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We report on the direct estimation of concurrence for mixed quantum states. The used method relies on

joint measurements on two copies of an entangled state. In the experimental demonstration two

polarization-entangled photon pairs emitted from spontaneous parametric down-conversion are analyzed

together using a linear optics controlled phase gate. We demonstrate that the measured data, without need

for further numerical processing, directly yield reliable estimates, despite experimental imperfections.
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The experimental techniques for the preparation of en-
tangled states have been improved substantially during the
last years, such that entangled states can be prepared in an
increasing variety of physical systems. Also the number of
subsystems that can be entangled is growing rapidly [1–3].
Therefore, efficient experimental strategies to verify the
preparation of entanglement, quantitatively and qualita-
tively become more and more important.

Quantum state tomography (QST) has proven useful for
comparatively small systems [4]. However, as the involved
measurement effort scales exponentially with increasing
system size, it has already reached its limitations [3], and is
thus not a viable choice on the way to large scale entangle-
ment. Other techniques, like Bell inequalities [5,6] and
entanglement witnesses [7] are much more suitable for
the analysis of multipartite entanglement [2] since the
number of observables to be measured increases signifi-
cantly slower [8–10]. Still, these tools have the disadvant-
age that a particular choice of them applies only to a rather
small set of entangled states.

An alternative path are measurements on multiple iden-
tically prepared quantum systems [11–13]. This allows the
direct observation of separability criteria and entanglement
measures but has proven to be significantly more efficient
than measurements in the traditional setting of single
quantum systems [14–16]. For example, as was shown
recently [17–19], the concurrence C [20–22] of pure quan-
tum states can be derived from a simple parity measure-
ment on two copies of a quantum states.

The intricacy of entangled states, however, comes with
mixing. For mixed states, which are rather common in
experiments, the concurrence cannot be defined in terms
of a simple measurement prescription. It is defined via an
optimization over all pure state decompositions of the
mixed state under consideration [23]. Such optimizations
are complex mathematical problems and there is no pros-
pect to find exact general solutions beyond the case of two

qubits [21]. In particular, it seems illusive to redefine
concurrence of mixed states in terms of a simple measure-
ment prescription. However, lower bounds on the concur-
rence of arbitrary mixed states [24,25] can be measured in
the presently discussed framework of two identically pre-
pared quantum states.
Here we report on the direct experimental observation of

this bound for photonic qubits. Thereby, we make neither
assumptions on the state’s purity, nor on the faithfulness of
preparation of identical quantum states. Before we describe
the experimental implementation of the measurement pre-
scription let us shortly recapitulate the underlying theory
derived in [17,24,25].
Concurrence of a pure state j�i can be defined as

C ð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�j � h�jÂj�i � j�i

q
; (1)

where Â is the projector onto the antisymmetric compo-

nents of the duplicate local Hilbert spaces [17,18], i.e. Â ¼
P̂ðAÞ� � P̂ðBÞ� , where (A) and (B) label the two subsystems.

For qubits P̂� takes the particularly simple form P̂� ¼
jc�ihc�j with jc�i ¼ ðj01i � j10iÞ= ffiffiffi

2
p

; i.e., concur-
rence is given in terms of the probability }�� to find
both duplicate subsystems in the singlet state.
Although Eq. (1) might overestimate the concurrence for

mixed states, it can be used to find a valid lower bound if
the mixedness of the state is taken into account. The under-
lying idea is based on the fact that two identically prepared
pure states form a globally symmetric object: if the first-
subsystem components are observed in a symmetric state,
then also the second-subsystem components will be found
in a symmetric state, and, similarly, for the observation of
an antisymmetric state. Consequently, the probability to
find the components of the two different subsystems in
states with different symmetry provides information on the
mixing of the underlying state. Following these consider-
ations, it has been shown that concurrence of an arbitrary
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mixed state � is bounded from below by C2 � 2ð}�� �
}þ�Þ as well as by C2 � 2ð}�� � }�þÞ [24]. Thereby
}þ� is the probability to observe the first-subsystem of � �
� in a symmetric state, and the second-subsystem in an
antisymmetric state

}þ� ¼ trððP̂ðAÞ
þ � P̂ðBÞ� Þ� � �Þ; (2)

and analogously for }�þ with P̂þ ¼ 1� P̂�.
So far, it was assumed that the required two quantum

states can indeed be prepared in exactly the same fashion,
what poses a challenge to an experimental implementation.
However, the approach described above directly translates
also to an experiment in which two different quantum
states �1 and �2 are prepared. In that case, the product of
the concurrences of the two states is bounded from below
by [25],

C ð�1ÞCð�2Þ � Bi ¼ trð�1 � �2V̂iÞ; (3)

with V̂1 ¼ 4ðP̂ðAÞ� � P̂ðAÞ
þ Þ � P̂ðBÞ� and V̂2 ¼ 4P̂ðAÞ� �

ðP̂ðBÞ� � P̂ðBÞ
þ Þ.

In the following, we will discuss the experimental im-
plementation of this measurement and give evidence that
the lower bound provides an accurate estimate of the actual
value of concurrence for states that are mixed due to
imperfections of state of the art experiments.

In our experimental implementation the qubits of the
considered states are encoded in the polarization of single
photons propagating in well-defined spatial modes. The
projection measurement of the components of the subsys-
tems onto the symmetric or antisymmetric state space is
accomplished by the use of a linear optics logic gate. The
gate relies on the second order interference of two photons
at a partially polarizing beam splitter. Its detailed descrip-
tion and characterization can be found in [26].

The entangled photon states are prepared by type II
spontaneous parametric down-conversion (SPDC). A
2 mm thick �-Barium Borate (BBO) crystal is pumped
by UV pulses with a central wavelength of 390 nm and an
average power of 700 mW from a frequency-doubled
mode-locked Ti:sapphire laser (pulse length 130 fs). The
source is aligned such that the state j�þi ¼ 1ffiffi

2
p ðjHHi þ

jVViÞ is emitted. In order to obtain initially two copies of
this state, the SPDC is operated in a double pass configu-
ration leading to two pairs emitted in four spatial modes a,
b and c, d (see Fig. 1) [1]. The modes are well defined by
coupling the photon pairs into single mode fibers. The two
down-conversion sources are aligned in identical ways to
ensure that they provide indeed two copies of the same
state within experimental uncertainties. The UV-mirror
reflecting the pump beam in the backward direction is
positioned 3 cm behind the down-conversion crystal. The
small distance (compared to 40 cm Rayleigh length of the
pump beam) together with a proper tilt of the mirror leads
to identical phase-matching conditions for both SPDC

emissions. The single mode fiber couplers are aligned to
select the same spectral range of down-converted photons
for all four modes. The spectra are further equalized by
narrow bandwidth interference filters (�� ¼ 3 nm in
modes a, b and �� ¼ 2 nm in modes b, c). We perform
polarization analysis in each of the spatial modes by a
polarizing beam splitter and half- and quarter wave plates.
The signals of the single photon counters (silicon ava-
lanche photo diodes) are fed into a multichannel coinci-
dence unit which allows to register any possible
coincidence between the eight detectors. After complete
alignment procedure we achieve polarization correlation
visibilities of �98% (98%) in the computational basis and
�94% (95%) in the conjugate diagonal basis for the en-
tangled photon pairs emitted in the forward (backward)
direction.
The projection measurement onto the distinct symmetry

components is accomplished by a complete Bell state
measurement of modes b and c. The symmetric subspace
is thereby spanned by the Bell states fj��i; jcþig, with
j��i ¼ 1ffiffi

2
p ðjHHi � jVViÞ, jcþi ¼ 1ffiffi

2
p ðjHVi þ jVHiÞ,

and jc�i is the only antisymmetric state.
The circuit for the measurement procedure is drawn in

Fig. 2. As can be seen, the CPHASE gate together with the
Hadamard gates H 1, H 3 and H 4 implements a Bell
measurement using a CNOT. For practical reasons it is
desirable not to have an operation acting on the qubit in
mode c prior to the CPHASE gate. Therefore we substitute
the required gateH 3 in mode c by the gateH 5 in mode d:
Since H 2 �H 5 leaves the initial state invariant, j�þi ¼
ðH 2 �H 5Þj�þi, the sequence of gates H 2 and H 3

FIG. 1 (color online). Experimental setup for the direct mea-
surement of concurrence. The two copies of the state are
provided by two Bell-pairs originating from type II spontaneous
parametric down-conversion (SPDC) processes in the spatial
modes a, b and c, d. After passing the crystal, the beam is
reflected back by a UV mirror. If a photon pair is created in each
of the two passages, two copies of an entangled state are
obtained. Half- and quarter wave plates in conjunction with
polarizing beam splitters are used for the polarization analysis
(PA). The projection of the subsystem parts onto the symmetric
and antisymmetric state space is achieved by a measurement in
the Bell basis using a controlled phase gate (CPHASE).
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equals the identity and does not need to be physically
realized in the setup. Note that, for mixed states, a mea-
surement of the probabilities }��, }þ�, }�þ in this con-
figuration yields the lower bounds B1 and B2 on the
product of the concurrences of both input states according
to

C ð�abÞCð�0
cdÞ � Bi (4)

with �0
cd ¼ ðH 2 �H 5Þ�cdðH 2 �H 5Þy. The determi-

nation of these bounds in our setup requires only three
correlation measurements, �z � �x � �x � �x, �y � �x �
�x � �y and �x � �x � �x � �z, (with the Hadamard

gates taken into account), where �x, �y, �z are the Pauli

matrices.
The detection of photons in modes b and c in the state

j � �i corresponds to a projection onto the antisymmetric

subspace [with j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
]. Thus, the share of

these events in all detected coincidences gives the proba-

bility }� ¼ trðð1 � P̂� � 1Þð�ab � �0
cdÞÞ to find the sub-

system (b, c) in the antisymmetric subspace. The
remaining events where the photons in modes b and c
are measured in the states jþ þi, jþ �i and j� þi lead
to the probability to observe this subsystem in the sym-
metric subspace. Correlation measurements of the form
�a

z �h �h � �d
x , �

a
y �h �h � �d

y and �a
x �h �h �

�d
z (where h can be any Pauli matrix) allow the recon-

struction of the fidelity on any of the four Bell states of the
qubits a and d. The fidelity F c� to the state jc�i equals
thereby the probability to find the subsystem (a, d) in the
antisymmetric subspace, whereas 1�F c� gives the

probability to observe it in the symmetric subspace.
Finally, the evaluation of the quantities F c� and 1�

F c� for the modes a and d with respect to the detection

events in modes b and c yields all the conditional proba-
bilities needed for the calculation of the concurrence ac-
cording to Eqn. (3). For a measurement time of
approximately 420 min for each setting this results in

}�� ¼ 0:208� 0:007; }�þ ¼ 0:050� 0:006;

}þ� ¼ 0:061� 0:012;
(5)

leading to the bounds

C ð�abÞCð�0
cdÞ �

�
}�� � }�þ ¼ 0:632� 0:037
}�� � }þ� ¼ 0:588� 0:055

: (6)

Given faithful preparation of two identical quantum
states, i.e., �ab ¼ �0

cd ¼ � this yields the bound Cð�Þ �
0:795. Because of experimental imperfections this value is
smaller than the maximum concurrence of 1, but the state
can still reliably be detected as entangled. In situations in
which one cannot rely on the exact preparation of identical
quantum states, and in which no knowledge on the prepa-
ration of the second quantum state is available, one can
obtain an estimate by a worst case assumption. Since,
according to Eq. (4), Cð�abÞ is inversely proportional to
Cð�0

cdÞ, this amounts to considering Cð�0
cdÞ to be maximally

entangled, what leads to the estimate

C ð�abÞ � }�� � }�þ ¼ 0:632� 0:037: (7)

This unambiguously characterizes �ab to be entangled.
That is, even in the case of completely unreliable prepara-
tion of pairs of quantum states, the present measurement
yields a accurate quantification of entanglement.
An important issue is to consider the influence of im-

perfect gate operation on the above discussed measurement
procedure. For our gate, deviations from ideal operation
are predominantly caused by imperfect interference which
leads to vertically polarized noise in the output. The quan-
tum channel corresponding to the experimental gate was
characterized by a quantum process matrix [26]. Applying
this quantum channel to a maximally entangled state yields
the probabilities }�� ¼ 0:212, }�þ ¼ }þ� ¼ 0:038what
gives rise to the measured bound Cð�Þ � 0:834 as com-

FIG. 3 (color online). Bounds on concurrence Csim obtained
with the imperfect experimental phase gate versus the smallest
bound on concurrence Cmin that would have been observed with a
perfect gate, where the minimization is taken over all initial
states that give rise to following measurement outcomes: w,
}��, }þ�; r, }��, }�þ; large solid circle, }�� ¼ 0:208,
}�þ ¼ 0:05; medium solid circle, }�� ¼ 0:208, }þ� ¼
0:061; solid circle, }�� ¼ 0:0208, }þ� ¼ 0:061, }�þ ¼ 0:05.

FIG. 2. Circuit diagram for the direct measurement of con-
currence. In this configuration, the circuit yields an estimation
for Cð�abÞCð�0

cdÞ with �0 ¼ ðH 2 �H 5Þ�cdðH 2 �H 5Þy.
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pared to the actual value of 1. Obviously, the experimental
imperfection of the gate has a significant influence on the
estimation of entanglement and causes an underestimation
of concurrence.

In order to get a quantitative estimate of this influence,
we searched numerically for the least entangled pair of
input states �1

ab � �2
cd for a given measurable bound of

concurrence using the imperfect experimental gate.
Figure 3 shows the simulated bound that is obtained with
the experimental gate, Csim, as function of the smallest
bound on concurrence with a perfect gate, Cmin, where
the minimum has been taken over all pairs of initial states
� � �0, that yield measurement outcomes that are compat-
ible with observed ones. Displayed are different constraints
on the input states, e.g., to reproduce }�� and }þ� (green
stars) or }�� and }�þ (red lozenges), respectively. The
diagonal line divides the two regimes in which the imper-
fection of the gate leads to an overestimation (above the
diagonal) or an underestimation of concurrence. For values

of concurrence larger than � ffiffiffiffiffiffiffiffiffi
0:65

p
, that is, strongly en-

tangled states whose preparation is desired, the imperfec-
tions of the controlled phase gate lead to a systematic
underestimation of concurrence and thus to a reliable
bound. Only for rather weakly entangled states the experi-
mental imperfections might lead to a minor overestimation
of concurrence. The least entangled state that still yields
our experimentally measured values for }�� and }�þ has
Csim ¼ 0:640which is slightly higher than Cmin ¼ 0:632. In
contrast, the value for }�� and }þ� of Csim ¼ 0:568 is a
little lower than Cmin ¼ 0:588 (yellow bullets). If the im-
posed constraints are tightened such that the input state
should reproduce not only the measured values
f}��; }þ�g or f}��; }�þg, but }��; }þ� and }�þ, the
values Csim ¼ 0:632, Cmin ¼ 0:644 for f}��; }�þg and
Csim ¼ 0:588, Cmin ¼ 0:592 for f}��; }þ�g (blue bullets)
are obtained. Whereas one cannot strictly separate the
influences from gate imperfections and imperfect state
preparation, Fig. 3 shows that in the interesting regime of
highly entangled states, an imperfect gate does not lead to
an overestimation of the actual value of the concurrence,
but yields a reliable lower bound.

In conclusion, we have shown that the present method
provides a reliable estimate on concurrence, even given
experimental imperfections. In particular, it does not de-
pend on assumptions on a state’s purity or faithfulness of
preparation. Here, we assessed concurrence with only three
measurement settings instead of nine for a full QST—such
a decrease renders this approach particularly advantageous
for deterministic state sources. Furthermore, QST often
yields unphysical density matrices which are subjected to
fitting routines in order to calculate the concurrence of the

state. In contrast, here we rely directly on measurement
results, rendering any intermediate steps unnecessary.
Together with the moderate scaling for increasing system
size [19], this approach paves the way towards the experi-
mental investigation of ever more complex entangled
states, even in systems where a complete set of observables
is not accessible with current experimental technology.
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