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Four-photon entanglement from down-conversion
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Double-pair emission from type-II parametric down-conversion results in a highly entangled four-photon
state. Due to interference, which is similar to bunching from thermal emission, this state is not simply a product
of two pairs. The observation of this state can be achieved by splitting the two emission modes at beam
splitters and subsequent detection of a photon in each output. Here we describe the features of this state and
construct a Bell-type inequality, which gives a necessary and sufficient condition for a four-photon test of local
realistic hidden variable theories.
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Parametric down-conversion has proven to be the b
source of entangled photon pairs so far in an ever increa
number of experiments on the foundations of quantum m
chanics@1# and in the new field of quantum communicatio
Experimental realizations of concepts like entanglem
based quantum cryptography@2#, quantum teleportation@3#,
and its variations@4# demonstrated the usability of thi
source. New proposals for quantum communication sche
@5# and, of course, for improved tests of local hidden varia
theories initiated the quest for entangled multiphoton sta
Interference of photons generated by independent do
conversion processes enabled the first demonstration
three-photon Greenberger-Horne-Zeilinger~GHZ! argument
@6# and, quite recently, even the observation of a four-pho
GHZ state@7#.

In this Rapid Communication we show that four-phot
entanglement can be obtained directly from type-II param
ric down-conversion. Instead of sophisticated but fragile
terferometric setups, we utilize bosonic interference in
double-pair emission process. This effect causes strong
relations between measurement results of the four pho
and renders type-II down-conversion a valuable tool for n
multiparty quantum communication schemes. The anal
of the entanglement inherent in the four-photon emiss
leads us to a new form of inequality distinguishing loc
hidden variable theories from quantum mechanics, and d
onstrates its potentiality for experiments on the foundati
of quantum mechanics.

In type-II parametric down-conversion@8# multiple emis-
sion events during a single pump pulse lead to the follow
state:

Z exp@2 ia~aV* bH* 1aH* bV* !#u0&, ~1!

whereZ is a normalization constant,a is proportional to the
pulse amplitude, and whereaV* is the creation operator of
photon with vertical polarization in modea, etc.~Fig. 1!. We
are interested only in four-photon effects, i.e., the emiss
of two pairs@9#. Then only the term in Eq.~1! proportional
to

~aH* bV* 1aV* bH* !2u0& ~2!
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is relevant. The particle interpretation of this term can
obtained by its expansion

~aH*
2bV*

21aV*
2bH*

212aV* aH* bV* bH* !u0&, ~3!

and is given by the following superposition of photon num
ber states:

u2Ha ,2Vb&1u2Va,2Hb&1u1Ha,1Va,1Hb,1Vb&, ~4!

where e.g., 2Ha means twoH polarized photons in the beam
a.

One should stress here that this type of description is v
only for down-conversion emissions, which are detected
hind filters endowed with a frequency band, which is n
rower than that of the pumping fields@10#. If a wide band
down-conversion is accepted, then such a state is effec
only if counts at the detectors are treated as coinciden
when they occur within time windows narrower than t
inverse of the bandwidth of the radiation@11#. If such con-
ditions are not met, then the four-photon events are es
tially emissions of two independent, entangled pairs, with
entanglement existing only within each pair.

FIG. 1. Experimental setup to demonstrate the entanglemen
herent in four-photon emission from type-II parametric dow
conversion. (l/2, half wave plate to flip polarization; BS, beam
splitter; andPfa

represents polarization analysis corresponding
the phase anglefa , etc.!
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Let us pass the four-photon state via two polarization
dependent 50-50 beam splitters. For simplicity we assu
that at the beam splittera is transformed into (1/A2)(a
1a8) andb into (1/A2)(b1b8), with the prime denoting the
reflected beam. One can expand the expression~4!, and then
extract only those terms that lead to four-photon coincide
behind the two beam splitters, i.e., only those terms
which there is one photon in each of the beams. The res
ing component of the full state is given by

@4~aH* a8H* bV* b8V* 1aV* a8V* bH* b8H* !12~aH* a8V* 1aV* a8H* !

3~bV* b8H* 1bH* b8V* !#u0&. ~5!

The first term represents a four-photon GHZ state, wher
the second one is a product state of two Einstein-Podols
Rosen–Bohm states~the uC1& Bell states in polarizationsH
and V). This, after the normalization, can be symbolica
written as

A2/3uGHZ&aa8bb81A1/3uEPR&aa8uEPR&bb8 . ~6!

For additional simplicity of presentation we also rotate t
polarizations in the beamsa and a8 by 90°. Thus now our
initial state is given by Eq.~6! with the GHZ state in its
standard form, resulting in the state

A1/3„uVVVV&aa8bb81uHHHH&aa8bb81
1
2 ~ uHVHV&aa8bb8

1uHVVH&aa8bb81uVHHV&aa8bb81uVHVH&aa8bb8)….

~7!

In order to demonstrate the entanglement of this state
us analyze polarization correlation measurements involv
all four exit ports of the beam splitters, where the act
observables to be measured are elliptic polarizations with
main axis of the polarization ellipse at 45°. Such observab
are of dichotomic nature, i.e., endowed with two valu
spectrak511,21, and are defined for each spatial prop
gation modex5a,a8,b,b8 by their eigenstates

A1/2uV&x1ke2 ifxA1/2uH&x5uk,fx&. ~8!

The probability amplitudes for the resultsk,l ,m,n561
at the detector stations in the beamsa,a8,b,b8, under local
phase settingsfa ,fa8 ,fb ,fb8 , respectively, are given by

1

4A3
@11klmnexp~ i (f!

1 1
2 ~k eifa1 l efa8!~m eifb1n eifb8!#, ~9!

where(f stands for the sum of all local phases. Therefo
the probability of getting a particular set of results (k,l ,m,n)
is given by
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P(k,l ,m,nufa ,fa8 ,fb ,fb8)

5
1

16S 2

3
~11klmncos(f!

1
1

3
@11kl cos~fa2fa8!#@11mncos~fb2fb8!#

1
1

3
Re$@11klmnexp~ i (f!#

3~k eifa1 l eifa8!~m eifb1n efb8!% D . ~10!

The last term is written in the form of a real part of a com
plex function to shorten the expression.

The correlation function is defined as the mean value
the product of the four local results

E~fa ,fa8 ,fb ,fb8!

5 (
k561

(
l 561

(
m561

(
n561

klmn

3P~k,l ,m,nufa ,fa8 ,fb ,fb8!. ~11!

Its explicit form for the considered process is given by

E~fa ,fa8 ,fb ,fb8!

5 2
3 cos(f1

1

3
cos~fa2fa8!cos~fb2fb8!.

~12!

Only the first two terms of the probabilities~10! contribute to
the correlation function, and the function is itself a weight
sum of the GHZ correlation function~the first term! and a
product of two Einstein-Podolsky-Rosen–Bell correlati
functions. The last term in Eq.~10! gives a zero contribution
to the correlation function, because sums like(klmnln van-
ish.

The correlation function~12! for the process has a mor
complicated form than in the usual cases for GHZ-ty
states, but the strong correlations for numerous phase
tings clearly indicate incompatibility with local realisti
theories. When inserted into Mermin-type Bell inequaliti
@12# for four-particle systems, the violation is not too impre
sive, even for optimal sets of local phases. However, here
present a reasoning, involving Bell inequalities of an alt
native type@13#, giving stronger inequalities for distinguish
ing the validity of the different theories in a four photo
experiment.

In a local hidden variable~LHV ! theory a correlation
function has to be modeled by a construction of the follo
ing form ~see, e.g.,@14,15#!:

ELHV~fa ,fa8 ,fb ,fb8!5E dlr~l!I a~fa ,l!I a8~fa8 ,l!

3I b~fb ,l!I b8~fb8 ,l!, ~13!
2-2
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wherel represents an arbitrary set of values of local hidd
variables, r(l) their probabilistic distribution, and
I x(fx ,l)561(x5a,a8,b,b8) represents the predetermine
values of the measurements. Their values depend on th
of hidden variables and on the value of thelocal phase set-
tings.

We start with allowing each observer of beamx
(5a,a8,b,b8) to choose, just like in the standard cases
the Bell and GHZ theorems@14,15#, between two valuesfx

1

andfx
2 of the local phase settings.

The formula for the LHV correlation function for the cho
sen settings is given by

ELHV~fa
p ,fa8

q ,fb
r ,fb8

s
!5E dlr~l!I a~fa

p ,l!I a8~fa8
q ,l!

3I b~fb
r ,l!I b8~fb8

s ,l!, ~14!

with p,q,r ,s51,2. It is important to stress that one mu
consider arbitrary LHV correlation functions. The only co
straint being their structure given by Eq.~14!.

One can treat the full set of the LHV predictions as
four-index tensorÊLHV , with the indicesp,q,r ,s51,2, built
out of the tensorial products of two-dimensional real vect
vx

l5„I x(fx
1 ,l),I x(fx

2 ,l)…, which represent the two possib
results of a given observer for the given value of the hidd
variable:

ÊLHV5E dlr~l!va
l

^ va8
l

^ vb
l

^ vb8
l . ~15!

The actual values of the components of the tw
dimensional vectors„I x(fx

1 ,l),I x(fx
2 ,l)… can be equal to

only either (1,1), or (1,21), or (21,21), or finally ~21,1!.
Let us denote these four possible vectors byvx

j with j
51,2,3,4, respectively. Thus, the LHV correlation functi
~tensor! can be simplified to a discrete sum over hidd
probabilitiespk,l ,m,n of the tensorial products of all possib
measurement results:

ÊLHV5 (
k,l ,m,n51, . . . ,4

pk,l ,m,nva
k

^ va8
l

^ vb
m

^ vb8
n . ~16!

A further simplification of the tensor is possible sin
~21,21!52~1,1! and ~21,1!52~1,21!, or in other words
vx

k1252vx
k . The tensorial productsva

k
^ va8

l
^ vb

m
^ vb8

n with
k,l ,m,n51,2 form a complete orthogonal~product! basis in
the ~real! Hilbert space of tensorsR2

^ R2
^ R2

^ R2. One can
thus rewrite the expansion~16! so that it becomes an expan
sion in terms of the aforementioned basis

ÊLHV5 (
k,l ,m,n51,2

ck,l ,m,nva
k

^ va8
l

^ vb
m

^ vb8
n . ~17!

The relation between the coefficients in Eq.~17! and the
probabilities of Eq.~16! is given by
01010
n

set

f

s

n

-

ck,l ,m,n5pk,l ,m,n2pk12,l ,m,n2pk,l 12,m,n2•••1pk12,l 12,m,n

1•••2pk12,l 12,m12,n1•••1pk12,l 12,m12,m12 .

~18!

The expansion coefficients are of courseunique, and since
(k,l ,m,n51, . . . ,4 pk,l ,m,n51, they satisfy the following in-
equality:

(
k,l ,m,n51,2

uck,l ,m,nu<1. ~19!

This inequality is a necessary condition for the local realis
description to hold, and thus gives the handle for evaluat
the validity of this class of theories. It should be stressed t
one can also show that the inequality~19! is also a sufficient
condition. This is due to the fact that the coefficients in E
~17! define the tensorELHV unambiguously~for details see
@13#, where the extension of this approach to an arbitr
number of qubits can be found!.

To compare the structure of the possible LHV correlati
functions with our quantum one~12!, let us, in order to sim-
plify the analysis, choose specific values for the local ph
settings. First, the observer of beama will be allowed the
choice betweenfa

150 and fa
25p/2. The other observers

(y5a8,b,b8) can choose betweenfy
152p/4 andfy

25p/4.
Next, one can expand the quantum function~12! into a sum
of products of sine and cosine functions ofsinglephases

E~fa ,fa8 ,fb ,fb8!

5caca8cbcb81sasa8sbsb8

2 2
3 ~sasa8cbcb81caca8sbsb8!

2 2
3 ~saca8sbcb81casa8cbsb8

1casa8sbcb81saca8cbsb8!, ~20!

wheresx5sinfx andcx5cosfx . For each fixed set of four
local settings one can calculate the specific value of
quantum correlation functionE(fa

p ,fa8
q ,fb

r ,fb8
s ). We no-

tice that for the specific phase settings given above one
(y5a8,b,b8)

„cos~fy
1!,cos~fy

2!…5
1

A2
~1,1!

and

„sin~fy
1!,sin~fy

2!…52
1

A2
~1,21!,

whereas

„cos~fa
1!,cos~fa

2!…5~1,0!5 1
2 ~1,1!1 1

2 ~1,21!

and „sin~fa
1!,sin~fa

2!…5~0,1!5 1
2 ~1,1!2 1

2 ~1,21!.
2-3
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Therefore the quantum predictions can be arranged to for
tensor, too, and it is easy to write down its expansion in
product basis@the same basis as in Eq.~17!#

Ê5 (
k,l ,m,n51,2

qk,l ,m,nva
k

^ va8
l

^ vb
m

^ vb8
n . ~21!

The actual values of the expansion coefficientsqk,l ,m,n can
be straightforwardly obtained from Eq.~20!. However, note
that for the specific set of angles chosen above one has

(
k,l ,m,n51,2

uqk,l ,m,nu5
8

3A2
.1. ~22!

Keeping in mind that the expansion in terms of basis vec
is unique; the quantum correlation function out of which t
tensor Ê is built thus violates the necessary condition f
local realism~19!.

The quantum correlation function satisfies Eq.~19! only if
it is multiplied by a scaling factorv equal to or smaller than
3A2/8'53%, in other words, if one replaces it by

E8~fa ,fa8 ,fb ,fb8!5vE~fa ,fa8 ,fb ,fb8!. ~23!

In an interferometry experiment this scaling parameter is
rectly related to the visibility~contrast! of the interference
pattern. Visibilities lower than 1 can be interpreted as aris
due to some noise contribution to the state. If one consid
mixed states for the system of the type,

rv5~12v !rnoise1vuc&^c u, ~24!
s.

01010
a
e

rs

i-

g
rs

wherernoise5
1

16 Î represents completely uncorrelated no
contribution, anduc& stands for our pure state~6!, then the
aforementioned criticalv gives the threshold beyond whic
no LHV model can resemble the quantum predictions.

In conclusion, parametric type-II down-conversion n
only produces entangled photon pairs, but also highly
tangled four-photon states. The observation of these stat
experimentally much easier to achieve than for GHZ-ty
states. Here, the full set of probabilities of possible LH
predictions is compared with the quantum predictions res
ing in a significant distinction of the theories. The emissi
of more than two pairs will result in entangled states of mo
and more photons, although the correlation will decre
relative to the respective GHZ state.

This state enables implementation of various quant
communication schemes like quantum telecloning@16# or
multiparty teleportation@17#. The other interesting feature o
the considered state is that for a number of specific sett
one obtains perfect four-photon correlations. E.g., for all
cal phases equal to zero the correlation function is equal t
whereas forfb5fb8 ,fa2fa85p and fa81fb50 it is
equal to21. This directly enables one to transfer the sta
dard protocols for entanglement based quantum crypto
phy @18# to the four-photon case making multiparty quantu
key distribution and quantum communication complex
schemes feasible.
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