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Four-photon entanglement from down-conversion
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Double-pair emission from type-Il parametric down-conversion results in a highly entangled four-photon
state. Due to interference, which is similar to bunching from thermal emission, this state is not simply a product
of two pairs. The observation of this state can be achieved by splitting the two emission modes at beam
splitters and subsequent detection of a photon in each output. Here we describe the features of this state and
construct a Bell-type inequality, which gives a necessary and sufficient condition for a four-photon test of local
realistic hidden variable theories.
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Parametric down-conversion has proven to be the bess relevant. The particle interpretation of this term can be
source of entangled photon pairs so far in an ever increasingbtained by its expansion
number of experiments on the foundations of quantum me-
chanicg 1] and in the new field of quantum communication. (a}’b¥?+ak%by 2+ 2a¥af by by)|0), (3)
Experimental realizations of concepts like entanglement
based quantum cryptographg], quantum teleportatiofBl,  4nq is given by the following superposition of photon num-
and its variations[4] demonstrated the usability of this gy states:
source. New proposals for quantum communication schemes
[5] and, of course, for improved tests of local hidden variable
theories initiated the quest for entangled multiphoton states. [2Ha,2Vp) +]2Va,2Hp) +[1Ha,1Va, 1Hp, V), (4)
Interference of photons generated by independent down- . .
conversion processes enabled the first demonstration of vghere €.g., Bl means twcH polarized photons in the beam
three-photon Greenberger-Horne-Zeiling@&Hz) argument

[6] and, quite recently, even the observation of a four-photon One should stress here that this type of description is valid
GHZ st’ate[7] ' only for down-conversion emissions, which are detected be-

; : C . hind filters endowed with a frequency band, which is nar-
In this Rapid Communication we show that four phOton[ower than that of the pumping field40]. If a wide band

entanglement can be obtained directly from type-ll paramet o . .
g y ype-i b down-conversion is accepted, then such a state is effective

ric down-conversion. Instead of sophisticated but fragile in- . >
terferometric setups, we utilize bosonic interference in aonly If counts at the_ d_eteptors are treated as coincidences,
double-pair emission process. This effect causes strong coWhen thefy tk(‘)ccbur év't.h(;?h tlT?h Wln((deV\t/_s mnlarrlcfjwerhthan the
relations between measurement results of the four photoH Verse of the bandwidih of the radia iphl]. If such con-
itions are not met, then the four-photon events are essen-

and renders type-1l down-conversion a valuable tool for new. I o £ ind dent. entanaled pai ith th
multiparty quantum communication schemes. The analysig'a y €MISSIons of two independent, entangied pairs, wi e
ntanglement existing only within each pair.

of the entanglement inherent in the four-photon emissiorf
leads us to a new form of inequality distinguishing local
hidden variable theories from quantum mechanics, and dem- 5
onstrates its potentiality for experiments on the foundations
of quantum mechanics.

In type-Il parametric down-conversig8] multiple emis-

sion events during a single pump pulse lead to the following %ggl-e"rggnwn
state:

11UN B0UBPIoLI0ANA

Zexd —ia(albii+ajby)]|0), @)

whereZ is a normalization constand; is proportional to the By

pulse amplitude, and whe; is the creation operator of a é

photon with vertical polarization in modg etc.(Fig. 1). We —

are imere.StEd only in four-photon eﬁeas' i.e., the ?miSSion FIG. 1. Experimental setup to demonstrate the entanglement in-

of two pairs[9]. Then only the term in Eq(1) proportional  herent in four-photon emission from type-ll parametric down-

to conversion. X/2, half wave plate to flip polarization; BS, beam
splitter; andP, represents polarization analysis corresponding to

(afyby +aybfy)?|0) (2)  the phase angf‘éa, etc)
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Let us pass the four-photon state via two polarization in-  P(k,|,m,n|¢,, . , bp, dpr)
dependent 50-50 beam splitters. For simplicity we assume
that at the beam splittea is transformed into (4/2)(a
+a’) andbinto (14/2)(b+b"), with the prime denoting the
reflected beam. One can expand the expredgiprand then
extract only those terms that lead to four-photon coincidence + E[1+ Kl coS dha— o) [1+mncos dp— 1) ]
behind the two beam splitters, i.e., only those terms for 3 a e oTh
which there is one photon in each of the beams. The result-

ing component of the full state is given by + %Re{[1+ kimnexp(i= )]

2 21 Kl S
—1—6 §( +Klmnco ¢)

[4(afa'mbyb’y+aya’ybib ) +2(aka’y +aya’}

X (k €%a+e'%a’)(m d¥+nefo')} |, (10)
X(byb"}+bfib’y)]]0). )

_ The last term is written in the form of a real part of a com-
The first term represents a four-photon GHZ state, Whereq§|ex function to shorten the expression.

the second one is a product state of two Einstein-Podolsky- The correlation function is defined as the mean value of
Rosen—Bohm statdthe | W *) Bell states in polarizationss! the product of the four local results
and V). This, after the normalization, can be symbolically

written as E(darbarbp,Pp)

V2I3GHZ) ety + VI/IEPR o [EPRpy . (6) => > > X kimn

k=x11l=*1 m=*1n==*1

For additional simplicity of presentation we also rotate the X P(k,I,m,n| ¢y, dbar, by, dp). 11
polarizations in the beams anda’ by 90°. Thus now our
initial state is given by Eq(6) with the GHZ state in its Its explicit form for the considered process is given by
standard form, resulting in the state

E(¢aa¢a’ !¢b!¢b’)

VII3(VVVW aarpry + [HHHHY 2arpe + 3 ([HVHV) qar by 1
= %CO§:¢+ § cog ¢,— ¢’a’)COi¢b_ d’b’)-
+ |HVVH)aa,bb,+ |VH HV>aa,bb, + |VHVH>aa,bb,)).
) (12

Only the first two terms of the probabiliti€&0) contribute to

In order to demonstrate the entanglement of this state lg}e correlation function, and the function is itself a weighted
us analyze polarization correlation measurements mvolvmgum of the GHZ correlation functiofthe first term and a

all four exit ports of the beam splitters, where the actual,.oq,ct of two Einstein-Podolsky-Rosen—Bell correlation
observables to be measured are elliptic polarizations with thg, \ tians. The last term in EG10) gives a zero contribution

main axis of the polarization ellipse at 45°. Such observableg, ihe correlation function, because sums &g, In van-
are of dichotomic nature, i.e., endowed with two valued;gp,
spectrak=+1,—1, and are defined for each spatial propa-  The correlation functior{12) for the process has a more
gation modex=a,a’,b,b’ by their eigenstates complicated form than in the usual cases for GHZ-type
states, but the strong correlations for numerous phase set-
V12V + ke 212 H) = K, by). (8)  tings clearly indicate incompatibility with local realistic
theories. When inserted into Mermin-type Bell inequalities
[12] for four-particle systems, the violation is not too impres-
sive, even for optimal sets of local phases. However, here we
present a reasoning, involving Bell inequalities of an alter-
native type[13], giving stronger inequalities for distinguish-
ing the validity of the different theories in a four photon
1 . experiment.
m[lJf Kimnexp(i ¢) In a local hidden variabl§LHV) theory a correlation
function has to be modeled by a construction of the follow-

+1(ke®atleta)(md+ne®)], (9 ing form (see, e.g.[14,15)):

The probability amplitudes for the resulksl,m,n==*1
at the detector stations in the beams',b,b’, under local
phase setting®,, . ,dp, by, respectively, are given by

whereX ¢ stands for the sum of all local phases. Therefore E nv(da,dar y¢bv¢b’):f dAp(Mla(Pa . Mlar(Par ,N)

the probability of getting a particular set of resulksl(m,n)

is given by X1p(hp Mlp (b V), (13
010102-2
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where\ represents an arbitrary set of values of local hiddenck,l,m,n: Pict.mn— Pkt 2) mn—Piit2mn— "+ Prt2)t2mn
variables, p(\) their probabilistic distribution, and

I(dye,\)==*1(x=a,a’,b,b’) represents the predetermined t T Prr2iromi2n T TPk 2+ 2mt2m2-
values of the measurements. Their values depend on the set (18)
of hidden variables and on the value of tloeal phase set-

tings. The expansion coefficients are of cours@que and since

We start with allowing each observer of beam Skimn=1,...4 Pximn=1, they satisfy the following in-
(=a,a’,b,b") to choose, just like in the standard cases ofequality:
the Bell and GHZ theoremd 4,15, between two value$)1(
and ¢>)2( of the local phase settings.

The formula for the LHV correlation function for the cho- k,I,m,Enzl,Z |Cht,manl <1
sen settings is given by

(19

This inequality is a necessary condition for the local realistic
s description to hold, and thus gives the handle for evaluatin
ELnv(@], da,  dh. dbp) = f dAp(M) (@8 M)l ar( b, N) the vaﬁdity of this class of thegries. It should be stressed thzgt
. s one can also show that the inequalifyd) is also a sufficient
X1p(p My (dhyr N), (14 condition. This is due to the fact that the coefficients in Eq.
(17) define the tensoE, , unambiguouslyfor details see
with p,q,r,s=1,2. It is important to stress that one must[13], where the extension of this approach to an arbitrary
consider arbitrary LHV correlation functions. The only con- number of qubits can be foupd
straint being their structure given by E{.4). To compare the structure of the possible LHV correlation
One can treat the full set of the LHV predictions as afunctions with our quantum on@2), let us, in order to sim-
four-index tensoE, 14y, with the indicesp,q,r,s=1,2, built plify_ the an_alysis, choose specific valu_es for the local phase
out of the tensorial products of two-dimensional real vectorsS€ttings. First, the observer of beaanwill be allowed the
V§:(|X(¢i’)\)’|x(¢§’)\))’ which represent the two possible choice betweenp,=0 and ¢z= /2. The other observers
results of a given observer for the given value of the hidder{Y=2’,b,b") can choose betweep,= — /4 and ;= /4.
variable: Next, one can expand the quantum functi@@) into a sum
of products of sine and cosine functionssifigle phases

ELnv= J dAp(MVAB V), ®Vp®Vy, . (15) E(¢ardar b dor)

=C4C5/CpCyy + SaSa’SpSp’
The actual values of the components of the two-

_2
dimensional vectorgl,(¢:,\),1($2,1)) can be equal to 3(SaSa’CoCb’ T CaCarSpSp)

only either (1,1), or (1 1), or (— 1.,— 1), or finall_y(—.l,l)-. — £(S4Ca7SpCh’ + CaSarCpSp
Let us denote these four possible vectors By with j
=1,2,3,4, respectively. Thus, the LHV correlation function *+CaSarSpCo’ +SaCar CoSp1), (20)

(tensoy can be simplified to a discrete sum over hidden

probabilitiespy | m.n Of the tensorial products of all possible Wheres,=sin#, andc,=cosg,. For each fixed set of four
measurement results: local settings one can calculate the specific value of the
guantum correlation functio (%, ¢, .}, bp,). We no-
tice that for the specific phase settings given above one has

Etv= 2 PamnVevievievh. (16  (y=a’',b,b’)
kI, mn=1,..., 4

A further simplification of the tensor is possible since (cos{¢§),cos{¢§)): i(1,1)
(-1,~1)=—(1,1) and(-1,1)=—(1,—1), or in other words 2
VE"2=—\K. The tensorial productsk® V), @vl'®Vv}, with
k,I,m,n=1,2 form a complete orthogongbroduc} basis in
the (real) Hilbert space of tensoi®?® R?® R?® R?. One can L
thus rewrite the expansiaii6) so that it becomes an expan- C N ey g2

sion in terms of thg aforgme)ntioned basis P (sin(¢y),sin(¢y)) =~ E(l’_ b,

and

whereas

IA5|_Hv:k| 2712Ck,l,m,nV:l@VLr@Vg]@VE,. 17
S (cos 1), cog $2)=(1,00= 1(1,)+ (1,-1)

The relation between the coefficients in E4.7) and the R . L
probabilities of Eq(16) is given by and (sin(¢,),sin(¢3))=(0,1)=3(1,1)—3(1,—1).
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Therefore the quantum predictions can be arranged to form ghere p,,,;sc= %1 represents completely uncorrelated noise
tensor, too, and it is easy to write down its expansion in the:ontribution, and ) stands for our pure staté), then the

product basigthe same basis as in EQL7)] aforementioned criticad gives the threshold beyond which
no LHV model can resemble the quantum predictions.
E= > Qk,l,m,nV§®V;r®V?®VE/- (22) In conclusion, parametric type—ll'down-convers'ion not
kl,mn=1,2 only produces entangled photon pairs, but also highly en-

tangled four-photon states. The observation of these states is
experimentally much easier to achieve than for GHZ-type
states. Here, the full set of probabilities of possible LHV
predictions is compared with the quantum predictions result-
ing in a significant distinction of the theories. The emission
(22) of more than two pairs will result in entangled states of more
and more photons, although the correlation will decrease
relative to the respective GHZ state.
Keeping in mind that the expansion in terms of basis vectors This state enables imp|ementaﬁon of various guantum
is unique; the quantum correlation function out of which thecommunication schemes like quantum te|ec|on[ﬂ_@] or
tensorE is built thus violates the necessary condition for multiparty teleportatiofil7]. The other interesting feature of
local realism(19). the considered state is that for a number of specific settings
The quantum correlation function satisfies EtP) only if ~ one obtains perfect four-photon correlations. E.g., for all lo-
it is multiplied by a scaling factos equal to or smaller than cal phases equal to zero the correlation function is equal to 1,
3./2/8~53%, in other words, if one replaces it by whereas forg,= ¢y ,pa— P =7 and ¢, + dp,=0 it is
equal to—1. This directly enables one to transfer the stan-
E'(pa,bar b, b)) =VE(da, bar,dp.ép). (23 dard protocols for entanglement based quantum cryptogra-
phy[18] to the four-photon case making multiparty quantum

In an interferometry exp_er_i_ment this scaling parameter is Olikey distribution and quantum communication complexity
rectly related to the visibility(contrast of the interference schemes feasible

pattern. Visibilities lower than 1 can be interpreted as arising ) ) 3
due to some noise contribution to the state. If one considers M-Z. was supported by University of Gdsk Grant No.

The actual values of the expansion coefficiempts,,, , can
be straightforwardly obtained from E¢(R0). However, note
that for the specific set of angles chosen above one has

8
=—>1.
k,I,m,Enzl,Z |qk,l,m,n| 3\5

Institute for Mathematical Physics, Austria. This work was
po=(1=0)pnoisetv| )|, (24 supported by the EU-Project QuCom(itsT-1999-10038
[1] For reviews, see D. M. Greenbergaral., Phys. Today6 (8), communication

22 (1993; A. E. Steinberget al., Atomic, Molecular and Op- [8] P. G. Kwiatet al, Phys. Rev. Lett75, 4337(1995.
tical Physics Handbogkedited by G. DrakdAIP Press, New  [9] The emission of more than two pairs will result in entangled

York, 1996, Chap. 77, p. 901; L. Mandel, Rev. Mod. Phys. states of more and more photofsee also A. Lamas-Linares
71, S274(1999; A. Zeilinger, ibid. 71, S288(1999. et al, e-print quant-ph/0103036 although the degree of
[2] T. Jenneweiret al, Phys. Rev. Lett84, 4729(2000; D. S. n-photon entanglement will decrease relative to the respective

Naik, et al, ibid. 84, 4733 (2000; W. Tittel et al, ibid. 84, n-photon GHZ-state with increasing
4737 (2000; G. Ribordy et al, Phys. Rev. A63, 012309  10] M. Zukowskiet al, Ann. (N.Y.) Acad. Sci.755 91 (1995.
(200D). [11] M. Zukowski et al, Phys. Rev. Lett71, 4287(1993.

[3] D. Bouwmeesteket al., Nature(London 390, 575 (1997.

[4] D. Boschiet al, Phys. Rev. Lett80, 1121(1998; J.-W. Pan
et al, ibid. 80, 3891(1998; A. Furusawaet al,, Science282,
706 (1998.

[5] R. Cleve and H. Buhrman, Phys. Rev.58, 1201(1997); W.
van Damet al, e-print quant-ph/9710054; R. Clewt al,
Phys. Rev. Lett83, 648(1999; H. F. Chau, Phys. Rev. A1,

[12] N. D. Mermin, Phys. Rev. Let65, 1838(1990.

[13] M. Zukowski and C. Brukner, e-print quant-ph/0102039; the
inequalities are also studied in an independent e-print: R. F.
Werner and M. M. Wolf, e-print quant-ph/0103024.

[14] J. S. Bell, PhysicgLong Island City, N.Y) 1, 195(1964).

[15] D. M. Greenbergeet al., Am. J. Phys58, 1131(1990.

032308(2000 [16] M. Murao et al, Phys. Rev. A56, 156 (1999.
[6] D. Bouwmeesteet al, Phys. Rev. Lett82, 1345(1999: J.-w.  [171 W. Durand J. I. Cirac, J. Mod. Op#7, 247 (2000.

Panet al, Nature(London 403 515 (2000. [18] A. K. Ekert, Phys. Rev. Lett67, 661 (1991); C. H. Bennett
[7] J.-W. Pan, M. Daniell, G. Weihs, and A. Zeilingéprivate et al, ibid. 68, 557(1992.

010102-4



