Figure 4.2: Experimental setup for the demonstration of the entangled three-photon
W-state where C, F, M, BS, adj. BS and PBS stand for compensator cristal, filter,
mirror, non-polarizing beam splitter, adjusting beam splitter with a reflection coefficient
Ry = 2Ry and polarizing beam splitter. Three polarization analyzers with wave plates
set to (6;(i = a, b, c)) are used.
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4.3 The Principle

In this section the scheme of the W-state preparation setup ( 4.2) will be explained.
It should make plausible, how the setup allows to observe the W-state out of four
photons created in the process of spontaneous type II parametric down conversion
( 4.1). The four photons enter the setup at I,, and I,,, after the polarization of the
photons in mode by is transformed (H—V and V—H). The modes are split up either
via the polarizing beam splitter PBS;,;, (with output modes t and ag) or the adj. BS
(with output modes b’y and c¢). The modes ay and b’y are overlapped at BS; and
only one of the output modes is used for the state preparation. This mode is split
by BSy which has the output modes b and c¢. The W-state is then found in a,b and
c.

The main idea behind the preparation of three-photon entanglement out of
SPDC is the so-called post-selection. It was already used in previous experiments,
like in the observation of the three-photon entangled GHZ-state [10]. Post-selection
means, that only events where a photon is detected in each of the four output modes
of the state preparation are selected for the analysis. This ensures that processes,
where only one pair of photons is created by the source are not counted. Further,
only those cases where the photons in ag split up at PBS;j; and the ones in mode by
at adj. BS contribute, since otherwise there is no way to distribute the four photons
to the modes t,a,b and c.

The photon that enters mode t is vertically polarized (V-polarized) due to
PBS;ig and doesn’t contribute to the W-state, but serves as a trigger for the post
selection. Its companion in by has, due to the transformation in the fiber the same
polarization (V-polarization).

The one in the transmitted output mode of PBSy,, is H-polarized and its companion
in by as well. All together there are three photons left to prepare the state: Two
are H-polarized and one is V-polarized — this is what we need for the W-state.

The photons split up randomly at the adj. BS (the probabilities are given by
the splitting ratio). The one in the reflected output is then overlapped with the
photon from ay. The events were both photons are distributed randomly to b and
c via the symmetric beam splitter BS, are selected. Thus, the V-polarized photon
of mode by can go to any of the modes a,b and ¢ and the remaining H-polarized
photons are in the other modes. Fig. 4.3 shows all the possibilities and illustrates,
that all three terms contributing to the W-state are realized.

The question arises, why the intermediate step of combining the photons at
BS; and splitting them up at BS, is chosen instead of using the two outputs of BS;.
To obtain a superposition of the three terms |[HHV),|HVH) and [VHH) the photons
have to overlap such, that there is no way to distingiuish between the possibilities
(except for a polarization measurement). If the photons at BS; are equally polarized
(resp. if H is refleced at the adj. BS) then the situation of section 4.2 occurs and
they do not split up. Thus, no coincidence of H-polarized photons in the outputs of
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4 Design of the Setup

[HHV> [HVHD> IVHHD

Figure 4.3: The three possibilities for the distribution of the photons with their proba-
bilities

BS; will occur.

To obtain the W-state it is not only necessary to prepare a state with |[HHV),|HVH)
and |VHH) in superposition, the terms should also have equal amplitudes (i.e. the
same probability to be measured). This is achieved by adjusting the adjustable beam
splitter to the right splitting ratio. The general condition on the adj.BS is derived in
the next section. Fig. 4.3 shows the probabilities for the events at the beam splitters
that lead to the different contributions for the choice 1/3 transmission(reflection)
and 2/3 reflection(transmission) for vertical (horizontal) polarization at the adj.BS.

4.4 The Calculation

In the last section it became clear that the setup should produce the W-state out
of the four-photon state obtained in the second order process of the spontaneous
parametric down conversion. A calculation shall complete the analysis of the setup
and will show that one is not restricted to an adj. beam splitter with the 1:2 split-
ting ratio for both polarizations, but that the splitting condition can be somewhat
relaxed.

We start with the state produced in the second order process of the down
conversion (4.7):

]_ 2 2 2 2
= gt T gt ot ot gt
Ve (%H bo, + agy, by, + 2 ag,, by, g, bov> ‘0>
with the rotation of the polarization in the fiber we obtain:

]_ 2 2 2 2
e (b bl + aly bl + 2l B, al, B, ) [0).
The polarizing beam splitter acts as:

T T
T It
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4.4 The Calculation

and transforms the state to

1 >
g
2—\/§ (aOHb b +Z2CL0V aOH ) ‘0>
We obtain (when only terms where the photons are split are taken into account)

.2
12—\/§ (aov bgH Qg V) ‘0>

The adj. beam splitter transformations are:
b, — (tH ch4iry bQH)
bt — (b +irotf,)

with r#+t?=1 (ie{H, V}) where ty, ty, ry, 7y are the amplitudes for transmission /reflection
for horizontal and vertical polarization. The resulting state is:

—ag aj, (tH chy + iry bgH> <tv cl +iry bgv) |0).

V3
We neglect contributions of all the terms with 2 photons in one mode and obtain
-1
ﬁ (ter aUTV a(’gH bOH CV +tury aUv aOH OV CH) ‘0>
The next optical component is the overlap beam splitter BS; (splitting ratio 50:50):

1 .
aBH - (a(T)H +zbgH)

V2

We obtain as operator
2‘\} ag. [ tory ( al, + z'bgH) (z al, + bgH> o+
+ tHrV<a$H +1 bgH) (z agv + bgv) CL ] =
—1

L2 L2
= 55 agv[ tyTy (zagH —|—zb$H) cl +

On

+ tyry (zaT ab, + ap b — b ab +idh b} ) }
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and select the cases with creation of both photons in ag:

.1t

(tVrHi aBQH c{, + turyi aBH agv CL)
2/3

The transformation at BS, is:

|

1 .
ClOH — ﬁ (Q/L‘i‘lbL)

T

1 )
GOV — ﬁ <a{;+lb]{/)

and results in the state

Mia@[ ter(aL +z‘bL) (aL +ibL) o, +
et (al+ o) (ob o+ 104 ) |10}
The contributions where the photons are found in four different modes are:

4\1[ a\]; [ 2tyry aL bL c]\L, +

+ tHrv< b, el + al, bl CH) } ‘0>
This is expressed as a photon number state:

2ty ry an aly bly b + tyry afb al b, el + tyry o al, bl CH> 0) =

1
m(

\v> ® (2tyry \HHV>abc + tHrV\HVH>ab0 + tHrV\VHH>abC)

trlg

The condltlon to obtain equal weight for the three contributions is:

yry = tyry

tury

—9 (4.17)

tyTy

This is the condition for the adjustable beam splitter.
The other information, that we obtain from this calculation is the probability to
get a contribution to the W-state out of a second order process, because we started
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4.5 Other Ways of Preparation

from a normalized state. The probalitity is given by the norm of the resulting state.
For simplicity we assume t, = ry = \/g and ty =ry = \/g and obtain a probability
of:

PW) = — (4.18)

4.5 Other Ways of Preparation

Very recently, several publications on the subject of W-state preparation appeared.
Schemes to produce a W-state of three and four atoms can be found in [33] and [34].
However, one has to face less experimental difficulties in the experimental realization
with photons. In [35] Zou et al. present a scheme with linear optical elements to
produce a polarization entangled three- or four photon W-state. But the scheme
appears rather complicated. During the measurements on our setup, reference [36]
appeared suggesting a scheme how to produce a path entangled W-state with one
photon and further a multi photon polarization entangled W-state using fiber tritters
and single photon sources. Zou et al. presented another scheme applying two EPR-
sources the day after. However, the best of these recent publications on the W-state,
was presented by Yamamoto, etal. [37]. In their scheme, the W-state is prepared
using collinear spontaneous parametric down conversion as source. Their proposal
offers a big advantage in comparison to the one that is subject of this thesis. No
overlap is needed. Furthermore, the efficiency of the setup is slightly better. While
in the presented setup 1/36 of the four-photon processes leads to a W-state (with
the possibility to obtain 2/36 when feeding also the photons from output b’y of BS;
into the free input of BSy) in their setup the ratio is 3/36. A realization of this setup
is planned.

This chapter was concerned with the theoretical background of the W-state
preparation. The source of entangled photons was described and the state that
is the starting point of the setup was presented. A short description of the idea
behind the scheme was shown and the probability for observing the W-state was
calculated. Further, the calculation showed a necessary condition on the adjustable
beam splitter to prepare the state with the right (equal) coefficients.
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The goal of this chapter is to describe the experimental details for the realization
of the W-state. The crucial parts of the setup are the adjustable beam splitter and
the overlap of two photons on a symmetric beam splitter. Thus they play a central
role in the design of the setup.

The setup will be described in the first section. A description of the source of
entangled photons, the main components and the detection of the photons follows.
Preliminary tests on the fiber coupling and the adjustable beam splitter are included
there. The next section describes the stepwise construction of the setup. The overlap
at BS; (fig. 5.1) allows the observation of a second order interference effect, the
so-called Hong-Ou-Mandel dip (HOM-dip), which was also explained in 4.2. The
chapter will finish with the analysis of the HOM-dip, which was not only an exciting
result, but also an important tool for the alignment.
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Figure 5.1: Overview of the experimental setup used for the preparation of the Three-
Photon Entangled W-state
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5.1 Overview

5.1 Overview

Let us start with the description of the setup as it can be seen in fig. 5.1. A UV-
pumped down conversion crystal generates entangled photons in the modes ay, and
bo. They pass filters (F) and are coupled into single mode fibers. Both of the fibers
are equipped with polarization controllers.

The photons from emission mode ay are coupled out of the fiber at I,,. The
fiber coupler is mounted onto a translation stage, that is moveable in direction of the
photon path. In PBSy,, vertically polarized photons get reflected and, after passing
another mirror, detected in Dy,,. Horizontally polarized photons are transmitted
and overlapped with photons that were created in by.

The mode of the photons emitted in by are coupled out at I,,. The coupling
system allows transversal alignment of the coupling position and the direction. The
uncoupled mode by goes then on to the adj.BS. The transmission mode of the
adjustable beam splitter (adj. BS) is called ¢ and is one of the three modes, where
the W-state is detected in. The reflected photons mode shall be denoted by bj. With
two mirrors this mode is overlapped with ag at the overlap beam splitter BS;. The
two mirrors allow the alignment of the overlap without the need to change the coupler
Iy,, which would result in a different splitting ratio of the adj. BS (5.2.2.3). Only the
output of BS; where aq is transmitted is used for the W-state preparation. In the
other output mode the photons are detected in Dg;, This detector just serves for the
measurement of the Hong-Ou-Mandel dip (5.4), which is important for the alignment
(5.5). In principle, this output could serve to prepare the W-state as well. Fig. 5.1
differs from the real setup in the setting of Dg;, to keep a better overview. In the real
setup all of the detectors have the equal distances of 55 cm to I,,, respectively Iy,
and therefore also to the crystal. This guarantees coincident detections' and equal
coupling efficiencies. The mode aq is then split up at BS,, where the transmission
mode is called b and the reflection mode a. The photons in the experimental data
will be denominated in the order a, b, c. In b the photons are analyzed directly, while
in a a A\/2 plate, that is not part of the state analysis, is necessary to compensate
the phase shift of 7 between horizontal and vertical polarization, that occurs in the
reflected output of BS,. In the modes, where the W-state is prepared (a, b and c)
the polarization has to be analyzed. This is done by a A\/4 and a \/2 waveplate
followed by a PBS. D detects horizontal polarization in the transmitted output and
DY vertical polarization in the reflected output (where i€ {a,b,c}). For the detection
the photons are coupled into fibers connected to pigtailed avalanche photo diodes.
A coincidence logic (not shown in fig 5.1) registers simultaneously the signals from
the eight detectors (there are 256 possible events). This data is then stored by a
computer.

'With a coincidence window of the coincidence logic of 10 ns this is not crucial, however.
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5.2 Description

5.2.1 The Source

As explained in the theory part spontaneous parametric down conversion (SPDC) is
the source of choice for the creation of pairs of entangled photons. In the experiment
pairs are generated by a short pulse of ultraviolet light. With a lower probability
even two pairs are created from a single pump pulse. With increasing pump power
this probability is raised. Since there is no source directly generating intense UV-
pulses, an intermediate step is chosen. A Ti:Saphire-laser emits pulses of 130 fs
pulse width at 780nm with a repetition rate of 82 MHz. Via second harmonic
generation in a LBO-crystal (LiBO,) UV-pulses at a wavelength of 390 nm and of
about 800 mW average power are generated. These UV-pulses pump a 2mm thick
BBO-crystal (fBaB0y) to create polarization entangled photon pairs emitted under
an angle of 3° with respect to the pump beam direction. Long-pass filters serve to
cut off scattered light from the UV-pulses. In addition, interference filters of 3nm
bandwidth determine the spectral width of the down conversion photons. Finally
the photons are coupled into single mode fibers.

5.2.2 Optical Components
5.2.2.1 The Fibers

The single mode fibers define the modes of the collected photons and guide them
to the W-setup. The birefringence of the fibers change the polarization of the
photons. Polarization controllers compensate this transformation. While the fiber
in mode ay is set to output the initial polarization, the one defining mode by turns
the polarization by 90°. The reason for this is, that it enables us to measure the
HOM-dip (5.4), which is an important help for the alignment, as explained later on
(5.4). The photons are detected in fiber pigtailed avalanche photo diodes.

It is convenient to have the possibility of using single mode fibers to select
well-defined modes and guarantee spatial coherence. Thus, it was important to find
out, whether the coupling efficiency to single mode fibers is worse, than to multi
mode fibers. To avoid loss when coupling to these fibers also the dependence of the
coupling efficiency on the distance between the couplers was studied.

A 785nm laser diode was coupled into a single mode fiber (F3224?), as it is
used in the latter setup to collect the SPDC emission. After a certain distance
varying between 18 cm and 100 cm the light from that fiber was coupled into a
multi mode fiber (AS S50/125Y%) and also into different single mode fibers (F32242
and F4224?). For each distance the focus was aligned and the coupling efficiency
tested. The outcoupling of the first single mode fiber was done with a homemade

2Thorlabs
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construction, (5.2.2.2), as it will be used in I,,, offering the possibility to adjust the
focal length. In fig. 5.2 the dependence on the distance of the couplers for all three
fibers is shown. The coupling efficiency into the multi mode fiber is ~ 88%, for the

0,90
O Single Mode F4224
1 ® Single Mode F3224
0,88 = Multi Mode % % % %

0,86

W 11 H

I

0,80 y T y T T T T T T T
0 20 40 60 80 100

Distance (Coupler to Coupler) [cm]

Coupled intensity in %

Figure 5.2: Dependence of the coupling efficiency for different single mode fibers (F3224,
F4224) and a multi mode fiber (AS S50/125Y) the distance

single mode fiber F3224 ~ 85%, and for F4224 ~ 83%. So, the losses when using
a single mode fiber are not much higher than that of the multi mode fiber. The
adjustment, though, is much more difficult. A second result is, that the efficiency
of the coupling is dropping for between 30 cm and 18 cm distance of ~ 2% for all
the fibers. This is due to the fact, that the beam has to be focused such, that the
diameter gets bigger than the lens for the incoupling. For longer distances coupling
to the multi mode fiber doesn’t show a dependence on the distance for the tested
range. The single mode fibers, however, loose both ~ 3% in coupling efficiency
between 30 cm and 100 cm. The errors have been deduced from a test of how much
the coupling efficiencies vary when the fiber is unplugged, plugged and aligned again.

5.2.2.2 Fiber Couplers

In the experimental setup three different kinds of fiber couplers are used. The cou-
pling of the down conversion emission is realized with a coupling system®. The
coupling system allows the accurate alignment to the mode and a transversal posi-
tioning of the coupler-lens system. The distance of the same lens (f=11 mm) to the
coupler is very accurately adjustable to allow an alignment of the beam focus. For

3Thorlabs
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this reason the system was also used at I,3. The accurate alignment of the focus is
necessary for a good overlap at BS;.

In I,0 a homemade fiber coupler is used. In this coupler the distance between
the lens and the fiber connector can be adjusted by screwing the lens into or out
of a cylinder where the fiber is connected to. With this coupler the focus can be
adjusted by screwing a lens (f=11mm) into a cylinder with a fiber connector fixed
to the other end. This allows an adjustment of the focusing, which is, however, not
possible without misalignment of the beam direction. Therefore this coupler was
only used in ay and not changed anymore, after alignment.

For the coupling of the photons (respectively the alignment beam) it was enough
to use a simpler version of fiber coupler, were the lens (f=11 mm) has a fixed distance
to the fiber connector.

5.2.2.3 The Adjustable Beam Splitter

The photons in mode by are split up at an adjustable beam splitter (adj. BS). It
is adjustable in the sense, that one obtains different splitting ratios for different
angles of incidence. These splitting ratios are also polarization dependent. As a
preparation for the further setup the dependence on the angle of incidence was
tested. As equation 4.18 shows, it is not necessary to really have a beam splitter
transmitting |H) with probability 2/3 and |V) with probability 1/3 . This is just
the most plausible case when looking at the schematic setup. Yet the splitting ratio
rather needs to fulfill the condition deduced in the calculation of the setup (4.18,
page 41):

Transmissiong - Reflectiony, _ <75H : 7’V>2 —4 (5.1)

Reflectiony - Transmissiony rg -ty

where ty,ty,ry, ry are the amplitudes for transmission and reflection of H- and
V-polarization as used in 4.4. As we will see, this condition (in contrast to the
1/3:2/3 splitting ratio) can be fulfilled exactly by the adj.BS, which was bought
from EKSMA with the following specifications:

material BK7

size 25,4 X 3mm
flatness A/10 @ 633 nm
Ty /Ty 66/33(+3) %

angle of incidence 45°

To find the angle where the beam splitter provides the ratio of (5.1) and to test
for possible birefringence the beam splitter was characterized for angles of incidence
between 40° and 55° (fig. 5.3).

A \/4 and a \/2 wave plate prepare the polarization out of a laser diode running
on 785nm before a fiber to be horizontal at the output of the fiber. Another PBS
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Figure 5.3: Setup to characterize the adj. beam splitter:

ensures the that the polarization is exactly horizontal. The next A-plates are meant

to prepare any polarization. The adj. beam splitter is mounted onto a rotation stage
with a 2° scale.

The first test was done by measuring the intensity of both output arms for
horizontally and vertically polarized beams.

Figure 5.4 shows the normalized transmission and reflection coefficients for both
H- and V-polarization (Ty, Ry and Ty, Ry) in dependence of the angle setting of
the adj. BS. The data was interpolated by a second order polynomial fit. Because
there is no angle, where Ty=Ry=1/3 (neither Tyv=Rg=2/3) the adj. BS doesn’t
allow to use this plausible solution ( 4.3) as setting. Fig. 5.5, however shows that
condition (5.1) is fulfilled for an angle of 46.1°. Around this angle the ratio varies
about 0.5 % per degree.

The second test analyzes the polarization behind the adj. BS (5.3) for unwanted
birefringence. In each output a A\/4 and a A\/2 waveplate transform the polarization
to vertical, which results in minimal transmission through the PBS. By backward
calculation the information about the polarization behind the adj. beam splitter is
obtained. The following table summarizes the results of the polarization analysis in

the reflected and transmitted output for different input polarization at the incident
angle of 46.1°:
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Polarization Vector Transmitted Reflected
0 1 0.999 0.999
0 0.044¢0:.0637 0.037¢0:257
0 0 0
vl ) G (1)
N % 0.814 0.566
% i 0_5816—i0.0107r i 0_8256+i0.0357r
NG 0.814 0.585
- _% i 0.581671'0.006'” — 0.8116+i0'0287r

The input polarization is shown in the first column with the corresponding vector
in the second one. In the third and fourth column the vectors represent the polar-
izations in the outputs. They are normalized and the multiplication with a global
phase makes the phases in the vector appear in the second component of the vec-
tors. The coefficients are close to the expected ones (given by rg =ty = % ~ 0.58

and ry =ty = % ~ 0.82). We are more interested in the phase shift between H-
and V-polarization. The vectors are written such, that the phases appearing in the
exponent are those, caused by birefringence. The error in the phase caused by the
setting of the wave plates (about 0.5° is the estimated insecurity) causes ~ +0.015
error in the relative phase between H and V. This results in an error of ~ 40.045 for
all of the three wave plates. When looking at the phases shown in the table above,
they are found to be inside the range of error. The error in the coefficients is about
~ £0.06. This means, that the birefringence of the adj. beam splitter is negligible
and does not need compensation.

5.2.2.4 Beam Splitters

The symmetric beam splitters* were tested in a similar setup as the adj. BS, to check
the splitting ratio and the absorption. In this test it was found, that it is possible
to vary the splitting ratio for vertical polarization, by a rotation around the vertical
axis. The effect on the horizontal polarization splitting was negligible and therefore
not to align. In the end the absorption was found to be ~ 1% and splitting ratio for

4Newport
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horizontal polarization of Ty:Ry ~ 51:49 could be achieved. The one for vertical
polarization can in principle be set to be fully symmetric.

The polarizing beam splitters® are known to reflect some unwanted horizontal
polarization, while they almost don’t transmit vertical polarization. By turning
the PBS around its vertical axis it is possible to decrease the error in the reflected
arm. On a screen one can observe a spot of the reflected beam for an incident
horizontal polarization. Because 780 nm wavelength is near infrared the spot not
visible. A CCD-camera was used to show the spot on a monitor. The PBS is
rotated to the position where the spot shows the least brightness. A test with PIN-
Diodes showed, that instead of ~ 1% (for alignment by back reflection) only ~ 0.2%
horizontally polarized light was found in the reflected arm. One could observe a
slight degradation in the transmitted output: the transmission of V-polarized light
increased from ~ 0% to ~ 0.2%. The PBS for the state analysis were aligned this
way. PBS;.ig is an important part of the state preparation. For this reason another
type of PBS® was used here offering an error < 0.1% in transmission and ~ 0.5% in
the reflected arm.

5.2.3 The detection

The single photon detectors are fiber pig tailed silicium avalanche photo diodes
(APD”). These multi mode fibers are connected to fiber couplers F220FC (5.2.2.2).
For the construction there was usually an additional single mode fiber between the
coupler and the multi mode fiber. For the detection of single photons the APD’s
are used in Geiger Mode. When an avalanche is triggered by a photon a current
starts to flow and is detected by a proper electronics. The diodes are quenched to
avoid damage. The detection of up to eight photons (that is 256 possible events) is
computes by a fast coincidence logic and stored by a computer.

5.3 Construction

This section describes the stepwise construction of the W-state preparation setup.
An alignment beam is necessary for the first few steps of the procedure. Thus, a
part of the pulsed light from the Ti:Sa-laser was coupled to a symmetric fiber beam
splitter. To cause no misalignment when plugging and unplugging, the fibers in
modes ag and by were assembled out of two two meters parts with one part fixed to
the couplers I, or Ijg. They could be connected to the fiber beam splitter for the
construction and afterwards to the fibers from the down conversion source.

5Laseroptik
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5.3 Construction

5.3.1 The First Path

The crucial part of the experiment is the interference of the two photons at beam
splitter BS;. Therefore the modes ay and by have to overlap (spatial coherence) and
the difference in the path lengths has to be zero (temporal coherence). To control
the delay in one arm the fiber coupler /,, is mounted onto a translation stage moving
in the direction of ay. There are two important conditions on the outcoupling at
ag: Firstly, the mode of the beam needs to be independent of the position of the
translation stage, so that the overlap stays the same when the translation stage
is moving. Secondly, the coupling efficiency from I,, to the detectors needs to be
optimized and also to be independent from the position of the translation stage.

So the direction of the beam was aligned to be parallel to the movement of the
translation stage and a fiber coupler was set in a distance of 55 cm from I, (this will
be the distance to the detectors in the final setup) to check the alignment and the
coupling efficiency. The focus of the beam was adjusted with the homemade coupler
described before to optimize the coupling efficiency to the fiber. The dependence of
the coupled intensity from the movement of the translation stage was tested. This is
also a very accurate test for the stability of the mode, because slight changes already
result in a deterioration of the coupling efficiency to the single mode fiber. After the
adjustment no further realignment was necessary. The measurement in fig. 5.9 was
done after the overlap was aligned and shows the coupled intensity to a single mode
fiber. Over the range of 20 mm smooth variations of the coupled intensity of about
8 % were found. This doesn’t affect the measurements, because they are performed
in ranges of the order of magnitude of the region where the pulses interfere (or the
photons later on), which is few hundred micrometers. The variation of 8 %, however,
happens over a region of 10 mmcan. It can be attributed to the imperfections of the
translation stage.

Figure 5.6: The optical components mounted and aligned after step 1
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5 The State Preparation

Now the mode is fixed and the beam splitters can be mounted. Their alignment
is described in 5.2.2.4. Finally the detector D is aligned to the beam, with a single
mode fiber at the coupler.

5.3.2 The Second Path

The fiber coupler Iy is set to be parallel to the one in aq (see fig. 5.7). When Iy is
set up it is important that the position of zero delay is in the range of the translation
stage. Directly after Iy the adj. beam splitter is set up.

Out of the preliminary test on the adj. BS the angle of incidence needed for
the right splitting ratio is known. But it is not possible to set the angle with high
accuracy using the scale on the rotation stage. PIN-diodes in the output of the
adj. BS were used to check the splitting ratio for fine adjustment.

PBS
BS BS frig
f\f\f\H,Q 4 ! LA E Qg

Figure 5.7: The adj.BS has to be mounted in bg. It is aligned exactly to the right splitting
ratio.

5.3.3 The Overlap

To overlap mode bj, and ay at BS; we take advantage of the fact, that a single mode
fiber is already aligned to mode ay. The two mirrors M; and M, were set up and
aligned for an optimal coupling of bj to the same single mode fiber. This included
also an alignment of the focus in by. When a good coupling is accomplished, one
can be sure of a fairly well aligned overlap. The overlap was also checked by looking
at the other output mode of BS;.

Up to that point there was no interference, because there was no temporal
overlap of the pulses, yet. To find the position of zero delay, the translation stage
was moved in steps of 10 um to scan for interference. Strong fluctuations in the
intensity appear when pulses overlap. The single mode fiber in detector D] selects
a single mode and guarantees the spatial coherence. The polarizing beam splitter
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5.3 Construction

Figure 5.8: The mirrors to adjust the overlap were setup. There is only the state-
detection missing.

PBS, guarantees equal polarizations. To achieve a high contrast in the interference
pattern is necessary to take care, that equal intensities from ag and by are coupled
to the single mode fiber. The scan for the interference was controlled by a computer
driving the translation stage and saving the positions and the intensity read out
from a PIN diode that was connected to the fiber. Fig. 5.9 shows, that there are
indeed strong fluctuations around the position -5.5mm. The small graph in the
same figure shows a scan in the region of interference. Because it is not possible to
drive the motor in smaller steps than the wavelength, the data points seem to be
distributed randomly inside the envelope of the interference. The lowest intensity
is found at position -5.47 mm and is close to zero. Thus the contrast is almost 100
%. At this position the interference pattern was also checked in the other output
of BS;. No spatial interference fringes could be found, but slow fluctuations in the
intensity due to slight changes in the optical path length. This is another hint for a
good spatial overlap of the two modes.

5.3.4 Switching to Single Photons

The next step was to test the overlap with down conversion photons. First, however,
a detector in the other output of the beam splitter has to be mounted to allow
the detection of coincident events. Then the fibers between the W-setup and the
down conversion source were connected. The polarization controllers were adjusted.
To do this, a polarizer transmitting horizontal polarization is mounted before the
incoupling of the down conversion emission. The output in by is adjusted to vertical
and the one in ag to horizontal polarization.

A first successful scan of a HOM-dip with a coupling into single mode fibers is
shown in fig. 5.10. Before the analysis of this dip will follow in the next section I
want to finish the description of the construction. After the alignment of the overlap
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Figure 5.9: The scan for the position where the pulses overlap. The small picture shows
a scan over the range where the overlap was expected. One can also see, that the coupling
stays very stable over the whole range

has proofed to work with the single photons the polarization analysis for b and c,
the trigger detector Dy, and DY were mounted using the alignment beam.

5.4 The Hong-Ou-Mandel Dip

In the theory part it was already explained (4.2), that photons entering a symmetric
beam splitter always leave in the same output mode if they cannot be distinguished.
To achieve this it is necessary to guarantee spatial, temporal and spectral coherence.
To observe the second-order interference we are using the photon-pairs created by
the source.

Due to the transformation performed in fiber by the state |¢)")(emitted from the
down conversion — section 4.1) is transformed to:

1

V2

PBS;i; doesn’t allow for V-polarized photons to reach BS;. Thus, only H-polarized
photons overlap.

67) = = (HH) +[VV)) (5:2)
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5.4 The Hong-Ou-Mandel Dip

The Scan To observe the HOM-dip it is necessary to change the path length
of mode ay and register the coincidence rate between Dy, and Df (Naip). For
this experiment it is even more interesting to look at the coincidence rate between
detectors D’ and DI (Ny,,n,), because for the W-state the events where the photons
enter the same mode are selected. Ny, should show a bump for zero delay with
twice the count rates compared to the rates outside the region of interference. The
scan was controlled by a computer driving the translation stage and storing the
positions and count rates.

Evaluation To evaluate the scan we use a theoretical dependence of the coincidence
count rate from the path delay.

We assume our filters to have a gaussian spectral distribution. Therefore the
coherence time is given by the inverse of the bandwidth:

N 1
T Aw

Further we assume that BS; is perfectly symmetric. Out of the expression 4.16
(page 35) we can deduce:

AT (5.3)

Naip = C (1 . e—?—i) —C (1 - e—?—f) (5.4)

where At is the temporal and Az the spatial delay in the paths.

C' is the coincidence count rate outside the dip and ¢, and [, are the coherence
time and length.

Experimentally, the count rates for the coincidence dip do not go down to zero.
The visibility is defined as:

Vaip = (NJ2X — Njim) /N for the coincidence dip and
Vbump = (Nlr)?lar:r)l(p - Nlr)rllllrfrllp)/Ngllrrll‘lp for the bump

The fit function, that is used for the evaluation of the experimental data is then:

y(z) = C (1 - VeZ(mld;0)2)> (5.5)

C: The count rate in the classical regime
V: The visibility as defined before (with a negative sign for a bump)
xg: The position of the minimum (maximum) value of the dip (bump)

lgip: 20-width of the gaussian curve.
By comparison with the theoretical prediction (5.4) we conclude,
that the resulting coherence length is [, = ﬂldip.
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Figure 5.10: A HOM-dip measured with single mode fibers at the detectors for mode
selection.

Measurements Two interference scans are included in this analysis:
First, a coincidence dip, where both of the photons were coupled into single
mode fibers. It was observed directly after the overlap had been built up (fig. 5.10).
Second, a measurement, that is representing the measurements performed for
the alignment of the setup. The photons were coupled directly into the multi mode
fibers of the detectors. A coincidence bump (in the count rates N,z 45) and two
coincidence dips (in Nog_gip and Nyg_g:,) are included (5.11).

Single Mode Dip Fig. 5.10 shows a visibility Vi, = 90.3+ 0.7%. Theoretically it
is possible to reach a visibility of 100%. Single mode fibers select the mode, thus the
spatial coherence of the detected photons can be assumed to be perfect. Therefore
we can expect to have this visibility as an upper bound when aligning the spatial
overlap with the multi mode fibers. Another factor is the splitting ratio of the beam
splitter BS;. As one can see in 4.2 the visibility is reduced by a factor:

2RT
for T : R &~ 51 : 49, with the error found in the test of the beam splitter (5.2.2.4).
Therefore, this is also negligible. Further possible reasons are the spectral coherence,
and random coincidences (coincident detection of photons that were not created as
a pair). Errors occur, when a pair of photons is not equally polarized due to the

source or due to imperfections in the polarization alignment of the fibers.
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Figure 5.11: Coincidence dip (DX, Dg;,, full circles) and bump (DX, D, open circles).
The maximum interference occurs at zero delay between the photons arriving at BS;. The
risibilities are Vg;;, = 86.4 & 0.4 and Vi, = 93.3 £0.6

Multi Photon Dip The coincidence dip in fig. 5.11 shows a lower visibility than
the one into single mode fibers: Vg, = 86.4 £ 0.4 um. It is lower, because there is
no mode selection from the fibers. A non-perfect overlap of the modes is responsible
for the degradation of the visibility. The width of the gaussian fit is lgi, = 122+1um
and is in the same order of magnitude as the one shown before. The count rates
outside the dip are now around 3200 per 15 sec.

In figure (5.11) one can also see the coincidence bump between the detectors
DI and D} of the same measurement. The width is similar to the one of the dip
(Ibump = 119+ 7pum). The visibility, however is higher than the one observed in the
dip (Vbump = 93.3 £ 5.6 um).

5.5 Alighment

The count rates of four-fold coincidences in the experiment were to low to allow the
alignment of the setup directly by optimizing the signal of the W-state itself. It
was necessary to have criteria about the quality of the alignment out of the two-
fold coincidence count rates. This section will introduce the criteria that had to be
fulfilled to expect a good measurement and how they were applied for the alignment.
A mathematica program was used to extract the events of interest out of the 256
events that were stored for each time interval of the measurement. In short test
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5 The State Preparation

runs of a few seconds one could extract the necessary information.

Count Rates Before any further alignment the coupling to the detector fibers is
checked. Therefore the fiber couplers for the collection of the conversion photons are
adjusted for maximum single (S) and two-fold coincidence (Cs) count rates. This is
done online, with a computer program displaying the current count rates. In a test
run it is possible to check the ratio S:C,. If this ratio reaches values of about 0.04
(with 6000 Cy/h) one can expect the four-fold coincidence count rate to reach about
70 counts/h.

Polarization Alignment The polarization compensation in the fiber was already
aligned in the initial alignment of the setup. It turned out, however, that this align-
ment was not enough. Especially, a good adjustment at PBS,,, is crucial, because it
is responsible for the filtering of the four-photon processes with equal polarizations
in each mode. These contributions are together twice as probable as the ones that
properly contribute to the W-state. This can be seen in equation 4.8 on page 33.
In the first measurement of the W-state this led to high contributions of unwanted
terms. When looking at the two-fold coincidences one can see, that a wrong polar-
ization alignment in aq results in an increase of coincidence counts between detector
Df and Dyyig (Nem—irig) which should only detect V-polarized photons. This event
has high count rates and therefore is useful for an online alignment. To use it as
a reference, it is preferable to minimize at the ratio of Neg_iig t0 Nev_gig. After
optimization typical values were:

Nc —tri
_lcH-trig o 0p (5.7)

NcV—trig
This value enters linearly in the contribution of unwanted |HHH) events to the
W-state.

HOM-Dip A good aligned overlap is crucial for the preparation of the W-state.
Thus a new alignment of the overlap is necessary before each measurement. The
mirrors M; and My are adjusted, while the translation stage is at the position of
maximum interference. For a good overlap one tries to minimize the dip count rates.
To ensure, that bad coupling is not the reason for a decreasing count rate the bump
count rates are checked simultaneously. One problem in that procedure is, that
an adjustment of the mirrors slightly changes the path length in b;. Therefore it
was necessary to check the position again after some alignment and to iteratively
improve the visibility. It turned out, that changes in the position on the scale of
a few micrometers were occuring typically in the first times, when bigger changes
were necessary. For the fine alignment, no changes could be observed anymore, and
thus they were acceptable. The visibility typically reached values of about 85 % for
the dip and about 90 % for the bump.
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5.5 Alignment

The Adjustable Beam Splitter To test the splitting ratio of the adjustable beam
splitter it is necessary to block the mode ag. Then one can check the splitting ratio
by looking at the single count events in D, (S,), Dy (Sp) and D.. (S.). Usually there is
a difference in the numbers of H-polarized and V-polarized photons, but optimizing
for the ratio (eq. 4.18, p.41) these errors cancel. In the reflected output of the
adj. BS there is now BS; included. Assuming that BS; is perfectly symmetric one
needs to align the adj. BS to:

(Sa +Sy)- S

(ST + 5 57 (5:8)

This was achieved up to an error of 0.5%. It turned out, that once the adj. BS is
set, to the correct ratio, no realignment is necessary.
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6 Analysis of the State

In this chapter, I present the results, that have been obtained with the W-state setup
so far. But first, some remarks on how the data were analyzed will be necessary.
The first measurement presented is a zzz-basis measurement as this was also the first
measurement, performed with the setup. Then a xxx-basis measurement will follow
to test, whether the state is fulfilling the theoretical predictions also for another
basis.

6.1 Data Preparation

The count rates of interest are extracted from the 256 events registered by the coin-
cidence logic via a mathematica program. The relative efficiencies of the detectors
have been measured independently. The efficiency of a four-fold coincidence is cal-
culated by the product of the efficiencies of the participating detectors. Then the
raw count rates are corrected for the efficiencies. That are the data presented here.

Two sources of errors contribute to the overall error on the statistics shown:
Firstly, the fluctuations in the count rates due to Poissonian statistics (AN = v/N)
and secondly the errors in the measured efficiencies. In this analysis, I will consider
three fold coincidences, because the trigger photon doesn’t contribute to the state —
though all four-photons are necessary. events.

6.2 Population in xxx and zzz

6.2.1 zzz-Basis

The first measurements, performed after the built-up and alignment was ready, were
done in the zzz-Basis (A.1).

In a zzz-basis measurement, one analyzes every photon for {|H), |V')} and where
the wave-plates in every polarization analyzer (for a,b and c) are set to 0°.

The data shown here were collected over 10 hours. A total number of 1439
counts was found for the W-state. One clearly observes contributions from the W-
state product terms HHV, HVH and VHH. The background of other contributions
is 113 4 26 counts which corresponds to 7.9 £+ 1.9%
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Figure 6.1: Three-fold coincidences in 10 hours of a zzz-measurement, i.e. with horizon-
tal/vertical polarizer settings

Reasons for the background are compensation of the birefringence in the fiber
and non-perfect correlations in the state produced by the source. The main contribu-
tion, however, is the imperfect filtering of 4-photon events with equal polarizations
in each mode by PBS;;, resulting in the HHH and VVV term.

HHV | 294 + 2.1 %
HVH | 27.7 + 2.0%
VHH | 35.1 + 2.4%

The VHH contribution is higher than the other two. So the ratio between these
events still has to be improved.
The correlation of the measured state is calculated out of the joint probabilities:

Ciz = Punn — Panv — Pava + Pavv — Pyan + Pyvnv + Povn — Povy =
(Nuun — Nanv — Nava + Navv — Nyan + Nvav + Nyve — Nvvvy) /Nio

where Neyen 1S the number of counts for an event (e.g. HHH) and Ny is the overall
count rate. Theoretically the correlation should be equal to -100%, theoretically.
Experimentally we find:

C... = —88.9 + 3.4% (6.1)
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6.2 Population in xxx and zzz

6.2.2 xxx-Basis

A measurement in the xxx-basis is realized by setting the A/2 wave plates to 22.5° in
each arm (a,b and c). For this measurement the compensation plate in the reflected
output of BSy was missing which resulted in a detection of (+) (i.e. 45°-polarization)
for |—) and vice versa. This was corrected in the data by exchanging the role of
the outputs of PBS,,. The measurement was running over a time of 3h, with a total
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Figure 6.2: Three-fold coincidences in 3 hours of a xxx-measurement, i.e. with A/2 wave
plates at 22.5°

number of 279 counts.
According to the theory (3.2.1), we find the (+ + +) and (———) with the highest
probability:

+++ 315 £ 4.8%
—— 313+ 41%

They exceed the value of 0.25, that was predicted for pro, by 6%, this confirming
the observation of the W-state. Both terms contribute equally and are close to reach
the theoretical value of 3/8 = 37.5% with an error of 6%.

The terms with lower counting rate are all around ~ 5%, except for (—+—
), which contributes 10.3 + 2.5%. They are expected to have a probability of
1/24~ 4% and thus most of the contributions are very close to the prediction.

The W-state is invariant under permutation of particles. The data presented in
fig. 6.2 illustrates this. In theory it is expected to be zero, whereas the experimental
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6 Analysis of the State

value obtained by analogue calculation as in the zzz-measurement is:

Coe = 7.7 + 5.3%. (6.2)

6.3 Two-Photon Correlation

In this section, I will analyze the experimentally prepared state for the two-particle
entanglement contained therein, for example the state of the two remaining particles
is depending on the measurement outcome of the third particle in the z-basis.

As it was shown in section 2.1, maximally entangled states have full correla-
tions for measurements in more than one basis. Therefore the analysis was done
by measuring the remaining two particles in both the zz-basis (i.e. H/V polariza-
tion) and in the xx-basis (4/-45° polarization). This is a procedure often used to
test the entanglement, for example when the down conversion source was aligned.
Theoretically (see section 3.2) one expects the correlation C to be -100% for the
measurement in the zz-basis. In the xx-basis, the correlation is +100% (in theory)
only if the measurement outcome on the third particle was H, and 0% otherwise.

The test is performed for all three pairs of particles. Six measurements were
necessary: Firstly, a zzz-measurement (test for H/V-polarization in each arm), and
three measurements where only one particle is analyzed in z-direction: zxx, xzx and
xxz (the order of the bases correspond to the order of the arms a,b and ¢ where the
state is detected). The measurements were performed directly one after another, and
every measurement was running over 2 hours. In figure 6.3 the results are shown,
where z, = H means that the statistics of the photons in b and ¢ is conditioned on
the outcome H of the measurement on the photon in a. In the same notation is used
for the other possibilites. The 2-particle correlation is depicted for every graph.

Results: For z,—H we find a correlation of —81.2 £ 11.2% in the zz-basis for the
other two photons 74.1 £ 11.3% in the xx-basis. This is in principle high enough
to violate the CHSH-inequality 2.18. To violate a CHSH-inequality the correlations
must exceed 1/v/2 of the predicted value, that is -70.7% (+70.7 %) for the zz- (xx-
)basis measurement.

The background is due to imperfect correlations in the source and the polar-
ization alignment, which is responsible for other contributions from the four-photon
state.thatshould —in principle — be filtered — see also (6.2.1).

In contrary, the correlations for the zz-basis and xx-basis are 97.4 4+ 15.9%,
and —2.7 £ 14.7 % respectively. As expected, there is no entanglement left.

The lower background compared to the situation described prior (z,=H) can
be explained by the fact, that the unwanted four-photon terms (where all the four
photons are equally polarized) contribute less. The reason is, that the HH and the
VV contribution make the background in the first case. With the trigger detected
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6.3 Two-Photon Correlation

as V and the photon on which is conditioned in H, contributions like HHHV and
VVVH (without respect of the order) contribute to the background, and thus only
one photon of the "unwanted” terms has to be detected wrongly to make either
HH-, or VV- background. The background in the case z,=V needs contributions
like HVVV, VHVV and VVVV. They are created only by erroneous contributions
due to four V-polarized photons, but not from four H-polarized ones (as in the case
of z, =H).

Also for the measurement of the photons in a and ¢ conditioned on the outcome
H in b show predicted behaviour. The correlations are even stronger in the xx-
basis. We find —0.839 £ 10.7% and 0.837 £ 10.9% for the zz- and the xx-basis,
respectivley. Again the correlations are higher for z,=V, due to the reason explained
before. The measurement where the residual entanglement between the photons in
b and c is analyzed shows weaker correlations. Actually, the correlations in the
xx-basis measurement with C' = 55.7 & 11.6 % are to weak to expect a violation
the CHSH-inequality. The most probable reason is a phase shift between V and H
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Figure 6.3: Joint probabilities for the photons b and c in dependence of the measurement
outcome in a.

polarization in the overlap beam splitter, or in BS,. This effect has been observed
with beam splitters and the next step in the further development of the setup is the
compensation of this phase. The phase shift effect is stronger in the measurement
of the correlations between photons in a and b because both of them are effected
by the phaseshift, whereas in the other two measurements only one photon of them
passes these beamsplitters. In 5.2.2.3 the adj. beam splitter has been tested and
showed no sign of a phase shift.
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6 Analysis of the State

In comparison of the three measurements one can also see, that the contributions
of the terms in the zz-basis by conditioning on H are equally high for the last
measurement, but that HV contributes less in the first two cases. This is due to
the overlap at BS;. In an ideal case the HOM-dip and bump (see section 5.4, page
56) shows 100 % visibility and the HV and VH term have to contribute equally. In
the presented setup, the bump only has a visibility of ~ 90%, and therefore the
contributions where H-polarized photons are overlapped, which are the mentioned
contributions (HV in the zz-basis for z,,, = H), should be lower.

In summary, one can conclude that the state observed shows entanglement for
the remaining two qubits under the condition that the outcome of a measurement
on the third one is H, as it is predicted for the W-state. This entanglement is strong
enough to violate Bell-inequalities for two of the three possible pairs. The error on
the third one will most probably be compensated by a common procedure, namely
the compensation of a polarization-dependent phase shift due to the symmetric
beam splitters. This will be done with a quartz plate with appropriate orientation.
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Figure 6.4: Joint probabilities for the photons a and ¢ in dependence of the measurement
outcome in b.
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Figure 6.5: Joint probabilities for the photons a and b in dependence of the measurement
outcome in c.

6.4 Correlation Functions

A correlation function was measured for the bases in b fixed to x and in ¢ to z. This
measurement is performed by setting in a rotation stage with a half wave-plate,
rotating from 0° to 90°. The turn around 90° in the half wave-plate corresponds to
a basis-change from z to x to z in this arm. Thus, the correlation function shows
a whole periode. The measurement is performed in cicles, that is, every datapoint
(angle etting) is measured for (in our case) 15min and when all the setting were
reached, it starts from the beginning. This setting corresponds to the setting xxz
in the last section — this is the one where the correlations were much lower than
in the other arm. Therefore it is quite natural that we will find a visibility for the
correlation function that is much lower than one expects from theory, which is 66%.
The correlation function is shown in fig. 6.6. We find a visibility of 32.9 + 5.1 %,
which is half of the expected value. To confirm the absolute orientation of the half
wave plate, I introduce an additional offset angle A in the fitfunction in order to
evaluate the visibility, which was consistent with 0. Therefore the obtained value is
more accurate compared to the one in the previous section.

Again, one can use the measurement outcome of the photon in a as condition
and finds 2-particle correlation functions for the remaining particle. For the outcome
7,=V the predicted correlations are 0, because the remaining state is not entangled.
(The correlations in xx and xz are zero). We find a visibility of 9.6 £ 8.0 %. For the
outcome z,=H one theoretically finds a sine function with 100 % visibility, but for
the mentioned reson, that we are looking at the pair with the lowest correlations
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we get only 48,3 &+ 10,9 %, which is close to the value of 55,7 £+ 11,6 % found in
the analysis of last section and, just as in the three-particle correlation about half
of the expected visibility.
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Figure 6.6: The correlation function for rotating a half wave-plate in a, with fixed bases
X (+/-45°) in b and z (H/V) in ¢
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Figure 6.7: The correlation function for rotating a half wave-plate in a, with fixed basis
x (+/-45°) in b conditioned on an outcome z.=V
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Figure 6.8: The correlation function for rotating a half wave-plate in a, with fixed basis
x (+/-45°) in b conditioned on an outcome z.=H
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6 Analysis of the State

6.5 The Mermin Inequality

The measurements that have been used for the analysis of the two-photon entangle-
ment between the three photons in the W-state were: zzz, zxx, xzx, xxz. This is a
choice of bases that allows for a test of the Mermin inequality (section 3.3.2). The
Mermin inequality for this basis-setting is:

2% <C(z,2,2) = C(z,z,2) — C(x,2,2) — C(z,2,2) <2

Fig. 6.9 shows the three-particle joint probabilities for the four measurements with
the corresponding three-particle correlation. We insert the experimentally obtained
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I 50
L 25
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+ 1+ 1+ 1 + 1 + 1+ 1+ 1+ 1
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Figure 6.9: Joint probabilities in the generated state that allow for the test of the Mermin
inequality

correlations (see fig. 6.9) and find for the combination of tree-particle correlation
functions:

| —0.873% — 0.495 % — 0.400 % — 0.297 %| = 2.065 > 2

Thus, the state violates the Mermin inequality by 0.065, but with an error of 0.338,
therefore not in a statistically significant way. The W-state would violate this Mer-
min inequality with a value of 3 for that basis. However, the contribution of the
xxz-basis correlation spoils this value as one already could see in the analysis of the
two-photon entanglement.
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7 Conclusion and Outlook

The goal of this thesis was the experimental realization of a three-photon entangled
state — the W-state —and its analysis. This involved a theoretical analysis of the state
and a comparison of its properties with both the GHZ-state, a state, that is known
to have three-photon entanglement, and a mixed state pgo1, a state which shows for
some cases a similar behavior as the W-state, but has only two-partite entanglement.
The most outstanding property of the W-state is that the entanglement is mainly
in the pairs, i.e. the loss or measurement of one particle does not imply the loss of
all entanglement in the system.

For the experimental analysis of the state it was necessary to build an inter-
ferometric setup that prepared the W-state out of the four-photon state generated
by a spontaneous parametric down conversion source. The two crucial parts of this
setup were the so-called adjustable beam splitter, that is responsible for the equal
weighting of the terms contributing to the W-state, and the overlap of two photons
on a symmetric beam splitter in such a way that the information of the mode where
each photon arrived from is lost.

By a quantum mechanical calculation on the setup it was shown that the ad-
justable beam splitter has to fulfill certain conditions (4.18) which could be reached
by the actual component. To align the overlap of the photons and to analyze its
quality, pair photons generated in the first order process of the spontaneous para-
metric down conversion source were used. A rotation of the polarization in the fiber,
that had no influence on the preparation of the W-state, allowed to interfere the
initially orthogonal polarized photons. The visibilities reached with the overlap in
the setup were ~ 85 %, whereas the theory predicts 100 %. The visibility could be
raised by the usage of interference filters with a smaller bandwidth, but this lowers
the count rates in the experiment, thus, the chosen filter bandwidth of 3 nm was an
acceptable compromise.

Various measurements on the generated state have been performed. A mea-
surement of the three photons for horizontal/vertical polarization showed clearly
the expected three contributions of the W-state. The background was 7.9 + 1.9%,
which is mainly due to imperfections in the polarization alignment, that causes
contributions that should be filtered by post-selection.

Further, entanglement between the two remaining photons after measuring one
to be horizontally polarized was analyzed. This was not yet done by a Bell-inequality,
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7 Conclusion and Outlook

but as a first test the correlations of the photons were analyzed in the zz- and xx-
basis (i.e. for horizontal/vertical and 4 45° polarization). From these correlations
one can conclude that the photons were entangled, but that the entanglement was
much weaker in one of the photon pairs, than in the other two, which is most likely
due to a birefringence effect in the overlap beam splitter. The violation of the
Mermin-inequality was not achieved due to the low correlation in the mentioned
combination of photons. A measurement of the correlation function was showing a
low visibility for the same reason. All together, a compensation of the phase most
probably will improve the correlations for the particular setting and allow more
precise measurements on the W-state.

From the correlations found in the other analyzer settings one can expect mea-
surement results that allow for a violation of the Mermin-inequality and the in-
equality proposed by Adén Cabello[23]. A violation beyond Cirel’son’s bound is —
at least for the W-state — extremely improbable to be reached because of the small
difference between the bound and a possible violation.

For further analysis of the W-state it is preferable to use the setup presented by
Yamamoto et al. [37].It was proposed only very recently during the measurements on
the setup used here. Because it does not involve an overlap, it is more easy to realize,
more stable and promises even better correlations. It will be necessary to take care
of all the birefringent phases in the beam splitters. A further interesting analysis is
then a check of the entanglement robustness by performing a state tomography on
two particles after the ”loss” of the third one.

There are already a few possible applications proposed. There is a scheme for
quantum key distribution and quantum secret sharing by J.Joo et al.[38], but that
task can be most likely performed in a better way by protocols using Bell-states or
the GHZ-state. Recently a quantum game was proposed by Han etal.[39] and is
quite worth thinking of. A very attractive scheme deals with a so-called W-clone,
a state that involves the same product terms as the W-state, but with another
weighting. This state is an optimal quantum cloner and can already be realized
with the presented setup by only exchanging the adj. BS with a symmetric beam
splitter.
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A Definitions and Notations

A.1 The Hilbertspace

There is a big variety of possible definitions and notations in the field of quantum
information and foundations of quantum theory. This is mainly due to the fact
that different subjects find a common playground here. To avoid confusion, I will
introduce the definitions in this work shortly. The quantum mechanical system that
plays the central role here is the qubit. As the experiment is using the polarization
of photons, the notation is fit to this physical realization! The qubits exist in a
Hilbert space H? with the Bloch sphere as a possible representation (see fig. A.1).
Pauli-matrices are observables in this Hilbert space. Here the definitions:

(1 0 (01 (0 i
2= \o -1 “=\1 0 =\ o

The eigensystems to these observables are:

o.|H) = |H) ‘ ozl +) = [+) ‘ oy|L) = |L)
o:|V) = =[V) oz =) = —I=) oy|R) = —|R)

I use z; to denote the outcome of a measurement on qubit i in the bases defined
by the basis vectors |H) and |V). Analogous for x; and y;:

zie{H,V} | x;ie{+, —} | yie{L, R}

It will also be necessary to talk of the eigenvalues corresponding to the eigenstates
that are the basis vectors:

Zie{+1, -1} | Tie{+1, -1} | gie{+1, -1}

A 7-basis measurement denotes the projection onto the basis vectors |H) and |V).
The definitions for x- and y-basis measurement are analogue.

If a measurement is performed on many qubits (e.g. three qubits), then a basis is
chosen for every particle. Naturally, for example zxx-basis measurement is defined
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H> —ilVv)

Figure A.1: Bloch-sphere representation of H?

as a measurement where the first (in the order of the notation for the state) particle
is measured in the z-basis and the other two in x.

A.2 Probabilities

At some point it is argued with probabilities. Let A an B be some events (e.g. that
the particle i is measured in the z-basis and the outcome is H: z;=H). Then

P(A A B)

denotes the probability for event A and B. Similarly

P(AiB)ZP(AAB)

P(A)

denotes the probability for A under the condition B.
An example for the way joint probabilities are denoted is (for the zz-basis):

and P,_=P(z =HAz; =V) etc.
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