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Universal unitary gate for single-photon two-qubit states
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Upon entangling a spatial binary alternative of a photon with its polarization, one can use single photons to
study arbitrary 2-qubit states. Sending the photon through a Mach-Zehnder interferometer, equipped with sets
of wave plates that change the polarization, amounts to performing a unitary transformation on the 2-qubit
state. We show that any desired unitary gate can be realized by a judicious choice of the parameters of the
setup and discuss a number of applications. They include the diagnosis of an unknown 2-qubit state, an optical
Grover search, and the realization of a thought experiment invented by Vaidman, Aharonov, and Albert.
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I. INTRODUCTION

Entangled qubits are central to most schemes that h
been proposed for quantum communication, quantum in
mation processing, and quantum cryptography~secure key
distribution!. The basic unit consists of an entangled qu
pair.

Any binary quantum alternative can serve as a qubit a
therefore, different degrees of freedom of one physical ob
can represent several qubits. One could, for instance, en
some qubits in the motional degrees of freedom of a trap
ion and other qubits in its internal degrees of freedom. In
scheme, both qubits of an entangled pair are physically r
ized by a single photon: The photon’s polarization is o
qubit—the ‘‘polarization qubit’’—and the motional alterna
tive of traveling to the right or to the left is the secon
qubit—the ‘‘spatial qubit.’’

It is our objective to present an optical model that fac
tates experimental studies of qubit pairs as realized by si
photons. Such single-photon 2-qubit states were used
few recent experiments, including a variant of quantum te
portation@1#, a remote state preparation@2#, demonstrations
of simple quantum algorithms@3,4#, a quantitative study of
wave-particle duality@5#, and a test of noncontextual hidde
variable theories@6#. Here we go beyond these special app
cations and consider arbitrary manipulations of such stat

Studying qubit pairs extensively amounts to measur
observables of all kinds. The basic measurement is the
tection of the photon in one of four standard states given
combinations of traveling to the right or left and polariz
vertically or horizontally. This measurement is easily do
and experimental limitations are only due to imperfections
optical elements~such as polarizing beam splitters! and the
efficiency of the single-photon detection. More complicat
observables are measured by first transforming the respe
four eigenstates to the standard basis states, and then d
ing those. Accordingly, being able to perform arbitrary u
tary transformations on 2-qubit states is tantamount to be
able to measure arbitrary 2-qubit observables.

How this challenge is met, is shown in Sec. II, where
present experimental setups that realize universal uni
gates—for either one of the qubits itself and for both of th
1050-2947/2001/63~3!/032303~10!/$15.00 63 0323
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jointly. Then, in Sec. III, we turn to basic applications th
include controlled-NOT gates and the measurement of t
Bell basis. Advanced applications are discussed in Sec.
After dealing with the diagnosis of 2-qubit states and t
Grover search, we describe a proposal for a laboratory
sion of a thought experiment invented by Vaidman, Ah
ronov, and Albert in 1987. Indeed, their intriguing puzz
largely motivated the paper reported here. We close wit
summary and outlook. An appendix contains technical ma
rial of a more mathematical nature.

II. UNIVERSAL UNITARY GATES

A. Gates for the spatial qubit

The spatial qubit consists of the binary alternative
moving to the right (R) or to the left (L), as indicated in the
Mach-Zehnder geometry of Fig. 1. As usual, we use anal
of Pauli’s spin operators,

t5uL&^Ru, t†5uR&^Lu,

t15t1t†, t25 i t2 i t†, t35t†t2tt†,

1t5t†t1tt†, ~1!

so that the unitary action of a symmetric beam splitter
given by

UBS5
1

A2
~ uR&^Ru1uL&^Lu1 i uR&^Lu1 i uL&^Ru!

5
1

A2
~1t1 i t1!. ~2!

Likewise, the joint action of the mirrors inside the Mac
Zehnder setup is accounted for by the unitary operator

Umirr52 i ~ uL&^Ru1uR&^Lu!52 i t1 , ~3!

where the inclusion of a phase factor2 i is a convenient
convention because it givesUBSUmirrUBS51t , and phase
shifters in theR andL branches amount to
©2001 The American Physical Society03-1
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UR~f!5uR&eif^Ru1uL&^Lu5eift†t,

UL~f!5uR&^Ru1uL&eif^Lu5eiftt†
. ~4!

Putting these pieces together, one gets

~ uR&,uL&)→~UMZuR&,UMZuL&)5~ uR&,uL&)UMZ ~5!

for the whole Mach-Zehnder interferometer of Fig. 1. T
unitary operator
ha

ha

o

o

i-

03230
UMZ5UR~f2!UBSUR~w1!UL~w2!UmirrUBSUR~f1!

5expS i

2
~f11f21w11w2! DexpS i

2
f2t3D

3expS i

2
~w12w2!t2DexpS i

2
f1t3D ~6!

is represented by the numerical 232 matrix
UMZ5expS i

2
~w11w2! D S exp„i ~f11f2!…cos

w12w2

2
eif2 sin

w12w2

2

2eif1 sin
w12w2

2
cos

w12w2

2

D ~7!
ary
rs

r.
e
’s in
that multiplies the two-component row~uR&,uL&! in Eq. ~5!.
This matrix is slightly more general than the one in Eq.~1! of
Ref. @7#.

The latter form in Eq.~6!, which is a parametrization in
terms of three Eulerian anglesf1 , w12w2, and f2 com-
bined with an over-all phase factor, makes it obvious t
any unitary operator for theR/L qubit can be realized by a
Mach-Zehnder setup of the kind shown in Fig. 1. Note t
UMZ51t if f15f25w15w250, which is the reason for the
conventional phase factor in Eq.~3!.

B. Polarization gates

We regard vertical~v! and horizontal~h! polarization as
the basic alternatives of the polarization qubit, and the c
responding Pauli operators are

s5uh&^vu, s†5uv&^hu,

s15s1s†, s25 is2 is†, s35s†s2ss†,

1s5s†s1ss†. ~8!

The photon’s polarization is manipulated with the aid
wave plates. A quarter-wave plate~QWP!, with its major
axis at an angleu to the vertical direction, effects the trans
tion

~ uv&,uh&)→„UQWP~u!uv&,UQWP~u!uh&…5~ uv&,uh&)UQWP~u!,
~9!

where the unitary operatorUQWP is given by

UQWP~u!5e2 ius2e2 i ~p/4!s3eius2

5exp„2 i ~p/4!@s1 sin~2u!1s3 cos~2u!#…

5
1

A2
@1s2 is1 sin~2u!2 is3 cos~2u!#, ~10!
t

t

r-

f

and its 232 matrix representation reads

UQWP~u!5
1

A2
S 12 i cos~2u! 2 i sin~2u!

2 i sin~2u! 11 i cos~2u!
D . ~11!

Likewise, the action of a half-wave plate~HWP! is ac-
counted for by the unitary operator

UHWP~u!5@UQWP~u!#2

5e2 ius2e2 i ~p/2!s3eius2

52 i @s1 sin~2u!1s3 cos~2u!#, ~12!

represented by the matrix

FIG. 1. Mach-Zehnder setup that realizes an arbitrary unit
gate for the spatialR/L qubit. There are symmetric beam splitte
~BS’s! at the entry and exit, and four phase shifters~PS’s!—one
each in the entry and exitR ports, and two inside the interferomete
Additional PS’s in theL ports would be redundant; they could b
introduced, either as a supplement or a replacement of the PS
the R ports, but there is no need for them.
3-2
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UHWP~u!5@UQWP~u!#252 i S cos~2u! sin~2u!

sin~2u! 2cos~2u!
D .

~13!

Particular polarization changes can be done with a sin
QWP, or a single HWP, or with a QWP and a HWP
succession, and it is familiar@8# that the configuration of Fig
2, where a HWP is sandwiched by two QWP’s, enables
to perform arbitrary changes of the photon’s polarizat
state. This is most easily seen by expressing the net un
operator in terms of three Eulerian angles,

Upol5UQWP~g!UHWP~b!UQWP~a!

5exp„2 i ~g13p/4!s2…exp„i ~a22b1g!…s3

3exp„i ~a2p/4!s2… . ~14!

We do not get an over-all phase factor here as there is in
~6!, but that does not matter. For example,Upol51s obtains
for a5b6p/25g since UQWP(b6p/2)5@UQWP(b)#21,
and a5b5g gives Upol521s . A polarization dependen
phase shifter, that is

Upol5uv&e2 iq^vu1uh&eiq^hu, ~15!

is realized by the settinga5g51
4p, b51

2q21
4p.

C. Arbitrary 2-qubit gates

Unitary gatesUMZ andUpol for manipulations of theR/L
qubit and thev/h qubit individually are thus at hand. W
now combine them to construct universal gates that proc
arbitrary 2-qubit states unitarily. This is achieved by a mo
fication of the Mach-Zehnder setup of Fig. 1. In addition
the polarization-independent phase shifters already in pl
we let the photon pass through wave-plate combination
the kind depicted in Fig. 2. The entire setup is then as sho
in Fig. 3.

Where we hadUR andUL in the product givingUMZ in
Eq. ~6!, we now have corresponding factors in which t
phase factors of Eqs.~4! are replaced by unitary operato
that affect the polarization—denoted byV1 , V2 for the entry
and exit ports, and byVR, VL inside the interferometer. Eac
of them represents a phase shifter and a set of wave pl
and is therefore of the form~14! multiplied by a phase factor
Thus, the unitary operatorS associated with the 2-qubit gat
of Fig. 3 is given by

FIG. 2. By sending a photon through a QWP, then throug
HWP, finally through another QWP, its polarization state can
changed unitarily to any other one.
03230
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S5~t†tV21tt†!UBS~t†tVR1tt†VL!

3UmirrUBS~t†tV11tt†!, ~16!

or

S5t†tSRR1tt†SLL1tSLR1t†SRL=S SRR SRL

SLR SLL
D

t

,

~17!

where the 232 matrix refers to the spatialR/L alternative,
and the entries of this matrix are

SRR5
1

2
V2~VR1VL!V1 ,

SLL5
1

2
~VR1VL!,

SRL52
i

2
V2~VR2VL!,

SLR5
i

2
~VR2VL!V1 . ~18!

The physical significance of these polarization operators
immediate:SLR , for instance, accounts for the polarizatio
change associated with photons entering theR port and leav-
ing theL port.

There are no phase shifters or wave plates in the entry
exit L ports. Indeed, one does not need them because
various combinations shown in Fig. 4 are perfectly equiv
lent. Further configurations become possible when using
larizing beam splitters in the Mach-Zehnder setup.
course, when it comes to actual experimental realizatio
one variant could be more advantageous, for technical
sons, than the others, and then the freedom to choose fr

a
e

FIG. 3. Universal unitary gate for 2-qubit states. In addition
the PS’s of Fig. 1, there are now wave plates~WP’s! in the QWP/
HWP/QWP combination of Fig. 2. Each PS and WP’s set is sp
fied by a phase~calledf1,2 or w1,2 in Fig. 1! and three anglesa, b,
andg that state the orientations of the WP’s, as in Fig. 2.
3-3
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ENGLERT, KURTSIEFER, AND WEINFURTER PHYSICAL REVIEW A63 032303
among them is handy. For the more theoretical purpose
the present discussion, however, we will confine ourselve
setups of the kind depicted in Fig. 3.

The four operators in Eqs.~18! need not be unitary them
selves~and as a rule they are not!, but their form is much
restricted by the unitary property ofS, which implies the
identities

SRR
† SRR1SLR

† SLR51s ,

SRL
† SRL1SLL

† SLL51s ,

SRR
† SRL1SLR

† SLL50,

SRL
† SRR1SLL

† SLR50, ~19!

the last two being adjoints of each other. SinceV1 , V2 , VR,
andVL are unitary themselves, Eqs.~19! hold for the opera-
tors in Eqs.~18! by construction.

The reverse is also true: For any given unitary 2-qu
operatorS one can find four unitary polarization operato
V1 , V2 , VR, and VL such thatS is of the form ~17! with
~18!. To prove this assertion, we must show that Eqs.~18!
can be solved forV1 , V2 , VR, and VL provided that the
conditions~19! are obeyed.

A first technical step of this proof is given in the Appe
dix, where we establish thatS†S5SS†51s1t[1 implies that
the matrix entries of Eq.~17! are of the general form

SRR5uc̄1& cosq^c1u1uc̄2& cosu^c2u,

SLL5ux̄1& cosq^x1u1ux̄2& cosu^x2u,

FIG. 4. Equivalent setups involving a symmetric beam split
and three or four sets of phase shifter and wave plates. The ce
configuration has polarization-changing and phase-shifting
ments in both entry ports and both exit ports. The two top confi
rations have one empty input port; the two bottom configurati
have one empty output port. With corresponding polarization ga
as indicated, each one of the five setups represents the 2-qubi
221/2(t†tR2R11tt†L2L11 i tL2R11 i t†R2L1).
03230
of
to

it

iSRL5uc̄1& sinq^x1u1uc̄2& sinu^x2u,

iSLR5ux̄1& sinq^c1u1ux̄2& sinu^c2u, ~20!

where the kets and bras stand for particular sets of polar
tion states, each set being orthonormal,

^c j uck&5^c̄ j uc̄k&5^x j uxk&5^x̄ j ux̄k&5d jk , ~21!

but with no othera priori relation among them. Each set
specified by four parameters, two of them phases that do
enter the basic projectors. Since only states with the sa
subscript are paired in Eqs.~20!, six relative phases are re
evant, so that two of the eight phases can be fixed b
convenient convention. In other words, 14 parameters
needed to specify the various ket-bra products in Eq.~20!.
Together with the values ofq andu, there is thus a total of
16 parameters, as there should be.

For given left-hand sides in Eqs.~20!, one determines the
eigenvalues and eigenstates ofSRR

† SRR to find q, u, and thec
states~with arbitrary phases!. The eigenstates ofSRRSRR

† then
supply thec̄ states with well-defined phases relative to thec
states, and the eigenstates ofSLL

† SLL andSLLSLL
† yield thex

and x̄ states, respectively.
As soon as the ingredients of the right-hand sides of E

~20! are at hand, one constructs the fourV operators in ac-
cordance with

V15ux1&~7 i !1^c1u1ux2&~7 i !2^c2u,

V25uc̄1&~6 i !1^x̄1u1uc̄2&~6 i !2^x̄2u,

VR5ux̄1&e
(7 i )1q^x1u1ux̄2&e

(7 i )2u^x2u,

VL5ux̄1&e
(6 i )1q^x1u1ux̄2&e

(6 i )2u^x2u, ~22!

where one must use consistently the upper or lower sign
i in ()1 and ()2, but either one of the four possible sig
choices will do.

III. BASIC APPLICATIONS

A. Controlled-NOT gate

As a first application, a warm-up problem, we consid
controlled-NOT gates. If theR/L qubit controls thev/h qubit,
such a gate does nothing to theR input, but interchanges
v↔h on theL branch,

Scnot,t→s~ uRv&,uRh&,uLv&,uLh&)5~ uRv&,uRh&,uLh&,uLv&),
~23!

where the subscriptt→s indicates which is the control qubi
(t) and which the target qubit (s). Equivalently, we have

Scnot,t→s5t†t1s1tt†s1 ,

SRR51s , SLL5s1 , SRL5SLR50. ~24!
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One possibility has the upper signs in Eqs.~22!, combined
with q5u50 and

ux̄1&5ux2&5 i uc1&5 i uc̄1&5uv&,

ux̄2&5ux1&5 i uc2&5 i uc̄2&5uh&, ~25!

so that

V15VR5VL5s15 iU HWP~p/4!, V251s , ~26!

which are easily realized with three HWP’s and pha
shifters that provide the factor ofi. We note that for a
controlled-NOT gate, which interchangesv↔h on theR input
but leaves theL input unchanged, a single HWP forV1 is
sufficient. No other polarization changing elements
needed (V25VR5VL51s) and thus the Mach-Zehnder inte
ferometer isn’t even necessary. This is due to the spe
configuration chosen in Fig. 3 where theL input is empty by
convention and, accordingly, for the gate defined by Eq.~23!
a single HWP~plus phase shifter! in theL input suffices, too.

If, however, theR/L qubit is controlled by thev/h qubit,

Scnot,s→t51ts
†s1t1ss†,

SRR5SLL5s†s, SRL5SLR5ss†, ~27!

the Mach-Zehnder setup is needed. Here one could use

V152 i 1s , V25 i 1s ,

VR51s , VL5s35 iU HWP~0!, ~28!

that is phase shifters in the entry and exitR ports, nothing in
theR branch of the interferometer, and a phase shifter plu
HWP in theL branch.

B. Swapping gate

The defining property of a swapping gate is its effect o
product state,

~ uR&R1uL&L) ^ ~ uv&v1uh&h)

→~ uR&v1uL&h) ^ ~ uv&R1uh&L), ~29!

whereR,L and v,h are arbitrary probability amplitudes, s
that

Sswap~ uRv&,uRh&,uLv&,uLh&)5~ uRv&,uLv&,uRh&,uLh&),
~30!

or

Sswap5
1

2
~11t1s11t2s21t3s3!,

SRR5s†s, SLL5ss†, SRL5s, SLR5s†. ~31!

That Sswap interchanges the roles of the qubits is compac
stated by

Sswaptk5skSswap for k51,2,3, ~32!
03230
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which can serve as an alternative definition. The choice

V152 is15UHWP~p/4!,

V25 is15UHWP~2p/4!,

VR51s , VL52s352 iU HWP~0!, ~33!

~HWP’s at the entry and exit, nothing in theR branch, phase
shifter and HWP in theL branch! realizes the swapping gate

C. Walsh-Hadamard gate

A Walsh-Hadamard gate turns the states of the stand
basis into equal-weight superpositions,

SWH~ uRv&,uRh&,uLv&,uLh&)

5~ uRv&,uRh&,uLv&,uLh&)
1

2 S 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

D ,

~34!

so that

SWH5
1

2
~t11t3!~s11s3!,

SRR52SLL5SRL5SLR5
1

2
~s11s3!. ~35!

A simple realization is specified by

V151s , V2521s ,

VR

VL
J 52

16 i

2
~s11s3!52 ie6 ip/4UHWP~p/8!. ~36!

This choice needs nothing in the entry port, a phase shifte
the exit port, and HWP plus phase shifter in each arm of
interferometer.

D. Bell basis measurement

Another simple application is the measurement of the B
basis, where we find the 2-qubit photon in one of the fo
entangled superpositions

uB1&5221/2~ uRv&2uLh&),

uB2&5221/2~ uRh&2uLv&),

uB3&5221/2~ uRh&1uLv&),

uB4&5221/2~ uRv&1uLh&). ~37!

Since one can detect the states of the standard basis—na
uRv&, uRh&, uLv&, and uLh&—with the aid of polarizing beam
splitters~PBS’s!, see Fig. 5, all one needs is a 2-qubit ga
3-5
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ENGLERT, KURTSIEFER, AND WEINFURTER PHYSICAL REVIEW A63 032303
that turns the Bell basis into the standard one,

SBell~ uB1&,uB2&,uB3&,uB4&)5~ uRv&,uRh&,uLv&,uLh&).
~38!

Thus the ingredients

SBell5221/2~1t1s2 i t2s1!,

SRR5SLL5221/21s , SLR52SRL5221/2s1 ~39!

are required. They are supplied byV15V251s in conjunc-
tion with

VR5221/2~1s2 is1!5UQWP~p/4!,

VL5221/2~1s1 is1!5UQWP~2p/4!, ~40!

for example, where one has just two QWP’s inside the in
ferometer, one in each branch, and nothing in the entry
exit ports.

We note that an alternative way—one of many—of me
suring the Bell basis is stated by

221/2~t11t3!SswapScnot,s→t~ uB4&,uB3&,uB1&,2uB2&)

5~ uRv&,uRh&,uLv&,uLh&), ~41!

where the permutation of the Bell states is irrelevant in
present context. This measurement could be realized b
sequence of unitary transformations: first a controlled-NOT

gate~with v/h controllingR/L!, then a swapping gate, finall
a Walsh-Hadamard gate acting solely on theR/L qubit; each
of the three gates would require a Mach-Zehnder interfero
eter. But rather than having three successive interferome
we can equivalently use a single one, becauseany unitary
2-qubit gate can be realized by the setup of Fig. 3, as sh
in Sec. II C.

FIG. 5. For a measurement of an arbitrary 2-qubit basis, c
sisting of the mutually orthogonal statesua&, ub&, uc&, andud&, one
first transforms it to the standard basis with the aid of an appropr
2-qubit gate. The output is sent through PBS’s that reflect vertic
polarized photons and transmit horizontally polarized ones. A c
of either one of the four photon detectors~symbolized by semi-
circles! is indicative of the respective input state.
03230
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IV. ADVANCED APPLICATIONS

A. State diagnosis

As pointed out in the Introduction, we can measure a
given 2-qubit observable if we manage to detect its eig
state basis, consisting of the mutually orthogonal 2-qu
statesua&, ub&, uc&, andud&, say. This is done, see Fig. 5, b
mapping it onto the standard basis. And, of course, it doe
matter if this mapping involves additional phase factors.
one needs are transitions such asua&^au→uRv&^Rvu. In this
context it is expedient to introduce two 2-qubit operators
accordance with

A[ua&^au1ub&^bu2uc&^cu2ud&^du,

B[ua&^au2ub&^bu1uc&^cu2ud&^du, ~42!

so thatua&, . . . ,ud& are the joint eigenkets ofA andB with
eigenvaluesA85B8511, . . . ,A85B8521, respectively.
The essential property of the unitary gate in Fig. 5 is then
mapping ofA andB onto t3 ands3,

SA5t3S, SB5s3S. ~43!

For example, the operatorsA52t1s1 andB5t2s2 are as-
sociated with the Bell basis~37!, and one verifies Eq.~43!
for SBell of Eq. ~38! easily.

Permutation of the basis statesua&, . . . ,ud& have no ef-
fect on the basis as a whole. Therefore, one can in
change the roles ofA and B in Eq. ~43!, or replace either
one of them by their productAB5BA. The respective gate
are equivalent—either one can be used to measure the
in question—but some may be simpler to set up th
others. This is illustrated by the unitary transformation of E
~41!, which corresponds toA5t1s1 and B5t3s35
(2t1s1)(t2s2).

The statistical operator of a general 2-qubit state need
real parameters for its specification~see Ref.@9#, for ex-
ample!. The measurement of the probabilities associa
with one 2-qubit basis supplies 3 of the 15 parameters.
cordingly, the full diagnosis of the 2-qubit state of intere
requires the measurement of at least 5 suitably chosen b

A convenient set of such bases is reported in Table
where each basis is characterized by itsA,B pair. These pairs
identify five 2-qubit observables that are pairwise comp
mentary and thus optimal in the sense of Wootters and Fi
@10#. In the terminology of Brukner and Zeilinger@11#, the
five A andB’s are ‘‘a complete set of five pairs of comple
mentary propositions.’’

Rather than using a minimal set of this kind, one could
course measure a larger set of observables. This was don
White et al. @12#, who produced and studied polarizatio
entangled photon pairs—two qubits of thev/h kind. To our
knowledge, theirs was the first experiment in which a co
plete characterization of an entangled 2-qubit state w
achieved.
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TABLE I. A minimal set of five A,B pairs of 2-qubit observables. By measuring the correspond
2-qubit bases, one determines all 15 parameters that specify the statistical operator of the given 2-qu
The third column shows the unitary gatesS needed for the measurements, see Fig. 5. The last four colu
report possible choices forV1 , V2 , VR , andVL that realize the respectiveS, see Fig. 3. TheSof the first row
is the Walsh-Hadamard gate of Eqs.~35!; « is a stand-in for12 (11 i ).

A B S V1 V2 VR VL

t1 s1
1
2 (t11t3)(s11s3) 1s 21s 2«(s11s3) 2«* (s11s3)

t2 s2
1
2 (1t2 i t1)(1s2 is1) i 1s 2 i 1s «(1s2 is1) «* (1s2 is1)

t3 s3 1 1s 1s 1s 1s

t1s2 t2s3
1
2 (11t21s2 i 1ts21 i t2s2) 1s 1s 1s 2 is2

t2s1 t3s2
1
2 (12 i t21s2 i t1s12 i t3s1) 2 i 1s s1 1s is1
o
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B. Grover search

In the present context of entangled 2-qubit states, Gr
er’s problem@13# amounts to the following, see Fig. 6. Grov
er’s gate applies either one of the four unitary operators

G15122uRv&^Rvu5
1

2
~12t31s21ts32t3s3!,

G25122uRh&^Rhu5
1

2
~12t31s11ts31t3s3!,

G35122uLv&^Lvu5
1

2
~11t31s21ts31t3s3!,

G45122uLh&^Lhu5
1

2
~11t31s11ts32t3s3! ~44!

to any 2-qubit state, and one has to find out which one
actually acting without using the gate more than once.

The solution consists of three steps. First, we send aRv
photon through the Walsh-Hadamard gate of Sec. III C
produce the superposition

1

2
~ uRv&1uRh&1uLv&1uLh&). ~45!

Second, this is used as input for Grover’s gate, and the
put is

1

2
~2uRv&1uRh&1uLv&1uLh&) for G1 ,

FIG. 6. Scheme of an optical implementation of Grover’s sea
among four possibilities. A photon in the 2-qubit stateuRv& enters a
Walsh-Hadamard gate, then passes through the Grover gate, w
performs eitherG1 , G2 , G3, or G4. The photon is detected in on
of the standard basis states, after being processed bySG , and each
of the four final states corresponds uniquely to one of the f
settings of the Grover gate. Such an experiment was perfor
recently by Kwiatet al. @3#.
03230
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1

2
~ uRv&2uRh&1uLv&1uLh&) for G2 ,

1

2
~ uRv&1uRh&2uLv&1uLh&) for G3 ,

1

2
~ uRv&1uRh&1uLv&2uLh&) for G4 . ~46!

Third, since these are four mutually orthogonal stat
they can be mapped onto the standard basis states,
Fig. 5, here with the unitary 2-qubit gate appropriate
A52t3s1 andB52t1s3 in Eq. ~43!, namely,

SG5
1

2
~12t11s21ts12t1s1!. ~47!

Thus, a click of theRh detector, say, would tell us thatG2
was the case.

The choice

iV152 iV252VL51s , VR5s1 ~48!

realizesSG and thus offers a rather simple single-phot
implementation of Grover’s search among four possibiliti

We note that Kwiatet al. have already performed an ex
periment of this kind@3#. These authors also discuss exte
sions to Grover searches among more than four possibili

C. Vaidman-Aharonov-Albert puzzle

Fitting to the present context, we rephrase the intrigu
puzzle introduced by Vaidman, Aharonov, and Albe
~VAA ! in Ref. @14# ~and subsequently generalized by Be
Menahem@15# and Mermin @16#!: Chuck invites Doris to
prepare two photons for him, photon 1 vertically polariz
and photon 2 in any polarization state she’d like. He’ll th
perform a polarization measurement on photon 2, ther
measuring either one of the three Pauli operatorss1 , s2, or
s3, without, however, telling Doris which one of the thre
complementary measurements is actually done. Si
Chuck’s measurement destroys photon 2, he promise
mimic an ideal von Neumann measurement by turning
polarization of photon 1 from vertical to the one detected

h
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photon 2. Thereafter, Doris can measure any property
photon 1 allowed by quantum mechanics. Only after she
the measurement of her choosing, Chuck will tell Do
which one of the three polarization measurements he
performed, and he then challenges her to tell him the o
come of his measurement.

Readers who do not know as yet how Doris can m
Chuck’s challenge—thereby doing the seemingly imp
sible: ascertain the values of three mutually complemen
measurements—should try to figure it out themselves be
reading on. There is a lesson here about the wonderful th
entanglement can do for you.

Doris prepares the two photons in the entangled state

221/2
„u~Rv!1v2&1u~Lv!1h2&…. ~49!

As shown in Fig. 7, this is achieved by processing one p
ton of a polarization-entangled pair emitted by a suita
source@17# in the polarization state

221/2~ uv1v2&1uh1h2&). ~50!

Upon sending photon 1 through a polarizing beam spli
and rotating the transmittedh polarization tov, the polariza-
tion entanglement is turned into an entanglement betw
theR/L degree of freedom of photon 1 and thev/h degree of
freedom of photon 2, as described by the ket vector of
~49!. All of this happens during the first stage of the expe
ment sketched in Fig. 7.

At the second stage, Chuck does one of the three po
ization measurements. If he measuress1, say, finding61
leaves photon 1 in the state

221/2~ uRv&6uLv&), ~51!

and the subsequent change of its polarization fromv to v6h
puts photon 1 into

u16&[
1

2
~ uRv&6uRh&6uLv&1uLh&). ~52!

Likewise, if Chuck measuress2, photon 1 will emerge from
the second stage in one of the states

u26&[
1

2
~ uRv&6 i uRh&7 i uLv&1uLh&), ~53!

and a measurement ofs3 will produce

u31&[uRv& or u32&[uLh&. ~54!

Note that these six states are simply related to the Bell st
of Eq. ~37!,

u16&5221/2~ uB4&6uB3&),

u26&5221/2~ uB4&6 i uB2&),

u36&5221/2~ uB4&6uB1&). ~55!

At the third stage, Doris measures the VAA basis th
consists of the states defined by
03230
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S ^VAA1u

^VAA2u

^VAA3u

^VAA4u

D 5
1

2 S 1 2 i 1 1

1 i 21 1

21 i 1 1

21 2 i 21 1

D S ^B1u

^B2u

^B3u

^B4u

D .

~56!

FIG. 7. Proposed realization of the Vaidman-Aharonov-Alb
thought experiment of Ref.@14#. It involves two photons~circled
numbers! and consists of three stages~dashed boxes labeled b
boxed-in numbers!. In the first stage, Doris prepares two photo
for Chuck. She uses polarization-entangled photons from a so
of entangled photon pairs~SEPP!. Photon 1 moves to the left an
passes through a polarizing beam splitter. With a subsequent
wave plate, Doris converts the transmitted, horizontally polariz
amplitude into vertical polarization. The photons are then no lon
entangled in polarization. Instead, the polarization degree of f
dom of photon 2 is now entangled with the spatial degree of fr
dom of photon 1. In the second stage,~a! Chuck measures the
polarization of photon 2, either by distinguishing the linear pol
izations v and h, or the linear polarizationsv6h, or the circular
polarizationsv6 ih. Suitably set wave plates enable him to choo
between the three complementary polarization measurements~b!
Chuck then leaves a quantum record of his measurement resu
changing the polarization of photon 1 from vertical to the ju
detected polarization of photon 2. For this purpose he adjusts
sets of wave plates accordingly. In the third stage, with the aid o
appropriate unitary gate, such as the VAA gate specified by E
~58!, Doris measures the VAA basis~56! on photon 1. If Chuck
then tells her which one of the three polarization measurement
did at the second stage, Doris can infer, with absolute certainty,
result he obtained.
3-8
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The correspondingA,B pair of observables and their prod
uct,

A5uB1&^B4u1 i uB2&^B3u2 i uB3&^B2u1uB4&^B1u

5
1

2
~t31s11ts31t1s22t2s1!,

B52 i uB1&^B2u1 i uB2&^B1u1uB3&^B4u1uB4&^B3u

5
1

2
~t11s11ts12t2s31t3s2!,

AB5uB1&^B3u1 i uB2&^B4u1uB3&^B1u2 i uB4&^B2u

5
1

2
~2t21s11ts21t1s31t3s1!5BA, ~57!

permute the states of the Bell basis. The measurement o
VAA basis could, for example, employ a 2-qubit gateSVAA
that mapsA on t3 andB on s3, as in Eq.~43!. One realiza-
tion of this VAA gate is specified by

V15 is15UHWP~2p/4!,

V251s ,

VR5
12 i

A8
~1s1 is11 is22 is3!

5e2 ip/4UQWP~0!UQWP~2p/4!,

VL5
1

A2
~1s1 is2!

5UQWP~p/4!UQWP~0!UQWP~2p/4!, ~58!

which would need a HWP at theR entry, a phase shifter an
two QWP’s in one arm, three QWP’s in the other arm, a
nothing at the exit.

The probabilities listed in Table II are crucial in unde
standing how Doris infers the result of Chuck’s polarizati
measurement. Suppose, for instance, that theLv detector
clicked, so that Doris found photon 1 in state^VAA3u. Then
Chuck must have found11 if he measureds1, and21 if he
measureds2 or s3. The VAA basis~56! is, of course, cho-
sen such that there are enough entries ‘‘0’’ in Table II.

TABLE II. Probabilities for Doris’s measurement of the VAA
basis~at the third stage of Fig. 7! on the various states possib
prepared by Chuck~at the second stage!.

Doris Chuck prepares
finds u11& u12& u21& u22& u31& u32&

^VAA1u 1/2 0 1/2 0 1/2 0
^VAA2u 0 1/2 0 1/2 1/2 0
^VAA3u 1/2 0 0 1/2 0 1/2
^VAA4u 0 1/2 1/2 0 0 1/2
03230
he
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V. SUMMARY AND OUTLOOK

We showed how one can manipulate, and thus study,
tangled qubit pairs that are physically represented by sin
photons. One qubit is encoded in the polarization, the ot
in a spatial alternative of the photon. By purely optic
means, one can perform arbitrary unitary transformations
the qubit pair, so that any 2-qubit observable can be m
sured. Potential applications include the complete diagn
of the entangled 2-qubit state supplied by some source
the experimental realization of a laboratory version of t
Vaidman-Aharonov-Albert thought experiment.

The combined possibilities of performing any desir
unitary transformation and of measuring any observa
of one’s liking enables one to use qubit pairs for other p
poses as well. In particular, any unitary 2-qubit gate
equivalent to a four-way interferometer with certain relati
phases between the four partial amplitudes of cert
strengths. Therefore, a systematic quantitative study of fo
way interferometers—that might ask questions concern
wave-particle duality, for example—could be done wi
single photons and 2-qubit gates of the kinds we discus
above.

Finally, we note that the setup of Fig. 7—the optical r
alization of the VAA thought experiment—could be used f
the purposes of quantum cryptography. Chuck, who wo
now control stages 1 and 2, sends single photons to Do
each photon in one of the six 2-qubit product states of E
~55! ~which, incidentally, could be produced by differe
methods as well!. Doris, whose equipment would consist
the VAA gate and the photon detectors in stage 3 of Fig
measures the VAA basis for each photon. After receiv
public word from Chuck on which one of the three measu
ments he performed at stage 2a, Doris infers his meas
ment results. In this way, a random bit sequence is es
lished that can serve as a cryptographic key. These ma
are beyond the scope of the present paper and will be
cussed elsewhere@18#.
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APPENDIX: CONCERNING EQUATIONS „20…

Equations~19! state S†S51 more explicitly. Likewise
SS†51 requires

SRRSRR
† 1SRLSRL

† 51s ,

SLRSLR
† 1SLLSLL

† 51s ,

SRRSLR
† 1SRLSLL

† 50,

SLRSRR
† 1SLLSRL

† 50, ~A1!

of which the last two are adjoints of each other. We rec
that, in a finite-dimensional Hilbert space as is the case h
3-9
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the self-adjoint productsX†X andXX† are unitarily equiva-
lent for any operatorX. When applied toX5SLR , the first
line in Eqs.~19! and the second line in Eqs.~A1! imply that
SRR

† SRR andSLLSLL
† are unitarily equivalent. Upon denotin

their common eigenvalues by (cosq)2 and (cosu)2, the
eigenkets ofSRR

† SRR by uc1,2& and those ofSRRSRR
† by uc̄1,2&,

the eigenkets ofSLL
† SLL by ux1,2&, and those ofSLLSLL

† by

ux̄1,2&, we then arrive at the first two lines of Eq.~20!. In
doing so, some relative phases have been absorbed in
global phases of the various kets and bras, but there rem
the option to redefine them in accordance with

uck&→uck&e
iwk, uc̄k&→uc̄k&e

iwk,

uxk&→uxk&e
ifk, ux̄k&→ux̄k&e

ifk, ~A2!

for k51,2, without affecting the first two lines of Eqs.~20!.
Next, the second line of Eqs.~20! and the first line of Eqs.

~A1! tell us that

SRL
† SRL51s2SLL

† SLL

5ux1&~sinq!2^x1u1ux2&~sinu!2^x2u,
cu

n-
,

.

v

ys

5
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SRLSRL
† 51s2SRRSRR

†

5uc̄1&~sinq!2^c̄1u1uc̄2&~sinu!2^c̄2u, ~A3!

with the consequence thatSRL must be of the form

iSRL5uc̄1&e
2 ia sinq^x1u1uc̄2&e

2 ib sinu^x2u, ~A4!

where a and b are phases that are undetermined as y
Analogously, the first line of Eqs.~20! and the second line o
Eqs.~A1! establish

iSLR5ux̄1&e
ia sinq^c1u1ux̄2&e

ib sinu^c2u, ~A5!

where the phase factors are fixed by the third and fou
equations in Eqs.~20! and ~A1!.

Now, the substitutions~A2! amount to

a→a1w12f1 , b→b1w22f2 , ~A6!

in Eqs.~A4! and~A5!. Therefore, the phase factors e7 ia and
e7 ib can be removed by a suitable redefinition of the k
and bras, and this turns Eqs.~A4! and~A5! into the last two
lines of Eqs.~20!.
at,

tt.

ton
G.
@1# D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popes
Phys. Rev. Lett.80, 1121~1998!.

@2# M. Michler, R. Risco-Delgado, H. Bernstein, and H. Wei
furter, Remote State Preparation~Technical Digest, Glasgow
1998!, p. 99.

@3# P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G
White, J. Mod. Opt.47, 257 ~2000!.

@4# S. Takeuchi, Phys. Rev. A61, 052302~2000!.
@5# P. D. D. Schwindt, P. G. Kwiat, and B.-G. Englert, Phys. Re

A 60, 4285~1999!.
@6# M. Michler, H. Weinfurter, and M. Z˙ukowski, Phys. Rev. Lett.

84, 5457~2000!.
@7# M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Ph

Rev. Lett.73, 58 ~1994!.
@8# Polarized Light~Benchmark Papers in Optics/1!, edited by W.

Swindell~Dowden, Hutchinson, and Ross, Stroudsburg, 197!.
@9# N. Metwally and B.-G. Englert, J. Mod. Opt.47, 2221~2000!.
,

.

.

@10# W. K. Wootters and B. D. Fields, Ann. Phys.~N.Y.! 191, 363
~1989!.
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