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Zusammenfassung

Verschränkte Photonen sind von zentralem Interesse im Bereich experimenteller Quan-
tenphysik. Sie wurden für die ersten fundamentalen Tests der Quantentheorie ver-
wendet und bilden die Grundlage bei der Realisierung vieler neuer Kommunikation-
sprotokolle die auf quantenmechanischen Effekten basieren, wie zum Beispiel Quan-
tenkryptographie, “dense coding” oder Teleportation. Die effiziente Erzeugung ver-
schränkter Photonen sowie deren genaue Analyse ist folglich von großer Bedeutung,
insbesondere im Hinblick auf die Umsetzbarkeit der vielen Quantenkommunikation-
sanwendungen. Die vorliegende Arbeit behandelt im Wesentlichen das Problem der
effizienten Erzeugung von Photon Verschränkung. Das Hauptaugenmerk liegt dabei
auf der Entwicklung einer Quelle verschränkter Photonen, die den Anforderungen für
einen zuverlässigen und wirtschaftlichen Betrieb in Beispielanwendungen der Quan-
tenkommunikation genügt. Unser Ansatz verwendet die Emission korrelierter Photo-
nen Paare im Prozess der spontanen parametrischen Fluoreszenz. Der Prozess wird
mit Licht einer handlichen und billigen blauen Laserdiode gepumpt. Es werden zwei
alternative Aufbauten für die Quelle betrachtet. Der erste verwendet das altbewährte
Konzept der entarteten nicht-kollinearen Emission in einem einzelnen nichtlinearen
Kristall vom Typ II. Der zweite Ansatz basiert auf einer neuen Methode in der die
Emission zweier aneinaderliegender, phasenangepasster Kristalle vom Typ I kohärent
überlagert wird. Die Phasenanpassung erfolgt dabei im kollinearen nicht-entarteten
Zustand. Mit einer Rate von 106 Paaren in der Sekunde bei einem Interferenzkontrast
der Polarisationskorrelationen von > 98 % erwies sich die neue Methode als wesentlich
effizienter. Diese Leistungsfähigkeit, in Verbindung mit einem nahezu justagefreien
Betrieb, lässt dieses System vielversprechend für zukünftige praktische Anwendun-
gen, wie Quantenkryptographie, Detektorkalibrierung oder Praktikumsversuche für
Studenten erscheinen.

Ein weiteres Thema das im Rahmen dieser Arbeit behandelt wird ist die Verein-
fachung und Implementierung kommunikationstheoretischer Problemlösungen unter
Zuhilfenahme quantenmechanischer Effekte. Während der rasante Fortschritt der
letzten Jahre bei der Entwicklung von Quellen zur Erzeugung verschränkter Photo-
nenpaare zu einer großen Anzahl von Veröffentlichungen auf dem Gebiet der Zwei-
Parteien-Quantenkommunikation geführt hat, hielt sich die Zahl der Implementierun-
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viii Zusammenfassung

gen von Protokollen mit mehr als zwei Parteien in Grenzen. Dies liegt hauptsächlich
daran, dass die benötigten Mehr-Teilchen verschränkten Zustände mit dem heutigen
Stand der Technik schwer zu produzieren sind und darüber hinaus hohes Rauschen
aufweisen. Wir zeigen, dass Verschränkung nicht die einzige Ressource ist, die Mehr-
parteien-Quanten-Informationsverarbeitung ihre Stärke verleiht. Im Gegenteil, die
sequentielle Kommunikation und Transformation eines einzelnen Qubits kann bere-
its ausreichend für die Lösung bestimmter Probleme sein. Dies zeigen wir anhand
zweier verschiedener informationstheoretischer Problemstellungen, dem “secret shar-
ing” und der Kommunikationskomplexität. Die erste befasst sich mit der Aufteilung
eines kryptographischen Schlüssels auf mehrere Parteien in einer Weise, die für dessen
Rekonstruktion die Zusammenarbeit aller Parteien erfordert. Die zweite zielt auf die
Reduzierung der Kommunikation beim Lösen distributiver Berechnungen ab. Be-
merkenswerterweise ist das hier verwendete qubit-basierte Lösungsverfahren mit dem
heutigen Stand der Technik umsetzbar, was wir durch dessen Realisierung im Labor
für 6 bzw. 5 Personen zeigen. Nach unserem Wissen ist dies die höchste Anzahl
an aktiv agierenden Teilnehmern in einem Quantenkommunikationsprotokoll die je
implementiert wurde. Die erfolgreiche Lösung und Implementierung von Problem-
stellungen aus den Bereichen der Kryptographie und der Informatik bringt somit
Mehrparteien Quantenkommunikation einen Schritt näher an kommerzielle Anwen-
dungen heran.



Summary

Entangled photons are at the heart of experimental quantum physics. They were
used for the first fundamental tests of quantum theory, and became a basic building
block for many novel quantum protocols, such as quantum cryptography, dense cod-
ing or teleportation. Therefore, the efficient generation of entangled photons, as well
as their distribution and accurate analysis are of paramount importance, particularly
with regard to the practicability of many applications of quantum communication.
This thesis deals largely with the problem of efficient generation of photonic entangle-
ment with the principal aim of developing a bright source of polarization-entangled
photon pairs, which meets the requirements for reliable and economic operation of
quantum communication prototypes and demonstrators. Our approach uses a cor-
related photon-pair emission in nonlinear process of spontaneous parametric down-
conversion pumped by light coming from a compact and cheap blue laser diode. Two
alternative source configurations are examined within the thesis. The first makes
use of a well established concept of degenerate non-collinear emission from a single
type-II nonlinear crystal and the second relies on a novel method where the emis-
sions from two adjacent type-I phase-matched nonlinear crystals operated in collinear
non-degenerate regime are coherently overlapped. The latter approach showed to be
more effective, yielding a total detected rate of almost 106 pairs/s at > 98 % quan-
tum interference visibility of polarization correlations. This performance, together
with the almost free of alignment operation of the system, suggest that it is an espe-
cially promising candidate for many future practical applications, including quantum
cryptography, detector calibration or use in undergraduate lab courses.

The second issue addressed within the thesis is the simplification and practical
implementation of quantum-assisted solutions to multiparty communication tasks.
While the recent rapid progress in the development of bright entangled photon-pair
sources has been followed with ample experimental reports on two-party quantum
communication tasks, the practical implementations of tasks for more than two par-
ties have been held back, so far. This is mainly due to the requirement of multi-
party entangled states, which are very difficult to be produced with current methods
and moreover suffer from a high noise. We show that entanglement is not the only
non-classical resource endowing the quantum multiparty information processing its

ix



x Summary

power. Instead, only the sequential communication and transformation of a single
qubit can be sufficient to accomplish certain tasks. This we prove for two distinct
communication tasks, secret sharing and communication complexity. Whereas the
goal of the first is to split a cryptographic key among several parties in a way that its
reconstruction requires their collaboration, the latter aims at reducing the amount
of communication during distributed computational tasks. Importantly, our qubit-
assisted solutions to the problems are feasible with state-of-the-art technology. This
we clearly demonstrate in the laboratory implementation for 6 and 5 parties, respec-
tively, which is to the best of our knowledge the highest number of actively performing
parties in a quantum protocol ever implemented. Thus, by successfully solving and
implementing a cryptographic task as well as a task originating in computer science,
we clearly illustrate the potential to introduce multiparty communication problems
into real life.
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Chapter 1
Introduction

1.1 Quantum mechanics

Some discoveries bring answers to questions. Others are so deep, that they cause a
radical revolution in our fundamental comprehension of nature. Without any doubt,
quantum mechanics has done so.

1.1.1 The underlying principles

From the origin of quantum mechanics at the beginning of twentieth century, scien-
tists struggled to bring its peculiar theoretical frame in accordance with an intuitive
view dictated by everyday’s experience and common sense. The central tenet of this
theory - probabilistic description of physical objects - seriously undermined the dogma
of determinism, which was deeply embedded in physical theories over many centuries.
In its base the determinism, as distinctly exemplified by Newtonian physics, states
that the knowledge of position and momentum of any physical object at one time
determines these quantities at all other times, provided, of course, that some other
object does not interfere with it. However, in quantum mechanics, the physical ob-
jects, such as particles, do not have necessarily well defined positions and momenta.
Instead, they are represented by what is called a wave function. It contains all the
information we can know about a particle, both its position, and its momentum. The
square of the wave function gives the probability that the particle will be found at
certain position. The rate, at which the wave function varies from point to point,
gives the momentum of the particle.

In 1927 Werner Heisenberg realized one of the major implications of the wave-
function description - the uncertainty principle. This principle imposes fundamental
limits on a measurement accuracy of two complementary variables, such as position
and momentum of a particle. The more precisely the position is determined, the less
precisely the momentum is known in this instant, and vice versa. For example, the

1



2 Introduction 1.1

wave function with a form of a plane wave, represents a particle with precisely de-
fined momentum, but gives uniform probability of finding particle anywhere in space.
On the other hand, a particle whose spatial spread is described by a δ-function is
perfectly localized, but there is maximum uncertainty in determination of its mo-
mentum. In this way, quantum mechanics introduces its inherent duality: Indeed,
we can precisely determine some physical quantities of a physical object, however at
the cost of precluding the possibility of ascertaining the other, complementary phys-
ical quantities. This concept is in stark contrast with deterministic classical physics,
which assumes the precise knowledge of all physical quantities at a given time.

Still, quantum mechanics contains a kind of determinism, but definitely not the
one envisaged by Newton. Namely, if a wave function at one time is known, then its
evolution to any other time is determined by the so called Schrödinger equation. It
allows us to predict future, but somewhat in a “fuzzy” way, when compared to the
classical 19th century view.

1.1.2 EPR paradox and Bell’s theorem

The success of quantum mechanics in elucidation of known phenomena at atomic-
length scales was indisputable. However, the apparent randomness inherent in quan-
tum mechanical description was an eyesore for many physicist, first and foremost for
Albert Einstein, who summed up his views in his famous phrase, ’God does not play
dice’. He believed there exists an underlying reality, in which all the physical objects
have well defined positions and momenta and would evolve according to deterministic
laws, in spirit of Newton’s classical mechanics. Over the years, he proposed a num-
ber of objections to uncover loopholes in the structure of quantum mechanics and to
show that its theoretical framework does not say the last word about the function of
the universe. His effort culminated by a famous attack on the uncertainty principle,
known as EPR paradox, which he devised together with his colleagues Boris Podol-
sky and Nathan Rosen in 1935 [1]. Their strategy was straightforward: Give a proof
that every particle has its certain position and momentum at a given instant, and
thereby conclude that the uncertainty principle discloses a fundamental restriction on
the quantum-mechanical approach. Simply, if quantum mechanics fails to describe
all the elements of the reality, such as positions and momenta of particles, it cannot
be considered as a complete theory. It cannot be a final link in the chain of physical
theories.

Einstein, Podolsky and Rosen were partly inspired in their argumentation by
Heisenberg’s initial vague explanation of the uncertainty relation: The simultaneous
exact determination of position and momentum of a particle cannot be accomplished,
because the measurement of one quantity necessarily disturbs the result of the mea-
surement of the other quantity. They cleverly suggested a method how to measure
the position and momentum of a particle without disturbing it in any way. The
cornerstone of this method is a pair of spatially distant particles (I and II) with
perfectly correlated momenta and positions. The wave function of the composed
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system (I + II) cannot be written as a product of the wave functions of individual
particles. Thus, all the information one can infer about the particles is contained in
their mutual correlations and the position or momentum of either particle cannot be
predicted, unless a measurement is performed. Such particles later came to be called
“entangled”, the term introduced by Schrödinger. Now, let’s assume the position of
“particle I” is measured. By this act, the position of “particle II” is determined, too,
due to the existence of tight correlations. Analogously, by measuring the momentum
of particle I, the momentum of particle II can be ascertained. Thus, even though we
did not disturb particle II in any way1, its complementary properties can be predicted
with certainty. In fact, the EPR paradox does not contradict the uncertainty rela-
tion in the first place, because the described measurement procedure does not allow
simultaneous determination of the position and momentum of particle II. However,
EPR paradox shows that these complementary properties pertaining to particle II do
have simultaneous “reality”, which was according to Einstein, Podolsky and Rosen
sufficient to assert the incompleteness of quantum-mechanical description. The op-
ponents of this interpretation, represented particularly by Niels Bohr, eliminated the
raised problem by shifting it to a rather philosophical level. They claimed there is
little point to ask whether a particle has defined position and momentum, if they
cannot be determined simultaneously. Their conclusion was that any physical theory
should deal only with measurable properties of the universe. Since no means seemed
to exist to decide which view was right, because the whole issue was essentially an
antithetic statement, the question remained open for almost thirty years, until John
Bell discovered his famous theorem.

The incompleteness of quantum mechanics concluded from the EPR paradox im-
plies that additional parameters must be supplemented into the description of physical
objects, in order to fully account for their properties. These parameters are called
hidden and can be considered, in a sense, to provide a program, which predetermines
the measurable properties of each particle. Furthermore, they are claimed to be lo-
cal, since any non-local features were not required to complete quantum-mechanical
description according to hidden variables models. In 1964 John Bell proposed a mech-
anism to test for the existence of these local hidden variables, and proved that entire
family of hidden variables models cannot reproduce exactly the quantum-mechanical
predictions, forcing us to abandon at least one of the EPR’s premises, the reality or lo-
cality [2]. He drew this conclusion by investigating the statistical predictions obtained
in a simplified version of the EPR experiment, which was proposed by David Bohm
[3]. Bohm’s version assumes a source emitting pairs of entangled spin-1/2 particles,
such as positron-electron pairs, which are freely moving in opposite directions. Two
independent observers, each receiving one of the particles, perform measurements of
the spin components along a predefined direction using Stern-Gerlach apparatuses.
According to the rules of quantum mechanics, the measured spin component can take

1Here the locality principle is assumed, i.e., the act of measurement on particle I cannot disturb
the other particle (II) due to their sufficient spatial separation.
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only two values, for simplicity called spin-up and spin-down2. The exact simultane-
ous determination of spin along more than one direction is forbidden. Thus, in spirit
of the original EPR paradox, one may ask a question, whether the spin components
along any direction are real, existing quantities, similarly, as it was done before with
the position and momentum.

However, Bell extended the idea and studied the experimental scenario, which
includes more measurement settings per observer, i.e. the spin of counterpropagating
particles is measured along a given set of directions. For example, let’s consider the
case, where a set containing three directions (n1,n2,n3), perpendicular to the propa-
gation line of particles and separated by 120◦, is used. To assure the locality principle
the observers are sufficiently separated and they randomly and independently choose
the direction to determine spin projection for every measurement run. Assuming the
particles are in the singlet state3, the following two statistical features are predicted
by quantum mechanics after repeating the experiment many times: (i) when the same
measurement settings are used by the observers, always the anti-correlated, i.e., the
opposite results are obtained; (ii) when averaging over all 9 possible combinations
of the measurement settings, the observers obtain the anti-correlated results with
probability PQM = 1/2, i.e., exactly in half of the runs. To construct a local hidden
variable model for the described situation, let’s assume that the particles carry for
every run a program, which determines the measurement outcomes for all possible
settings. For example, the program (up, down, up) means that if the first setting n1 is
chosen, spin-up is measured; for the second setting n2, spin-down is obtained etc. The
statistical feature (i) implies that the entangled particles must carry complementary
programs with anti-correlated entries; e.g., for (up, down, up), the complementary
program has the form (down, up, down). For this particular example, five combina-
tions of the measurement settings (n1n1,n2n2,n3n3,n1n3,n3n1) yield the opposite
results and four of them (n1n2,n2n1,n2n3,n3n2) identical results. Thus, assuming
the randomness in choice of measurement settings, each of the cases is equally likely,
leading to the probability P = 5/9 of obtaining anti-correlated results. Evidently,
the same conclusion holds also for all the other programs, which contain two identical
entries. The only difference is encountered for the remaining two possible programs,
which contain three identical entries, i.e. for (up, up, up) and (down, down, down).
For such programs, the results are always anti-correlated for any combination of set-
tings. Thus, the Bell inequality P > 5/9 must hold on average, regardless of how
the programs are distributed from one measurement run to the other. However, the
quantum mechanical prediction violates this inequality, PQM = 1/2 ≯ 5/9, leading to
a contradiction with the used local hidden variable model. One can show that the
considered model is completely general and that there is no other local hidden expla-

2The exact values are 1/2 and -1/2. Therefore, electrons are spin-1/2 particles.
3The singlet state has a total spin 0 and it is rotationally invariant which means that if we act

on both particles with the tensor product of two identical rotations, the resulting state remains
unchanged.
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nation, which could account for both aforementioned statistical features predicted by
quantum mechanics. The presented argument, devised by David Mermin, shows in
an intuitive way the nature of Bell’s discovery by exemplifying the appropriate local
hidden variable model [4].

Interestingly, the conflict between local realism and quantum mechanics exposed
by Bell’s theorem can be even sharpened using a system of three or more entangled
spin-1/2 particles in a so-called Greenberger-Horne-Zeilinger (GHZ) state [5]. For
such a system the local realistic model predicts always a class of measurement out-
comes, which quantum mechanics never allows and vice versa. This always-never
argument against local realism first shown by the GHZ theorem totally eliminates
the statistical nature of Bell’s theorem and resorts to the requirement of Bell-type
inequalities only due to imperfections in practical realizations and finite number of
measurement runs.

1.1.3 Clauser-Horne-Shominy-Holt inequality

The most widespread version of Bell’s inequality used in experimental tests is the one
from Clauser, Horne, Shimony and Holt (hereafter referred to as CHSH) requiring
only two measurement settings per observer [6]. Notably, this version was the first,
which did not rely upon the assumption of perfect correlations and was therefore
perfectly suited for the actual experiments.

Local realistic description. To derive the CSHS-inequality, Bohm’s experimental
scenario with space-like separated measurements on spin-1/2 particles (I and II) is
considered. The measurement results on particles I and II are described using the
functions A(nA, λ) and B(nB, λ), respectively, with output values ±1, corresponding
to either spin-up or spin-down outcome. To comply with the locality premise, the
function A (B) depends only on the orientation of a local Stern-Gerlach measurement
apparatus described by a unit vector nA (nB). Moreover, a parameter (or a set of
parameters) λ predetermining the measurement outcomes has to be included into
the description according to a hidden variable concept. Introducing two alternative
orientations n′A and n′B, the following equality holds for any measurement run,

[A(nA, λ) + A(n′A, λ)] B(nB, λ) + [A(nA, λ)− A(n′A, λ)] B(n′B, λ) = ±2, (1.1)

since the functions A and B are two-valued; either [A(nA, λ) + A(n′A, λ)] = 0 and
[A(nA, λ)− A(n′A, λ)] = ±2, or [A(nA, λ) + A(n′A, λ)] = ±2 and [A(nA, λ)−
A(n′A, λ)] = 0. Thus, for the average over a statistical ensemble of measurement
runs we obtain

|〈A(nA)B(nB)〉+ 〈A(n′A)B(nB)〉+ 〈A(nA)B(n′B)〉 − 〈A(n′A)B(n′B)〉| ≤ 2. (1.2)



6 Introduction 1.1

Figure 1.1: Bloch sphere. Any
point on the sphere defined by
the spherical angles θ and φ
represents a corresponding spin-
1/2 state |ψ〉.

This is known as the CHSH inequality, giving an upper bound on the correlations
between measurement results under the assumption of local realism.

Quantum violation. Quantum mechanics allows to directly calculate the correlation
functions in the inequality (1.2). For that, we start with a singlet state:

|Ψ−〉 =
1√
2

(|0〉I|1〉II − |1〉1|0〉II) , (1.3)

where |0〉 and |1〉 represent two orthogonal states of particles I and II, corresponding
to two possible spin projections onto an arbitrary direction n; e.g. “0” corresponds
to spin-up and “1” to spin-down. The measurement on either particle is represented
by the projector operator P̂ (θ, φ) = |ψ(θ, φ)〉〈ψ(θ, φ)|, where

|ψ(θ, φ)〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. (1.4)

This qubit parametrization assigns each point on a Bloch sphere to a unique pure
quantum state, see figure 1.1.

The maximum violation of the CHSH inequality (1.2) occurs for such set of ori-
entations {nA,n′A,nB,n′B}, which obeys the following conditions: angles ](nAnB) =
](nBn′A) = ](n′An′B) equal π/4 and the angle ](nAn′B) equals 3π/4. These ori-
entations correspond to the projector operators {P̂A, P̂ ′

A, P̂B, P̂ ′
B}, defined as, e.g.,

P̂A = P̂ (0, 0), P̂ ′
A = P̂ (π/2, 0), P̂B = P̂ (π/4, 0) and P̂ ′

B = P̂ (3π/4, 0). Given these
forms of observables, the following expectation values can be easily calculated:

〈Ψ−|P̂AP̂B|Ψ−〉 = 〈Ψ−|P̂ ′
AP̂B|Ψ−〉 = 〈Ψ−|P̂ ′

AP̂ ′
B|Ψ−〉 = −〈Ψ−|P̂AP̂ ′

B|Ψ−〉 = cos(π/4).
(1.5)

Assuming that the above operators reveal in turn the values of the dichotomic func-
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tions A and B in (1.2), their substitution can be done,

∣∣∣〈Ψ−|P̂AP̂B|Ψ−〉+ 〈Ψ−|P̂ ′
AP̂B|Ψ−〉+ 〈Ψ−|P̂ ′

AP̂ ′
B|Ψ−〉 − 〈Ψ−|P̂AP̂ ′

B|Ψ−〉
∣∣∣

= 4 cos(π/4) = 2
√

2 > 2, (1.6)

obtaining the Cirel’son’s upper limit on the violation of CHSH inequality [7]. There
are three other states leading to the maximal violation:

|Φ−〉 = (1⊗ σ̂x)|Ψ−〉, |Φ+〉 = (1⊗ iσ̂y)|Ψ−〉, |Ψ+〉 = (1⊗ σ̂z)|Ψ−〉, (1.7)

where 1 is the identity matrix and

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
(1.8)

are well-known Pauli matrices. The three states defined in Eq. (1.7) together with
|Ψ−〉 form an orthonormal basis to four-dimensional Hilbert space of two qubits and
are usually referred to as Bell states.

Experimental tests. Prompted by the derivation of the CHSH inequality, a first
series of tests using polarization-entangled photon pairs emitted in an atomic cascade
transition were performed in the early 1970s [8, 9], clearly corroborating the quantum
predictions. Yet, the local realistic explanation of the obtained results remained at
least logically possible, because of the existence of two loopholes arising from the
imperfections of the experimental tests.

The first loophole occurs, whenever the communication of the measurement set-
ting from one observer to the other cannot be excluded before completing the actual
measurement process. This opens the possibility of establishing the correlations be-
tween remote measurement processes, thereby allowing local hidden variable interpre-
tation of the obtained results. The first experiment addressing the locality loophole
by Aspect et al. [10] employed fast quasi-periodic modulators to select the settings
of polarization analyzers only after the entangled photons left the source. This re-
markable experiment was further refined in the test of Weihs et al. [11], where strict
locality conditions were enforced by using fast, random switching of the analyzers
that were separated by about 400 meters.

This left only the second loophole, so called detection-efficiency or fair-sampling
loophole, open. It arises whenever the detection of particles is inefficient enough so
that the detected events may be unrepresentative of the whole ensemble. Even though
a significant progress in the area of semiconductor detectors has been made during
the last decade, and single-photon detection with close to perfect quantum efficiency
has been reported [12], no photonic Bell test eliminating the fair-sampling hypothesis
has been presented until now, due to other experimental difficulties. The only Bell
test successful in this respect was performed with a pair of entangled beryllium ions
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[13]. Regrettably, the actual separation of the ions by a distance of about 3 µm gives
no foreseeable chance to close the locality loophole with that system.

Hence, after almost 50 years since Bell’s discovery, one must still face the situation
that no conclusive experimental test ruling out the local realistic description of nature
has been accomplished. The present challenge is to design and perform such an
experiment, closing both loopholes at the same time.

1.2 Quantum information processing and communica-
tion

Apart from the fundamental motivations, quantum superposition and quantum en-
tanglement are the bedrock on which new paradigms for information transmission,
storage, and processing can be built. Current developments eloquently demonstrate
that these characteristic quantum phenomena may enable one to perform some tasks
of practical interest beyond the capabilities of any other known (classical) method.
The preeminent examples of such tasks are quantum cryptography, offering new meth-
ods for secure communication with its inviolability ensured by the laws of quantum
physics [14, 15]; quantum dense coding, allowing to enhance the capacity of a commu-
nication channel [16]; or quantum teleportation, the remote transmission and recon-
struction of the state of a quantum system [17]. In the field of quantum computation,
novel procedures, as often exemplified by Shor’s algorithm to factorize large numbers
[18] and Grover’s algorithm for searching data bases [19], were shown to lead to a
dramatic speed-up over any (known) classical computation.

All these discoveries initiated a worldwide search for new technologies to reali-
ze quantum communication and computation systems. The early experiments have
highlighted how difficult it will be to build working prototypes, by identifying deco-
herence in quantum systems as a key issue in practical implementations. In quantum
communication the major challenge lies in the error-free transmission of quantum
information over noisy and lossy communication channels, followed by efficient re-
covering of the encoded information. In quantum computation main difficulties stem
from the requirement of strong coupling between quantum bits by gates, while at the
same time their complete decoupling from external influences, except during write,
control and readout the phases when information must flow in and out of the com-
puter.

1.3 Overview

This thesis predominantly focuses on the field of quantum communication. Therein,
an impressive progress has been achieved since the entry into the experimental era
marked by the first demonstration of single-photon quantum cryptography over the
distance of 32 cm in 1989 [20]. Many novel concepts, protocols and methods have been
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demonstrated practically, some even outside the ideal lab environment. Nevertheless,
there is still a long way to go - the practicality of the systems must be improved,
higher bit rates and longer distances must be achieved before any meaningful successes
can be claimed. The work presented here contributes to these lines of research by
addressing two particular issues.

First, the topic of efficient and practical generation of entangled photon pairs via
spontaneous parametric down-conversion (SPDC) is addressed within the thesis. The
chapter 2 is intended to cover the theoretical aspects associated with the problem. It
brings the detailed theoretical description of the SPDC process and reviews the most
common methods of preparation of the emitted photon pairs in maximally-entangled
Bell states encoded in different accessible degrees of freedom. Particular attention is
devoted to polarization encoding. The subsequent chapter 3 gives the details about
the actual design and practical realization of two different compact sources using a
blue laser diode as the pump of SPDC. The major parameters of the sources and
their output performance are compared to other state-of-the-art implementations.

Second, the chapter 4 deals with two apparently different communication tasks,
the secret sharing and the communication complexity. Whereas the goal of the first is
to distribute a cryptographic key among several parties in a way that its reconstruc-
tion requires the collaboration of the parties, the latter aims at reducing the amount of
communication during distributed computation. In common, both tasks were shown
to be efficiently solvable via the resource of multi-partite entanglement. This is, how-
ever, very difficult to be produced in practice, making the implementation of the
tasks technologically very challenging. We show that the quantum-assisted solution
to both tasks can be significantly simplified via novel protocols based on sequential
communication and transformation of single qubits. This makes the tasks feasible
with current experimental methods and above all, scalable in practical applications.
These benefits are clearly demonstrated in the proof-of-principle implementations of
the tasks described at the end of the chapter.





Chapter 2
Spontaneous parametric
down-conversion

In this chapter the theoretical model of spontaneous parametric down-conver-
sion is reviewed, putting a particular emphasis on the analysis of spectral and
spatiotemporal characteristics of down-conversion light. In addition, the basic
methods for preparation of the emitted photon-pairs in maximally entangled
Bell states encoded in the polarization degree of freedom are discussed here.

Parametric processes are widely used in nonlinear optics. In the field of quan-
tum optics they are applied for the generation of quantum fields having no classical
analogue. Spontaneous parametric down-conversion is probably the best known ex-
ample of a simply realizable parametric process manifesting an inherent quantum-
mechanical nature of electromagnetic fields. It was first investigated theoretically by
Klyshko in late 1960s [21] and experimentally by Burnham and Weinberg few years
later [22]. Their pioneering work was followed by a wealth of studies paying a partic-
ular attention to nonclassical photon-number statistics [23] and correlation effects of
down-conversion fields [24]. Moreover, due to a strong time correlation of the gener-
ated fields [25] and output powers in sub-picowatt range, the first applications in the
field of metrology were recognized soon [26].

In the SPDC process photons from an intense laser beam interact with a dielec-
tric medium, and split into two lower-frequency photons. This process is forbidden in
vacuum by the rules of quantum electrodynamics, but can occur with a small proba-
bility in nonlinear crystals having non-zero second-order susceptibility χ(2), provided
that energy and momentum conservation is respected. In the following, the physics
of nonlinear χ(2) media is briefly reviewed.

11
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2.1 Nonlinearity and anisotropy of a dielectric

The presence of electromagnetic fields in a dielectric causes a polarization of the
medium. The polarization [dipole moment per unit volume; P (t)] induced in the
medium can be expanded in power series of instantaneous electric field E(t) [27]:

P = ε0

(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
, (2.1)

where χ(n) are nonlinear dielectric susceptibility coefficients and ε0 is permittivity
of vacuum. Under most conditions, the quadratic and higher-order terms can be
neglected in the expansion (2.1), which means that the response of the medium
to the applied field is linear (linear optics). Nevertheless, for some materials and
sufficiently high intensities of the electric field, the quadratic or cubic polarization
become significant and the response is nonlinear. Due to the fact that SPDC is a
second-order nonlinear process, the series (2.1) can be truncated after the second
term for our purposes and the cubic nonlinearity will not be considered any longer.

Suppose, the electric field E(t) = A cos(ωt) pumps a medium with nonzero
quadratic nonlinearity. Then its response can be written as

P (t) = ε0χ
(1)A cos(ωt) +

1

2
ε0χ

(2)A2
[
1 + cos(2ωt)

]
. (2.2)

The polarization of the medium contains, additionally to the frequency ω of the in-
cident light, a component oscillating at the second harmonic frequency. Dividing
the polarization P into its linear P L = ε0χ

(1)A cos(ωt) and nonlinear part PNL =
1
2
ε0χ

(2)A2[1 + cos(2ωt)], the propagation of electromagnetic fields in a nonlinear
medium is described by the wave equation:

∇2E − 1

c2

∂2E

∂t2
= −S (2.3)

S = −µ0
∂2PNL

∂t2
, (2.4)

where c and µ0 are the speed of light in vacuum and permeability of vacuum, re-
spectively. The function S represents a source emitting the electromagnetic field:
whenever ∂2PNL

∂t2
is nonzero, charges in the medium are being accelerated, which,

according to Larmor’s theorem from electromagnetism, leads to generation of elec-
tromagnetic radiation. Due to the fact that S contains a component with frequency
2ω, an electromagnetic field at this frequency is emitted from the medium. Thus,
a portion of the incident field is converted to the output at the second harmonic
frequency. Thereof, this process is called second harmonic generation.

The SPDC process can, in a sense, be considered as the inverse of second harmonic
generation. Whereas in the latter case two incident photons generate one photon at
the double frequency, in down-conversion one photon incident on the medium with
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nonzero χ(2) decays into two lower-frequency photons [28], which are for historical
reasons often called the signal photon and the idler photon. Denoting the angular
frequencies of the interacting fields as ωp, ωs and ωi (pump, signal and idler field,
respectively), the energy conservation must hold:

ωp = ωs + ωi. (2.5)

This condition is not the only, which has to be fulfilled for SPDC to occur. This
is due to the fact that the optical materials are dispersive causing the relative drift
between the interacting fields. As a result the fields will not be generally in phase
over a substantial space region: the signal and idler fields created at one place in a
nonlinear medium will interfere destructively with fields created at another place so
that no conversion occurs whatsoever. Therefore, the fields have to be phase-matched,
which can be expressed by the condition:

kp = ks + ki, (2.6)

where km are the wave vectors of the waves with frequencies ωm (m = p, s, i) and

km = |km| = ωmnm

c
. (2.7)

Here, the quantities nm = n(ωm) are the refractive indices of the three interacting
waves.

In reality, it is often very difficult to fulfill the conditions (2.5) and (2.6). Most
materials are normally dispersive, which means that their refractive index is a mono-
tonic increasing function of frequency. Assuming that ωi ≤ ωs ≤ ωp, the effect of
normal dispersion implies that ni ≤ ns ≤ np. As a result, for the collinear geometry
of SPDC, where the wave vectors of the interacting fields have the same direction,
the condition for perfect phase matching (2.6), rewritten now into the form

npωp = nsωs + niωi, (2.8)

cannot be achieved in normally dispersive materials. To show this the following
expressions can be derived with the use of Eqs. (2.5) and (2.8):

np − ns =
nsωs + niωi

ωp

− ns =
ns(ωs − ωp) + niωi

ωp

= (ni − ns)
ωi

ωp

. (2.9)

In the case of normal dispersion, the inequalities (np − ns) > 0 and (ni − ns) < 0
must hold, and therefore Eq. (2.9) cannot have any solution. The same conclusion
can be inferred also for the general case of non-collinear SPDC.

In principle, the phase-matching condition (2.8) can be fulfilled in anomalously
dispersive dielectrics, for which the refractive index decreases with increasing fre-
quency near the absorption bands. Nevertheless, this method is only rarely used
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in practice because of a high energy absorption. The most common procedure for
achieving perfect phase matching is to make use of the birefringence in anisotropic
crystals.

In anisotropic crystals, each of the components of the polarization vector P =
(P1, P2, P3) is a linear combination of three components of the electric field E =
(E1, E2, E3). Assuming that cubic and higher-order nonlinearities vanish, the material
equation for isotropic materials (2.1) is rewritten into the form [27]:

Pi = ε0

∑
j

χ
(1)
ij Ej + ε0

∑

jk

χ
(2)
ijkEjEk, (i, j, k) = 1, 2, 3. (2.10)

Here, χ
(1)
ij and χ

(2)
ijk are the elements of the susceptibility tensors χ(1) and χ(2), which

correspond to the scalar coefficients χ(1) and χ(2) from Eq. (2.1). It can be shown

that χ
(1)
ij = χ

(1)
ji and χ

(2)
ijk = χ

(2)
ikj, i.e., the susceptibility tensors, are symmetric. Conse-

quently, by choosing the appropriate set of coordinate axes, known as principal axes of
the medium and denoted here as X, Y and Z, the tensor χ(1) can be diagonalised, ze-
roing all the tensor components except χ

(1)
11 , χ

(1)
22 and χ

(1)
33 . Furthermore, an alternative

notation, dab, can be used for the elements of quadratic susceptibility χ
(2)
ijk, where a = i

and b varies from 1 to 6 to represent jk values of 11, 22, 33, 23(32), 13(31), 12(21)1.
Due to the fact that the linear susceptibility χ(1) is a tensor, the refractive index

n of an anisotropic crystal must be a tensor as well. In the principal coordinate
system, the three non-vanishing elements of n can be determined according to the
relation:

ni =
(
1 + χ

(1)
ii

)1/2

, (2.11)

where i = 1, 2, 3 represent the axes X, Y and Z of the coordinate system, respectively.
In general, n1 6= n2 6= n3, and the crystals are known as biaxial. Nevertheless, in crys-
tals of certain structures (trigonal, tetragonal and hexagonal), two of the refractive
indices are equal, no = n1 = n2, whereas the third is different ne = n3 6= no. These
crystals are uniaxial and the refractive indices no and ne are called ordinary and
extraordinary, respectively. If ne > no, the crystal is said to be positive; if ne < no, it
is said to be negative. The difference between the refractive indices, ∆n = |ne − no|,
is known as birefringence. For the sake of simplicity, the following description is
restricted to uniaxial crystals, but it can be easily extended to the case of biaxial
crystals.

In uniaxial crystals an unique direction exists, called the optic axis2. Light po-
larized perpendicular to the plane containing the wave vector k and the optic axis
experiences the ordinary refractive index no, and therefore it is referred to as ordinary
polarized. Light polarized in the plane containing k and the optic axis experiences the
extraordinary refractive index ne; therefore, it is said to be extraordinary polarized.

1Usually, dab is introduced with an extra factor 2 so that d is half of χ(2): 2dab = χ
(2)
ijk.

2The optic axis coincides with Z axis of the principal coordinate system.
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Figure 2.1: Index ellipsoid, the geometrical representation of the orientation and relative
magnitude of refractive indices in an anisotropic crystal [29]. (a) In uniaxial crystals the
ellipsoid is rotationally symmetric around the optic axis Z. For light propagating under
any angle θ with regard to optic axis, we can plot the index ellipse (shaded ellipse), whose
semi-minor and semi-major axes define the values no and ne(θ). (b) Due to rotational
symmetry of ellipsoid, one of the semi-axes of the index ellipse always lies in the circular
section perpendicular to optic axis, defining the value no of ordinary polarized light. (c)
The semi-axis of the index ellipse defining the value ne(θ) lies in the plane, which contains
the optic axis and the wave vector k. This plane cuts from the ellipsoid an ellipse. The
relation for ne(θ) (2.13) is thus given by an equation of ellipse.

The refractive index of the ordinary polarized light does not depend on the propa-
gation direction, whereas for the extraordinary polarized light it does; ne = ne(θ),
where θ is the angle between optic axis and vector k3. This can be illustrated using
the geometrical construction called index ellipsoid (or optical indicatrix), which is for
uniaxial crystals defined as

x2 + y2

n2
o

+
z2

n2
e

= 1. (2.12)

The index ellipsoid has a rotational symmetry around the optical axis, see Fig. 2.1.
To determine the refractive indices, the plane intersecting the ellipsoid center and
perpendicular to wave vector k is considered, cutting the ellipsoid in so-called index
ellipse. Due to rotational symmetry of ellipsoid, one of the semi-axes of index ellipse
always defines the value no, which is independent of the direction k. The other
semi-axis then defines the value ne(θ), which can be determined according to the

3To avoid confusion with the principal value of the extraordinary refractive index ne, index e is
in this case written as a superscript.
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Positive uniaxial Negative uniaxial
(ne > no) (ne < no)

Type I no
pωp = ne

sωs + ne
i ωi ne

pωp = no
sωs + no

i ωi

Type II no
pωp = no

sωs + ne
i ωi ne

pωp = no
sωs + ne

i ωi

Table 2.1: Phase-matching schemes for uniaxial crystals. No assumptions regarding the
relative magnitudes of ωs and ωi are considered in the classification.

relation:
1

ne(θ)2
=

sin2 θ

n2
e

+
cos2 θ

n2
o

. (2.13)

Note that ne(θ) is equal to the principal value ne for θ = π/2 and is equal to no for
θ = 0. In practice, the principal refractive indices no and ne are obtained from an
empirical relation, known as Sellmeier formula:

n2
o,e(λ) = Ao,e + Bo,e/(λ

2 − Co,e) + Eo,eλ
2, (2.14)

which specifies the dispersion properties of a certain material for ordinary and ex-
traordinary polarization. The coefficients A,B, C and E are determined experimen-
tally from spectrometric measurements and can be found for most materials in the
literature, for example in [30].

In order to achieve phase matching in SPDC, the pump photon has to be polarized
in the direction that corresponds to the lower value of the two possible refractive
indices [27]. For example, in the case of negative uniaxial crystals, this polarization
must be extraordinary. Furthermore, at least one of the lower-frequency photons has
to be orthogonally polarized with regard to the pump photon. Two alternatives in the
choice of the polarizations of lower-frequency photons arise, referred to as type I and
type II phase matching. Whereas, in the first phase matching scheme the signal and
idler photons have the same polarization (ordinary or extraordinary), in the latter
case their polarizations are orthogonal. All the possibilities are summarized in Table
2.1. For most uniaxial crystals, type I phase matching can be achieved over a broad
spectral range; type II phase matching is in general more difficult to achieve. A fine
control over refractive indices of the interacting waves is required to drive the SPDC
process into perfect phase matching condition ∆k = kp − ks − ki = 0. In practice,
the most common technique is angle tuning. It involves a precise adjustment of
the angle θ to achieve the desired refractive index/indices ne(θ) of the interacting
extraordinary polarized wave/waves such that the condition ∆k = 0 is achieved.
For some crystals, notably lithium niobate, the amount of birefringence is strongly
temperature dependent, allowing the efficient temperature tuning of phase matching.
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2.2 Simple theoretical model

The simplest theoretical model of SPDC assumes the coupling of three discrete modes
of field oscillations4. Even though this model is a rough simplification, and a more
adequate treatment including multimode description of interacting fields has to be
applied (see the next section 2.3), it allows us to readily calculate basic scaling rules
of conversion efficiency and deduce some interesting aspects associated with SPDC.

The dynamics of the mode coupling is described by the time-dependent nonlinear
interaction Hamiltonian of the form [31]:

ĤI(t) =

∫
PNL

i Eid
3r = ε0

∫
χ

(2)
ijkEiEjEkd

3r, (2.15)

where PNL
i is the nonlinear part of dielectric polarization from Eq. (2.10), and sum-

mation on repeated indices is understood. The interacting modes in SPDC must
be expressed in the quantized forms in terms of the annihilation â and creation â†

operators, which obey well-known bosonic commutation relations:

[
âm, â†m′

]
= δmm′ ,

[
âm, âm′

]
=

[
â†m, â†m′

]
= 0, (2.16)

where m and m′ are the mode indices. Consequently, the complex-valued electric
fields E in (2.15) are transmuted into field operators Ê. In the most elementary
form that takes into account only one possible polarization direction and propagation
along the z axis, the electric-field operator is expressed as [32],

Ê(z, t) = E0

(
âei(kz−ωt) + â†e−i(kz−ωt)

)
, (2.17)

where E0 is a parameter containing all the prefactors emerging from the field quanti-
zation. The first term in relation (2.17) corresponds to the positive-frequency part of
the field Ê(+)(z, t), which is associated with photon absorption, whereas the second
corresponds to the negative-frequency part Ê(−)(z, t), associated with photon emis-
sion. Under the assumption of a given phase matching configuration, and considering
that Es in (2.15) formally represent the pump-, signal- and idler-mode operators, the
interaction Hamiltonian becomes:

ĤI(t) = 2ε0deff

∫ ∞

−∞
δ(z − z′)Ê(+)

p (z, t)Ê(−)
s (z, t)Ê

(−)
i (z, t) dz + h.c.

= 2ε0deffE0pE0sE0i

∫ ∞

−∞
δ(z − z′)ei∆kzdz âpâ

†
sâ
†
i e
−i(

0︷ ︸︸ ︷
ωp − ωs − ωi)t

+ h.c., (2.18)

4In principle, this situation could be physically realized by the requirements of phase matching
for three modes in a cavity.
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where deff is an effective nonlinearity, which can be determined from the tensor d
[see definition in the paragraph below Eq. (2.10)] assuming a certain crystallographic
structure of the nonlinear medium [30].

The description of the mode coupling using interaction Hamiltonian (2.18) ac-
counts for an effect of pump depletion, due to the quantized form of this field. How-
ever, under standard experimental conditions this effect is negligible, because the
incident pump field is intense and conversion efficiency in SPDC is very low. The
latter can be inferred from closer inspection of the relative magnitudes between the
linear and the nonlinear term in the expansion of the dielectric polarization:

∣∣P NL
∣∣

|P L| =
2deff |Es(i)|

n2 − 1
, (2.19)

where |Es(i)| represents the strength of the signal (or idler) mode, which emerges
as amplification of vacuum fluctuations; |Es(i)| ¿ 1 V/m. Assuming the realistic
magnitudes of the other quantities, deff ≈ 10−12 m/V, n2 ≈ 1–10, this ratio is close
to zero, corresponding to the spontaneous nature of SPDC. Therefore, to a good
approximation, we can treat the pump mode âp classically as a complex-valued field
of a constant amplitude ap.

The total Hamiltonian consists of the term Ĥ0 describing the energy of a free
two-mode field and the interaction term ĤI from Eq. (2.18) [31]:

Ĥ = Ĥ0 + ĤI =
∑
m=s,i

~ωm

(
âmâ†m +

1

2

)
+ ~g

(
â†i â

†
sap + h.c.

)
, (2.20)

where g is the mode coupling parameter describing the strength of nonlinear interac-
tion. It is proportional to the effective nonlinearity deff and to a factor ei∆ktc, where
we put t = z′/c. In Heisenberg representation the time evolution of the field operators
is described by the coupled equations of motions [31]:

dâs

dt
=

1

i~

[
âs, Ĥ

]
= −iωsâs − igâ†i ap, (2.21a)

dâi

dt
=

1

i~

[
âi , Ĥ

]
= −iωi âi − igâ†sap, (2.21b)

and their Hermitian conjugates. Note that these equations are identical to equations
derived for a classical parametric amplifier, see e.g. [29], provided that the annihila-
tion and creation operators are identified with classical mode amplitudes and their
complex conjugates, respectively. Making use of commutation rules (2.16), it follows
directly from Eqs. (2.21):

d

dt
â†sâs =

d

dt
â†i âi, (2.22)
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which is equivalent to the commutation relations:

[
â†sâs, Ĥ

]
=

[
â†i âi, Ĥ

]
, (2.23)

so that â†sâs − â†i âi is a constant of motion. Recalling the definition of the number
operator n̂ [32]:

â†â|n〉 = n̂|n〉 = n|n〉, (2.24)

where n is the number of quanta in a mode and |n〉 is the corresponding eigenstate,
we can finally write:

n̂s(t)− n̂s(0) = n̂i(t)− n̂i(0), (2.25)

which is a well known Manley-Rowe relation5 [33], reflecting the fact that signal and
idler photons are always created in pairs.

The equations of motions (2.21) posses the following solution [34]:

âs(t) = e−iωst
[
âs(0) cosh

(
κ|ap|

)− iâ†i (0) sinh
(
κ|ap|

)]
, (2.26a)

âi (t) = e−iωi t
[
âi (0) cosh

(
κ|ap|

)− iâ†s(0) sinh
(
κ|ap|

)]
, (2.26b)

where we introduced κ(tI) =
∫ tI
−∞ g(t)dt. In practice, the interaction time tI may

be taken as propagation time through the nonlinear medium of length L, tI ≈ L/c,
which allows to reduce the integration limits in κ:

∫ t

−∞ −→ ∫ tI
0

. The Eqs. (2.26) can
be readily used to calculate certain expectations on photon number statistics. To this
end we first express the number operators in terms of the field operators at t = 0:

n̂s(t) = â†s(t)âs(t) = â†s(0)âs(0) cosh2
(
κ|ap|

)
+

[
1 + â†i (0)âi(0)

]

× sinh2
(
κ|ap|

)− 1

2
i
[
â†s(0)â†i (0)− âs(0)âi(0)

]
sinh

(
2κ|ap|

)
, (2.27a)

n̂i(t) = â†i (t)âi(t) = â†i (0)âi(0) cosh2
(
κ|ap|

)
+

[
1 + â†s(0)âs(0)

]

× sinh2
(
κ|ap|

)− 1

2
i
[
â†i (0)â†s(0)− âi(0)âs(0)

]
sinh

(
2κ|ap|

)
. (2.27b)

Next, assuming that the initial state at t = 0 is |ns(0), ni(0)〉, the time evolution of
the average photon-number 〈ns〉 (〈ns〉) at frequency ωs (ωi) can be easily evaluated:

〈ns(t)〉 = ns(0) cosh2
(
κ|ap|

)
+ [1 + ni (0)] sinh2

(
κ|ap|

)
, (2.28a)

〈ni (t)〉 = ni (0) cosh2
(
κ|ap|

)
+ [1 + ns(0)] sinh2

(
κ|ap|

)
. (2.28b)

5Since the number of photons n is related to the optical power P by P = n~ω, we can rewrite
expression (2.25) in the form Ps/ωs = Pi/ωi, in accordance with the original formulation from
Manley and Rowe.
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Due to the commutation rules (2.16), the second terms in Eqs. (2.28a) and (2.28b)
contain an extra 1, which gives under any initial conditions a nonzero contribution
sinh2

(
κ|ap|

)
to the average photon number. Thus, even if the signal and idler modes

are initially in vacuum states, i.e. ns(0) = ni(0) = 0, after a time period tI long
enough there will be photons in these modes. This purely quantum-mechanical effect
elucidates the possibility of spontaneous emission in parametric down-conversion,
which emerges as an amplification of the vacuum fluctuations associated with the
noncommutation of the field operators. Let us note that the presence of the input
signal field stimulates the emission of photons in the idler field and vice versa. That
is, the initial conditions ns(0) 6= 0 or ni(0) 6= 0 correspond to the effect of stimu-
lated emission, which is fully accounted for by the classical theory of the parametric
amplifier.

The interaction time tI is extremely short for realistic crystal lengths (∼ mm), so
that generally we can consider the short-time limit condition, κ|ap| ¿ 1, to be valid.
Then, the photon flux emitted from SPDC is given by

〈ns(t)〉 = 〈ni(t)〉 = sinh2
(
κ|ap|

) ≈ (
κ|ap|

)2
. (2.29)

The average photon numbers in the signal and idler mode are proportional to the
intensity of the pump field Ip ∼ |ap|2. As Ip gives the rate at which pump photons fall
on the nonlinear medium, the parameter |κ|2 is a dimensionless number determining
the fraction of incident pump photons to be converted into lower-frequency photons.
The following scaling behavior can be inferred by closer inspection of the parameter
κ, see the definition below Eqs. (2.26):

κ ∝ deffLsinc

(
∆kL

2

)
, (2.30)

where sinc function, sinc(x) = sin(x)/x, accounts for the impact of phase mismatch
∆k on the efficiency of SPDC. As illustrated in Fig. 2.2(a), for a given L the phase
mismatch ∆k corresponds to a decrease in efficiency by a factor, which is inversely
proportional to L. The quadratic scaling of the photon flux with L for the case of
perfect phase matching is therefore generally reduced to a linear dependence ∝ L if
∆k 6= 0, see Fig. 2.2(b). Furthermore, it follows from (2.30) that the yield of down-
conversion photons grows quadratically with the effective nonlinearity deff . Due to
the fact that signal and idler photons are always created in pairs, the afore-mentioned
scaling rules do not apply only for photon emissions into an individual mode, but also
for simultaneous double-photon emissions into both modes.

Notably, the above simple theoretical model is sufficient to prove the nonclassical
statistics of down-conversion light [31]. To that end, the mathematical steps leading
to Eqs. (2.28) are again applied here to evaluate the second moment 〈: n̂2

s,i :〉 and the
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Figure 2.2: Effect of phase mismatch on the efficiency of SPDC. (a) The phase mis-
match ∆k leads to a decrease of the conversion efficiency in the SPDC process by a factor
sinc2(∆kL/2). For ∆k = 0 this factor equals to 1, but with growing ∆k the factor decreases
till it reaches 0 at ∆k = 2π/L. The width of the sinc function is inversely proportional
to L, hence clarifying why the condition of phase matching is more restrictive for longer
interaction lengths L. (b) The evolution of the average photon number for the case of
perfect phase matching, ∆k = 0 and no-phase matching at all, ∆k À 0, is shown. For real
situations including a continuous range of possible values ∆k ≥ 0, the integration over this
range has to be performed to observe the scaling behavior of the photon flux.

cross-correlation 〈: n̂sn̂i :〉6:

〈: n̂2
m(t) :〉 = 〈0, 0|â†2m(t)â2

m(t)|0, 0〉 = 2 sinh4
(
κ|ap|

)
, m = s, i, (2.31a)

〈: n̂s(t)n̂i(t) :〉 = 〈0, 0|â†s(t)â†i (t)âi(t)âs(t)|0, 0〉 = 2 sinh2
(
κ|ap|

)[
1 + sinh2

(
κ|ap|

)]
,

(2.31b)
so that the following inequality must hold :

〈: n̂s(t)n̂i(t) :〉 >
1

2

(〈: n̂2
s (t) :〉+ 〈: n̂2

i (t) :〉). (2.32)

This is however at variance with the analogical classical inequality:

〈I1I2〉 ≤ 1

2

(〈I2
1 〉+ 〈I2

2 〉
)
, (2.33)

which evidently has to be fulfilled for any arbitrary classical intensities I1 and I2,
because 0 ≤ 〈(I1 − I2)

2〉 = 〈I2
1 〉 + 〈I2

2 〉 − 2〈I1I2〉. Ample experimental corroboration
of the non-classical character of down-conversion light has been achieved [35, 36].

6The colons denote the normal order of operators, in which all the creation operators stand to
the left from all the annihilation operators, such that the vacuum expectation value of the normally
ordered product is zero.
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2.3 Multimode description

In the previous, the theoretical description of SPDC process has been introduced,
assuming that just two monochromatic modes of the lower-frequency fields become
excited. This treatment could account for some phenomena associated with SPDC,
but fails in most cases, where the correlation effects start to be prominent. There-
fore, more realistic models are needed, decomposing the down-conversion fields into
an infinite set of modes, which is eventually treated as continuum [24, 37]. This
treatment conceptualizes the signal and idler photons as short wave packets rather
than monochromatic waves, even though the sum of their frequencies has a sharp
value.

The down-conversion fields are described as a superposition of modes represented
by plane waves, so that each mode is characterized by a wave vector k and a po-
larization index. The rules of birefringent phase matching dictate that all modes
belonging to the signal or the idler field, respectively, have to have the same polar-
ization - either ordinary or extraordinary. This greatly simplifies the situation and
allows to omit the polarization indexing in the course of the following derivation. It
will be just sufficient to assign certain polarization directions to interacting fields in
the final formulas, provided that a certain phase matching scheme will be considered,
see Table 2.1. The electric-field operator of the down-conversion field can be thus
written as

Êm(r, t) =
∑

km

em(ωkm)âm [km(ωkm)] eikm(ωkm )r−iωkm t + h.c., m = s, i, (2.34)

where em(ωkm) =
√
~ωkm/2ε0V is the amplitude per photon of the mode with a wave

vector km and a frequency ωkm . Similarly as in the previous section, the parametric
approximation is applied here, treating the pump as a classical, undepleted field.
Further, the pump field is assumed to be linearly polarized and propagating in z
direction, so that we can write:

Ep(z, t) = E (+)
p (z, t)e−iω0

pt + h.c., (2.35)

where ω0
p is the central frequency and E (+)

p (z, t) is the positive-frequency part of the
complex pump-field envelope, expressed in the form [38]:

E (+)
p (z, t) =

∫ ∞

−∞
dνp E (+)

p (0, νp)e
ikp(ωkp )z−iνpt, (2.36)

where νp = ωkp −ω0
p and E (+)

p (0, νp) is the spectrum of the field envelope E (+)
p (0, t) at

z = 0, defined through the Fourier transformation:

E (+)
p (0, νp) =

1

2π

∫ ∞

−∞
dt E (+)

p (0, t)eiνpt. (2.37)
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In the majority of real experimental scenarios, the down-conversion fields are
emitted close to the forward direction. Therefore, in the following derivation, we can
adopt a reasonable assumption that the transverse k-vector components of the down-
conversion modes are negligible and put Êm(r, t) ≡ Êm(z, t), (m = s, i). This approx-
imation will substantially simplify the following consideration, but, needles to say,
prohibits to gain any information on the spatial characteristics of down-conversion
emission. The total Hamiltonian of the system can be expressed as a sum of two
terms - the energy in the free uncoupled fields:

Ĥ0 =
∑

ks

~ωks

(
â†s(ks)âs(ks) +

1

2

)
+

∑

ki

~ωki

(
â†i (ki)âi(ki) +

1

2

)
(2.38)

and the energy arising from the interaction of the fields, see Eq. (2.15):

ĤI(t) = CI

∫ 0

−L

dz

∫ ∞

−∞
dνp

∑

ks

∑

ki

E (+)
p (0, νp)

× â†s(ks)â
†
i (ki)e

i(kp−ks−ki)z−i(ωkp−ωks−ωki
)t + h.c., (2.39)

where CI includes the effective nonlinearity deff and the slowly varying functions
es(ωks) and ei(ωki

). The first integration in (2.39) extends over the length L of the
nonlinear crystal in z direction; the origin of the coordinates is assumed to be at the
output plane of the crystal. The expressions (2.38) and (2.39) should be compared to
the Hamiltonian from Eq. (2.20) describing the discrete three-mode SPDC process.

The splitting of the Hamiltonian into a free unperturbed part Ĥ0 and an inter-
action part ĤI , which can be treated as a perturbation, suggests that we can take
an advantage of a quantum-mechanical description in the interaction representation,
where the time evolution of an arbitrary state vector |ψ(t)〉 is defined as [32]

|ψ(t)〉 = exp

(
1

i~

∫ t0+tI

t0

ĤI(t)

)
|ψ(0)〉 = |ψ(0)〉+

∞∑
n=1

(
1

i~

)n

×
∫ t0+tI

t0

dt1

∫ t0+tI

t0

dt2 · · ·
∫ t0+tI

t0

dtn ĤI(t1)ĤI(t2) · · · ĤI(tn)|ψ(0)〉. (2.40)

Here, tI is the time of interaction and |ψ(t = t0)〉 = |ψ(0)〉 represents the state at
t0, when the interaction has not been started yet. In the SPDC process there is no
input radiation in any signal and idler mode, so that the initial state |ψ(0)〉 is the
multimode vacuum state |vac〉. Furthermore, the spontaneous nature of the process
implies that the perturbation ĤI is very small compared to Ĥ0, which means that
the series from Eq. (2.40) must converge fast. Under most experimental conditions
only the first term in the series is relevant, corresponding to the emission of a photon
pair from SPDC. Thus, the two-photon state of down-conversion photons |ψ(2)(0, t)〉
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at the output of the nonlinear medium (z = 0) can be written as

|ψ(2)(0, t)〉 =
1

i~

∫ ∞

−∞
dt ĤI(t)|vac〉. (2.41)

By extending the limits of integration in (2.41) to infinity we explicitly assume that
the interaction Hamiltonian approaches zero for times before t0 and after t0 + tI .
Substituting for the interaction Hamiltonian and evaluating the time integral, the
two-photon state becomes:

|ψ(2)(0, t)〉 =
CI

i~

∫ 0

−L

dz

∫ ∞

−∞
dνp

∑

ks

∑

ki

E (+)
p (0, νp)â

†
s(ks)â

†
i (ki)

× ei(kp−ks−ki)z+i(ωks+ωki
)t δ(ωkp − ωks − ωki

)|vac〉, (2.42)

For the further consideration we expand the wave numbers of interacting fields
about their carrier frequencies ω0 [38]:

km(ωkm) = k0
m

(
ω0

m

)
+

1

vm

(
ωkm − ω0

m

)
+

1

2
Dm

(
ωkm − ω0

m

)2
= k0

m + εkm, (2.43)

where m = p, s, i and the higher-order terms are dropped. The central wave numbers
of the fields k0

m (ω0
m) are given by Eq. (2.7). The symbol vm is the group velocity of

the field m, expressed in terms of the refractive index n(λm) as

1

vm

=
dkm

dωkm

∣∣∣∣
ωkm=ω0

m

=
1

c

[
n(λm)− λm

dn(λm)

dλm

]
, (2.44)

and D is the group velocity dispersion parameter:

Dm =
d2km

d2ωkm

∣∣∣∣
ωkm=ω0

m

=
d

dωkm

1

vm

∣∣∣∣
ωkm=ω0

m

=
λ3

2πc2

d2n(λm)

dλ2
m

. (2.45)

Applying the above expressions in Eq. (2.42) and assuming that the carrier frequen-
cies ω0

m and the central wave numbers k0
m of the interacting fields fulfill energy- and

momentum-conservation conditions from Eqs. (2.5) and (2.6), respectively, we arrive
at the following form of the two-photon state [39]:

|ψ(2)(0, t)〉 =
CIe

i(ω0
s +ω0

i )t

i~

∫ 0

−L

dz

∫ ∞

−∞
dνp

∫ ∞

−∞
dνs

∫ ∞

−∞
dνi E (+)

p (0, νp)

× exp

[
i

(
νp

vp

− νs

vs

− νi

vi

)
z

]
exp

[
i

2

(Dpν
2
p −Dsν

2
s −Diν

2
i

)
z

]

× δ(νp − νs − νi)e
i(νs+νi)t|νs〉|νi〉, (2.46)
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where νm = ωkm − ω0
m is the detuning frequency from the central frequency and

|νm〉 is a one-photon Fock state; m = s, i. The output two-photon state from
SPDC is represented by a continuous superposition of states in which the signal
and idler photons have frequencies νs and νi, respectively. The energy-conservation
law, leading to strong correlations of the frequencies νs and νi, is explicitly displayed
in |ψ(2)(0, t)〉 by the delta function. By evaluating the spatial integral in (2.46) we
obtain sinc [(εkp − εks − εki)L/2], which accounts for the momentum correlation of
the down-conversion photons. In the limit of very long crystals, L → ∞, the sinc
function approaches delta function δ(εkp − εks − εki). That is, in such a limiting
case, a down-conversion event is allowed only, if the momenta of the lower-frequency
photons sum to the momentum of the pump. Note that the delta functions preclude
the possibility of factorization |ψ(2)(0, t)〉 into a product state of the signal and the
idler photon, i.e., |ψ(2)(0, t)〉 from Eq. (2.46) is an EPR-type entangled state.

2.3.1 Spectra of down-conversion fields

The knowledge of the two-photon state |ψ(2)(0, t)〉 allows us to readily evaluate the
spectral properties of the individual down-conversion fields. The spectrum of the
signal (idler) field behind the nonlinear crystal is defined as follows [39, 40]:

Ss(i)(νs(i)) = 〈ψ(2)(0, t)|â†s(i)(νs(i))âs(i)(νs(i))|ψ(2)(0, t)〉. (2.47)

Using the state |ψ(2)(0, t)〉 from (2.46), the expression for the signal field becomes

Ss(νs) =
|CI |2
~2

∫ ∞

−∞
dνp

∣∣E (+)
p (0, νp)

∣∣2 L2

× sinc2

[
L

2

(
upiνp − usiνs +

Dpi

2
ν2

p −
Dsi

2
ν2

s +Diνpνs

)]
, (2.48)

in which we introduced the following parameters:

upm =
1

vp

− 1

vm

, Dpm = Dp −Dm, m = s, i, (2.49)

usi =
1

vs

− 1

vi

, Dsi = Ds +Di, (2.50)

The spectrum of the idler field is obtained from (2.48) by substituting the dispersion
parameters upi, Dpi and Di for ups, Dps and Ds, respectively. In the limiting case of
the continuous-wave (CW) pumping at the frequency ω0

p, the complex spectrum of

the pump-field envelope E (+)
p (0, νp) is put as the delta function δ(νp) multiplied by
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the amplitude ξp, and the expression (2.48) reduces to the following analytical form:

S(cw)
s (νs) =

|CIξp|2
~2

L2sinc2

[
L

2

(
usiνs +

Dsi

2
ν2

s

)]
. (2.51)

The spectral profiles of the emitted photon wave packets are determined by a sinc2

function, which appears in the expression (2.48) due to the double integration over
the finite length L of the crystal. Note that the idler spectrum will be given by the
formula identical to (2.51), because none of the dispersion parameters from (2.49)
are contained therein. That is, the spectra of the two generated fields are always the
same in CW-pumped SPDC. This is explained by perfect anti-correlation of the signal
and idler frequencies: The two frequencies always sum up to the pump frequency ω0

p,

which ensures that the output two-photon state |ψ(2)(0, t)〉 will be symmetric in the
frequencies of signal and idler photon wave packets.

A further simplification of the expression (2.51) for down-conversion spectra in
the CW-pumping limit might be attained, when assuming a certain phase matching
scheme. This also allows to investigate the scaling behavior of the spectral width on
the relevant parameters, showing remarkably different results for type I and type II
phase matching. Unless specified otherwise, the spectral width is defined here as the
full width at half maximum (FWHM) of the sinc2 profile.

We start with type II phase matching scheme. There, signal and idler wave packets
are orthogonally polarized, and therefore they are necessarily subjected to distinct
material dispersion in the nonlinear crystal due to its anisotropy, see section 2.1.
Consequently, the difference in the group velocities of photons reaches considerable
values; for standard materials usi is roughly ≈ 10−10 s/m. The parameter Dsi reaches
usually ≈ 10−25 s2/m in case of type-II phase matching, so that the second term in
sinc2 function of Eq. (2.51) can be neglected for the realistic values of the detuning
frequencies νs, νi ≈ 1013 –1014 s−1. The phase-matched spectral width of the down-
conversion fields is thus solely determined by the difference in group velocities usi and
the thickness of the crystal L, and it scales as ∝ 1/(usiL). That is, the longer the
crystal L and the higher the difference in group velocities |vs − vi|, the narrower the
resultant spectrum will be.

For type I phase matching a markedly different situation is encountered. The
emitted photons have the same polarization and therefore they propagate through
the nonlinear crystal with identical group velocities. Consequently, the dispersion
parameter usi vanishes and it is now the second term in the sinc2 function of Eq.
(2.51), which will determine the spectral characteristics of down-conversion light.
Due to the fact that this term is smaller by 1–2 orders of magnitude than the term,
which was previously dominant for type II phase matching, significantly broader
spectra might be expected in case of type I phase matching. Moreover, the spectral
width now scales as ∝ 1/

√
(DsiL). This means that the width shrinks only with the

square root of crystal length.
Note that the above discussion implicitly assumed degenerate central output fre-
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Figure 2.3: Scaling of down-conversion spectral width with the crystal length for different
phase-matching configurations. The widths are for degenerate type I and type II SPDC
represented by blue and red solid curves, respectively. The first scales as ∝ 1/

√
L and

the latter as ∝ 1/L. The dashed curves in corresponding colors show the widths for non-
degenerate type I and type II phase matching, assuming a 100 nm separation between
central down-conversion wavelengths. In the plot SPDC in a BBO crystal and pumped at
a wavelength λ0

p = 403 nm is assumed.

quencies, i.e. the condition ω0
p = 2ω0

s = 2ω0
i . If non-degenerate central frequencies

(ω0
s 6= ω0

i ) are phase-matched in type I SPDC, the parameter usi does not vanish
any longer due to the dispersive nature of the nonlinear crystal, and both terms in
the sinc2 function have to be taken into account. As a result, the spectral width
shrinks compared to the degenerate case, and approaches the type-II phase-matched
width as the non-degeneracy increases. In contrast to type I phase matching, there
is only a little effect on the width of phase-matched spectra in type II SPDC when
going away from the non-degeneracy point. The resultant width might slightly in-
crease or decrease depending on whether the higher central non-degenerate frequency
corresponds to extraordinary or ordinary polarization.

The general conclusions drawn above for the CW-pumped SPDC are quantita-
tively demonstrated in the Fig. 2.3, showing the dependencies of spectral width on the
crystal lengths for different phase matching configurations. An example of SPDC in
a beta-barium borate nonlinear crystal (β-BaB2O4 or BBO, the basic characteristics
are given in appendix A.1.1) is considered therein.

While the idler and signal wave packets produced in narrow-band pumped SPDC
are perfectly anti-correlated in their frequencies, the broadband pumping of SPDC
entails more complex spectral correlation of the wave packets. For the latter case, the
energy-conservation condition is relaxed, because a down-conversion event is permit-
ted, whenever the frequencies of the daughter photons sum to some frequency found
in the pump. As a finite range of pump frequencies is available for the nonlinear pro-
cess, the phase matching condition is fulfilled for more signal and idler frequencies and
consequently, their natural spectra are broadened in comparison with CW-pumping
case. Moreover, for type II SPDC the broadband pumping causes a symmetry break-
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ing between the spectra of ordinary- and extraordinary-polarized wave packets [41].
They are no longer identical, which is attributed to the distinct influence of material
dispersion on the two polarizations.

To quantitatively estimate the effect of broadband pumping on the down-conver-
sion spectra, we conveniently represent the pump field as a gaussian pulse with a
duration τp. Then, the following form of the pump-field envelope from Eq. (2.35)
applies [38]:

E (+)
p (0, t) = ξp exp

(
−1 + iap

τ 2
G

t2
)

, (2.52)

where ξp is the amplitude and ap represents the linear chirp of the pulse. The param-
eter τG determines the pulse duration τp (measured as the full width at half maximum
of the intensity profile) via the following relation:

τp =
√

2 ln 2τG. (2.53)

The Fourier transformation of (2.52) according to the definition in Eq. (2.37) into
the frequency domain gives:

E (+)
p (0, νp) = ξp

τG

2
√

π
√

1 + iap

exp

[
− τ 2

G

4(1 + iap)
ν2

p

]
, (2.54)

which might be directly substituted into the expression (2.48) to find the down-
conversion spectra. The results of a numerical evaluation are presented in Fig. 2.4,
assuming a specific example of SPDC in a 2 mm long BBO nonlinear crystal. For short
pump-pulse durations, a significant broadening of spectra is observed for both type
I and type II SPDC. Moreover, as expected, the spectrum of the ordinary polarized
wave packet is broader than that of the extraordinary-polarized photon in case of
type II SPDC.

It is important to bear in mind that the above theoretical model is built upon two
approximations, which limit the general validity of the inferred results. First, it treats
the pump field as a superposition of plane waves, which all propagate in z direction,
see Eq. (2.36). Thus, the effect of pump-beam focusing is not included in the model
whatsoever. We might expect, that this effect will be completely analogous to that
of spectral broadening of the pump. Because a wider range of pump-wave vectors
is available for the nonlinear process in case of tight focusing, the phase matching
condition is fulfilled for more signal and idler frequencies/momenta and consequently,
their natural spectra will be broadened. Indeed, it was shown that the tight focusing
of the pump to waist sizes of ¿ 100 µm leads to a significant increase of down-
conversion spectral width [42] (provided that crystals with lengths in ∼ mm range
are used). A second limitation arises from the assumption of the collinear geometry of
the nonlinear process, which was adopted in the model. This implies that the faithful
results are obtained only for the emission of down-conversion photons close enough
to the direction of the pump beam. A more sophisticated treatment is required, if
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Figure 2.4: Effect of the broad-
band pumping on the phase-
matched spectral width. The up-
per plot shows the results obtained
for type I SPDC and the lower for
type II SPDC. In the latter plot
the solid and dashed curves cor-
respond to ordinary and extraor-
dinary polarization, respectively.
The evaluation assumes SPDC in
a 2 mm long BBO crystal pumped
at a wavelength of λ0

p = 403 nm.

the directions of down-conversion photons deviate significantly from the pump-beam
direction [42].

Finally, we emphasize again that the formula (2.47) provides the spectral characte-
ristics of the natural phase matching in SPDC. I.e., in fact, it determines the spectral
widths of the photon wave packets right behind the nonlinear crystal. Nevertheless,
it is straightforward to elaborate the theoretical frame and incorporate the effect of
frequency filtering, which is commonly used in the experimental arrangements. In
practice, frequency filtering is realized by interference filters or by restricting the
angular distribution of the emitted down-conversion fields. In either case it can be
modelled to a good approximation by a spectral transmission function with a gaussian
profile centered around the carrier frequency ω0

m:

Fm(νm) = exp

(
−2ν2

m

σ2
m

)
, m = s, i. (2.55)

The FWHM of the profile is defined as
√

2 ln 2σm. Frequency filtering is then in-
cluded in the theoretical frame by inserting the term

√FiFs in the two-photon state
|ψ(2)(0, t)〉 defined in Eq. (2.46). Consequently, the signal (idler) spectra evaluated
according to Eq. (2.47) account not only for a trivial effect of spectral filtering
performed directly on signal (idler) photons, but also for a non-local effect, which
might be loosely referred to as cross-filtering. It means, e.g., if a frequency filter-
ing is performed on the signal photon, then the corresponding idler-photon spectra,
which effectively contribute to the two-photon state, will be altered as well due to
entanglement of photon pairs in the frequency domain.
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2.3.2 Time distribution of down-conversion fields

The joint time distribution of down-conversion fields is conveniently described in
terms of the two-photon amplitude, which is sometimes referred to as biphoton am-
plitude. It is defined as a matrix element for the transition of the down-conversion
fields from a two-photon state |ψ(2)(0, t)〉 into a vacuum state |vac〉 [39, 40],

A(τs, τi) = 〈vac|Ê(+)
s (0, t0 + τs)Ê

(+)
i (0, t0 + τi)|ψ(2)(0, t0)〉. (2.56)

That is, A defines the amplitude that two separated ideal detectors of negligible
sizes record the signal and idler photons at the times τs and τi, respectively. This
interpretation comes directly from standard quantum field theory, see e.g. [43]. It
becomes then obvious that the square of the two-photon amplitude determines the
second-order correlation function G(2)(τs, τi) = |A(τs, τi)|2, which is proportional to
the probability of coincidence detection of the down-conversion photons at the times
τs and τi. Integrating the correlation function G(2)(τs, τi) over a time interval T gives
the average coincidence count rate Rc of the two detectors during T , which might be
written as [44]:

Rc ∝ 1

T

∫ T

0

dτs

∫ T

0

dτi 〈ψ(2)(0, t0)|Ê(−)
i (0, t0 + τi)Ê

(−)
s (0, t0 + τs)

× Ê(+)
s (0, t0 + τs)Ê

(+)
i (0, t0 + τi)|ψ(2)(0, t0)〉. (2.57)

The above formula directly relates the measurable quantity - the coincidence count
rate - to the two-photon amplitude.

In general, the two-photon amplitude determines all the measurable joint charac-
teristics of the down-conversion fields [40]. I.e., A(τs, τi) plays a role of a wavefunction,
which describes the effective field of the two-photon wave packet (biphoton). Since we
are primarily interested in the time characterization of the two-photon wave packet,
the spatial dependency of the amplitude A(τs, τi) is completely omitted in the above
description. Substituting for the electric-field operators and the two-photon state,
Eq. (2.56) becomes [39]

A(τs, τi) =
CI

i~
es(ω

0
s )ei(ω

0
i )e
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i τi)
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p −Dsν

2
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2
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)
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]

× δ(νp − νs − νi)e
i(νsτs+νiτi)Ts(νs)Ti(νi)|νs〉|νi〉. (2.58)

The newly introduced symbols Ts and Ti represent the optical transfer functions
[29], which describe the effect of any linear optical system (or series of linear optical
systems) on signal and idler photons. This allows us to evaluate the effective two-
photon amplitude at any place of a real experimental set-up. E.g., putting Tm(νm) ≡
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√
Fm(νm) [see Eq. (2.55)], the expression (2.58) defines the amplitude A of the

two-photon down-conversion wave packet after passing through frequency filters.
For CW-pumped SPDC [E (+)

p (0, νp) = ξpδ(νp)], the expression for the two-photon
amplitude simplifies to

A(τs, τi) =
CI

i~
es(ω

0
s )ei(ω

0
i )ξpe

i(ω0
s τs+ω0

i τi)

∫ ∞
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dνs e−iνs(τs−τi)

× Ts(νs)Ti(−νs) exp

[
−i

Lνs

2

(
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Dsi

2
νs

)]
sinc

[
Lνs

2

(
usi +

Dsi

2
νs

)]
, (2.59)

where the dispersion parameters usi and Dsi are defined in (2.50). In order to grasp the
basic physics of (2.59), we put, for simplicity, Ts(νs) = Ti(−νs) = 1, and analyze the
two-photon amplitude right after the nonlinear crystal. The two photon-amplitude is
conveniently studied in the rotated coordinate system with the axes τ+ = (τs + τi)/2
and τ− = τs − τi. We may interpret τ− as the difference in the arrival times of the
signal and idler photon at the output face of the crystal. If it is positive, the signal
photon arrives after the idler photon and vice versa. The value of τ+ may be regarded
as the time at which the center of the two-photon wave packet arrives at the output
face of the crystal. The origin for the τ+ axis is defined by the arrival time of the
pump.

We immediately recognize that the expression (2.59) is independent of the time
τ+ except for an irrelevant phase factor. This must be clearly right for the case of CW
pumping, because an SPDC event can occur in principle at any time, so that all the
values τ+ are equally probable. In general, the two-photon amplitude is determined
along the τ+ direction by the temporal characteristics of the pump field and the
group velocity mismatch between the pump and the two-photon down-conversion
wavepacket. Apparently, for very short crystals, the time profile of the pump will
be directly transferred to the τ+-profile of |A(τ+, τ−)|. For long enough crystals the
broadening of the τ+-profile due to the effect of the group velocity mismatch will
become significant.

By closer inspection of (2.59), the distinct profiles of the two-photon amplitudes
might be recognized along the τ− axis for type I and type II SPDC, see Fig. 2.5. This
is evidently a consequence of different effects, which lead to time mismatch in arri-
vals of signal and idler photons at the output face of the nonlinear crystal. For type
II SPDC, it is the difference in group velocities, which causes a rectangular-shaped
asymmetric profile. This profile stretches from 0 to the value of usiL, which corre-
sponds to the difference in time required for ordinary- and extraordinary-polarized
photon to cross the full length of the crystal. For degenerate type I SPDC the group
velocities are identical and it is the next order in the expansion of the wave numbers
[see Eq. (2.43)], i.e. the effect of group velocity dispersion, which determines the
width of biphoton in τ− direction. Consequently, a narrow symmetric triangular-
shaped profile is observed.

The above description together with the results from Fig. 2.5 suggest that the
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Figure 2.5: Absolute value of the normalized two-photon amplitude, |A(τ+, τ−)|, for CW-
pumped (a) type I and (b) type II SPDC. Whereas a narrow triangular-shaped profile is
observed for type I phase matching in the τ− direction, type II is characterized by a wide
rectangular profile, which is asymmetric to τ− = 0. In the graphs, SPDC in a 2 mm long
BBO pumped at λ0

p = 403 nm is considered; the signal (idler) is identified with ordinary
(extraordinary) polarization.

width of |A(τ+, τ−)| in the τ− direction is inversely proportional to the phase-matched
spectral width of down-conversion photons in case of CW pumped SPDC7. This
clarifies, why the spectral bandwidth of down-conversion photons is incomparably
broader for type I phase matching. For non-degenerate type I phase matching or
for increasing crystal lengths, the amplitude |A(τ+, τ−)| spreads in the τ− direction.
This behavior is in accordance with the observation from the subsection 2.3.1 that
the phase-matched spectral width shrinks in such cases.

2.4 Spatial emission distribution of down-conversion
photons

In the foregoing sections the spectral and temporal characteristics of the down-
conversion fields have been investigated. To keep the theoretical frame on a manage-
able level, the spatial properties of the fields interacting in SPDC have been ignored.
This section addresses the issue of the spatial properties of these fields and derives
the emission characteristics of down-conversion photons. The emission characteristics
are derived from the analysis of the energy and momentum conservation conditions.
For a fixed pump wave vector and a fixed wavelength of one down-conversion photon

7Indeed, for the FWHM values of 28.2 fs (type I phase matching) and 388.9 fs (type II phase
matching) inferred for the parameters used in Fig. 2.5, we find the related “Fourier” spectral widths
of 76.8 nm and 5.5 nm, respectively, which fit well to results plotted in Fig. 2.3.
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Figure 2.6: General geometrical set-
ting to analyze the angular distribu-
tion of down-conversion light. The
distribution is defined in terms of
the external emission angles θ and
φ, which are measured with respect
to the central pump wave vector k0

p.
This vector forms an angle Θ0

p with
optic axis of the nonlinear crystal.

from the pair, all emission directions allowed by conservation laws can be calculated.

In practical experiments, a gaussian beam of a certain divergence is usually used
for pumping of the nonlinear crystal. To account for this feature, the pump is de-
composed into a representative set of plane waves, each characterized by a wave
vector8. The allowed emission directions are then searched for each vector separately.
To include the effect of finite spectral bandwidth, which is always phase-matched
in SPDC, the wavelengths of down-conversion photons are varied within the rele-
vant ranges during the evaluation. The angular distribution of down-conversion light
inside the crystal is then evaluated as a weighted superposition of all the found solu-
tions. Finally, Snell’s law is applied to determine the distribution outside the crystal.
This external angular distribution is obtained in terms of the angles θ and φ, which
are defined with regard to the central pump wave vector k0

p, see Fig. 2.6.

This relatively simple approach to the problem, based on the analysis of phase-
matching conditions, determines the emission pattern related to the single-photon
count rate [45], rather than the coincidence count rate, which has to be considered in
the context of two-photon imaging or other spatial correlation effects (see e.g. [46]).
In practice, the single-photon pattern can be experimentally captured by imaging
the down-conversion emission onto an intensified charge coupled device array. The
knowledge of this pattern is sufficient to understand the spectral and spatial char-
acteristics of the parametric down conversion process for the purpose of maximizing
the yield of available photon pairs in common experiments.

In the following, we shall discuss the elements of the method at length. We start
the analysis by decomposing the phase matching condition (2.6) into a linear set of
equations associated with momentum conservation along the principal axes of the

8The justification of this approach is addressed later in this section.
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Figure 2.7: Principal coordinate system of the crystal with the definitions of unit wave
vectors of the three interacting fields in SPDC. Each of the vectors is specified by an
internal azimuth angle Θm and an internal polar angle Φm, (m = p, s, i). These angles are
measured with respect to central pump wave vector k0

p. For clarity, only the wave vectors
kp and ki of pump and idler photons, respectively, are displayed in the figure; the signal
vector is defined analogously.

crystal. Using the relation (2.7), we write these equations in the form:

ωsnsxs + ωinixi = ωpnpxp,

ωsnsys + ωiniyi = ωpnpyp,

ωsnszs + ωinizi = ωpnpzp,

(2.60)

where xm, ym, zm, (m = p, s, i) are the projections of the unit wave vectors onto the
axes of the principle coordinate system, which is identified with the crystallographic
structure of the crystal, see Fig. 2.7. The choice of this coordinate system shows to
be preferable for the analysis of phase matching because it allows fairly direct defini-
tion of the wave vectors in question and avoids any confusions in the calculation of
refractive indices. Applying the energy conservation law (2.5) and the normalization
condition, x2

m + y2
m + z2

m = 1, the Eqs. (2.60) can be combined into a single equation
of the form [45]:

(
ωpnp

√
1− y2

p − z2
p − ωini

√
1− y2

i − z2
i

)2

+
(
ωpnpyp − ωiniyi

)2
+

(
ωpnpzp − ωinizi

)2
= n2

s

(
ωp − ωi

)2
, (2.61)

where all the variables related to the wave vector of the signal photon were eliminated.
Orientations of the pump and idler wave vectors, expressed using the projections
yp, zp and yi, zi, respectively, can be conveniently redefined with the help of Fig. 2.7
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in terms of the azimuthal angles Θp, Θi and polar angles Φp, Φi as follows

yi = sin (Φi) , zi = cos
(
Θ0

p −Θi

) √
1− sin2 (Φi), (2.62)

yp = sin (Φp) , zp = cos
(
Θ0

p + Θp

) √
1− sin2 (Φp). (2.63)

Assuming type I phase matching in a negative uniaxial crystal, such as beta-barium
borate, the classification of Table 2.1 asserts the pump photon to be extraordinary po-
larized, whereas both signal and idler photons to be ordinary polarized. Accordingly,
the following refractive indices have to substituted into Eq. (2.61):

np ≡ ne(λp; Θ
0
p,Θp, Φp) =

ne(λp)no(λp)√
n2

o(λp) +
[
n2

e(λp)− n2
o(λp)

]
z2
p

,

ns ≡ no(λs), ni ≡ no(λi).

(2.64)

The first expression (for extraordinary refractive index) is deduced from Eq. (2.13).
In type II phase matching, the idler photon is co-polarized with the extraordinary
pump photon, whereas the signal photon remains ordinary polarized as in type I
phase-matching. Consequently, the following triad of refractive has to be used in Eq.
(2.61):

np ≡ ne(λp; Θ
0
p, Θp, Φp) =

ne(λp)no(λp)√
n2

o(λp) +
[
n2

e(λp)− n2
o(λp)

]
z2
p

,

ns ≡ no(λs), ni ≡ ne(λi; Θ
0
p, Θi, Φi) =

ne(λi)no(λi)√
n2

o(λi) +
[
n2

e(λi)− n2
o(λi)

]
z2
i

.

(2.65)

For a fixed pair of pump and idler wavelengths, λp and λi, the corresponding signal-
photon wavelength is known, λs = λiλp/(λi− λp), and the refractive indices given by
Eqs. (2.64) and (2.65) can be easily determined using the Sellmeier formula (2.14).
Consequently, Eq. (2.61) assigns to every pump orientation a continuous set of idler
emission directions defined in terms of internal angles Θi and Φi. The corresponding
signal emission angles Θs and Φs, meeting the momentum conservation condition
(2.60), can be readily determined, bearing in mind the following equivalence formulas:

ys = sin (Φs) , zs = cos
(
Θ0

p −Θs

) √
1− sin2 (Φs). (2.66)

The last step in the evaluation procedure entails the calculation of the emission
directions outside the crystal. We shall consider a general arrangement of pumping
the nonlinear crystal under a non-normal direction, which is often required to achieve
perfect phase matching in angle-tuned crystals. In case of uniaxial crystals the tech-
nique of angle-tuning involves a precise adjustment of the angle Θ0

p, as explained at
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Figure 2.8: Refraction of the relevant wave vectors on the faces of the crystal; the attention
is restricted only to the XZ-plane containing the central pump wave vector and the optic
axis of the crystal. The internal and external angles of the pump incidence, Ξp and ξp,
have to be taken into account when calculating the emission angles θs and θi of down-
conversion light outside the crystal. For clarity, only the central pump wave vector k0

p and
the projection of idler wave vector ki on the afore-mentioned plane are displayed in the
figure; the definitions for the signal vector are analogous.

the very end of section 2.1. Therefore, we can confine the non-normal incidence of
the pump on the crystal only to the plane containing the optic axis and the pump
direction, i.e. to the XZ-plane of the principle coordinate system depicted in Fig.
2.7.

The refraction of the central pump wave vector k0
p at the dielectric-air interface

is described by Snell’s law, relating the internal angle of incidence Ξp to the external
angle of incidence ξp:

ne(λp; Θ
0
p, Θp, Φp) sin Ξp = sin ξp. (2.67)

Here, we have directly set the pump polarization to the extraordinary one, in accor-
dance with the assumptions put into force above. Due to the fact that the down-
conversion emission directions are defined with respect to the central pump wave
vector k0

p, the angles ξp and Ξp will play the roles of offsets in the calculation of the
emission angles outside the crystal; see also Fig. 2.8. That is, the external emission
angles θs and θi of the down-conversion light along the XZ-plane are given by

nm sin(Θm + Ξp) = sin(θm + ξp), m = s, i. (2.68)

Obviously, the external emission angles φs and φi along the YZ-plane of the prin-
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Figure 2.9: Angular distribution of down-conversion light in type I phase matching. The
characteristic emission rings centered around the pump direction (determined by an angle
φ = θ = 0◦) at the wavelengths 780 nm (blue, “b”), 806 nm (green, “g”) and 834 nm
(red,“r”) are shown. The three patterns from the left to the right correspond in turn to
pump angles of Θ0

p = 28.95◦, Θ0
p = 29.0◦ and Θ0

p = 29.1◦. The missing green ring in the left
pattern signifies that no phase-matched output at 806 nm is obtained in this configuration.
The plot shows the expected emission patterns from a BBO crystal pumped at a wavelength
of λp = 403 nm.

ciple coordinate system are given by the standard Snell’s formula:

nm sin Φm = sin φm, m = s, i, (2.69)

due to the normal incidence of the central pump wave vector on the crystal.

It is well known that the emission pattern of down-conversion light is formed
by cones, which result in the characteristic rings in the plane perpendicular to the
pump direction. In type I phase matching the cones are concentric around the pump
direction, as illustrated in Fig. 2.9. This is, needles to say, a consequence of the equal
polarization of the down-conversion photons. For the degenerate case, the signal and
idler are absolutely indistinguishable and their emission patterns overlap, forming
effectively a single cone. The transverse momentum conservation requires that the
photons have to emerge from the crystal along the directions lying always on exactly
opposite sides of this cone. For the non-degenerate emission, the cones of signal and
idler photons do not overlap in general. The opening angles of the emission cones
thus depend on the wavelengths of signal and idler photons, but also on the angle Θ0

p

between the pump direction and the optic axis. The smaller the angle Θ0
p, the smaller

the opening angle of a cone. At a certain limiting angle, the momentum and energy
conservation conditions are satisfied only in the collinear direction. In this case we
might imagine the cones to “collapse” into a single line coinciding with the pump
direction. Interestingly enough, with decreasing values of Θ0

p this collapse appears
first for the cone representing the emission at degenerate wavelengths (compare the
first two patterns in Fig. 2.9). This allows to tune the emission into a configuration,
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Figure 2.10: Angular distribution of down-conversion light in type II phase matching. The
emission rings of extraordinary-polarized idler photons are shifted along the axis φ = 0◦

towards positive values of angle θ, whereas the ordinary-polarized rings of signal photons are
shifted in the opposite direction. The three patterns from the left to the right correspond
in turn to pump angles of Θ0

p = 41.2◦, Θ0
p = 42.0◦ and Θ0

p = 42.9◦. The blue (“b”), green
(“g”) and red (“r”) colors show the emission at the wavelengths of 780 nm, 806 nm and
834 nm, respectively. The plot shows the expected emission patterns from a BBO crystal
pumped at a wavelength of λp = 403 nm.

where signal and idler photons at any desired non-degenerate wavelengths emerge
from the crystal collinearly with the pump light.

In type II phase matching the emission cones (or corresponding rings in far field)
of extraordinary photons split from those of ordinary polarized photons and are dis-
placed in the direction defined by φ = 0◦, see Fig. 2.10. This guarantees the mirror
symmetry of the emission rings around this line. The emission pattern is, however,
asymmetric to the axis θ = 0◦. In type II phase matching, the tuning of phase-
matched wavelengths λs and λi or tuning of angle Θ0

p produce not only a change in
ring radii but also a shift of ring centers along the axis φ = 0◦. At a specific angle
Θ0

p, the collinear situation is obtained and the signal and idler cones at given wave-
lengths λs and λi touch each other along the pump direction corresponding to the
angle φ = θ = 0◦. If the angle Θ0

p is decreased, the two emission cones get separated
entirely. However, if the angle Θ0

p increases, the cones will overlap to some extent,
intersecting each other along two directions.

The above discussion of the emission patterns for both type I and type II phase
matching dealt with an oversimplified case of pumping the crystal with a plane wave



2.4 Spatial emission distribution of down-conversion photons 39

and the down-conversion emission at fixed wavelengths λs and λi.
As can be readily deduced from rainbow-type emission rings depicted in Figs. 2.9

and 2.10, the finite spectral bandwidths of down-conversion photons around λs and
λi will manifest themselves by an angular spread of the cones to certain widths ∆αs

and ∆αi, respectively. Due to the concentricity and perfect circular shape of emission
rings in type I phase matching, the angular widths ∆αs and ∆αi will possess radial
symmetry. This cannot be, however, the case in type II phase matching, where the
wavelength tuning of down-conversion photons causes a change in both, ring radius
and ring center. Thus, the angular widths ∆αs and ∆αi will be a function of a radial
orientation in general. Nevertheless, the effect of asymmetric broadening of emission
rings is expected to be hardly visible in view of the fact that a spectral bandwidth of
only several nanometers is usually phase-matched in type II SPDC (see Fig. 2.3).

We note at this point that the adopted approach to calculate the down-conversion
angular distribution confines one to the case of perfect phase-matching, which assigns
a unique sharp emission ring to every output frequency. The breakdown of perfect
phase matching will cause the down-conversion photons at a fixed frequency to be
emitted in a wider set of directions, resulting in a natural width of emission rings9.
This natural width is, however, small in comparison to the width ∆αm, (m = s, i)
of angular spread of the phase-matched frequencies. Therefore, for standard exper-
imental scenarios, where a finite spectral bandwidth (often natural phase-matched
bandwidth) is detected, the assumption of perfect phase-matching does not pose any
considerable limitation in the study of down-conversion emission characteristics.

A large wave-vector spread, which is associated with focused pumping, causes
the broadening of emission rings to certain widths ∆α′s and ∆α′i. Whereas for type
I phase matching the radial symmetry of the angular width can be expected due
to the concentricity of the cones, for type II the emission distribution acquires a
spatial asymmetry. In this sense, the transition from plane-wave to focused pumping
is analogous to the transition from a single down-conversion wavelength to a finite
bandwidth of wavelengths. Nevertheless, the effects of focused pumping on SPDC-
emission pattern, particularly the effect of asymmetric broadening, are expected to
be much stronger.

For a better insight into the origin of the asymmetric broadening of type II emis-
sion rings, it is useful to investigate the effects of pump focusing in YZ-plane and
XZ-plane separately, see Fig. 2.11. Focusing the pump in YZ-plane, a range of in-
put pump angles Φp has to be considered, corresponding to a continuous shift of the
emission ring in the φ direction. Consequently, a roughly uniform broadening of the
rings in this direction is observed, as illustrated in Fig. 2.11(a). In the latter case,
the change of the input pump angle Θp associated with focusing in XZ-plane, causes
the twofold effect on the SPDC-emission pattern: the center of the ring is shifted in
the θ direction, while the radius of the ring increases (for the shift of the ring towards

9The natural angular spread of a given output frequency is given by a sinc function, sinc(∆L/2),
where the function ∆ determines the magnitude of phase-mismatch (see e.g. [47]).
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Figure 2.11: The effect of pump focusing on SPDC emission pattern. While a focusing
in YZ-plane causes a roughly uniform broadening of the ring in the φ direction (a), the
twofold effect of focusing in XZ-plane - ring shift in the θ direction and change of ring
radius - is responsible for the radial asymmetry of the ring (b). The overlap (shaded area)
of the patterns shows the resultant emission distribution for symmetrically focused pump
(c). For a better clarity, only one of the type II emission cones is shown.

lower values of θ) or decreases (for the shift of the ring towards higher values of θ).
The angular broadening is thus nonuniform over the emission rings, see Fig. 2.11(b).
Combining the two cases, a strongly asymmetric emission distribution is obtained
[Fig. 2.11(c)].

The origin of the described spatial asymmetry can be clarified by a more physical,
but completely equivalent, argumentation [48]. Suppose the case of near-forward type
II phase matching in a negative uniaxial crystal, such as BBO. Due to the anisotropy
of the crystal, the ordinary (signal) photon propagates in a direction close to the
pump wave vector, whereas the extraordinary photons (pump and idler) do not -
they deviate from this direction by what is called a walk-off angle. The situation is
graphically represented in Fig. 2.12. As a result, the idler photons emerge at the end
face of the crystal from a region approximately the same size as that of the pump.
The signal photons are due to lateral displacement of the pump emitted from a region,
which is considerably elongated in the XZ-plane of principal coordinate system. The
diffraction then dictates that the idler photons have to acquire a bigger divergence
than the signal photons in the θ direction. For a near-forward emission, this implies
the strong broadening of the bottom side of the emission ring, while hardly affecting
the other side, in accordance with the conclusion drawn in the previous paragraph
[compare Figs. 2.11(c) and 2.12].

The above phase matching argumentation served to qualitatively predict the emis-
sion distributions in different configurations including the effects of focused pump and
finite down-conversion bandwidth. To study the interplay between these effects in
determining the emission pattern and to quantitatively estimate the angular diver-
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Figure 2.12: Spatial walk-off as a cause of asymmetric broadening of type II emission
pattern. Assuming near-forward emission, ordinary (red) photons propagate through the
crystal in the direction close to k0

p, whereas extraordinary (green) photons deviate in con-
junction with the pump (represented by blue arrow). In this way extraordinary photons
acquire a spatial distribution similar to that of the pump, becoming strongly divergent,
when the pump is tightly focused. The angular distribution of ordinary photons is barely
affected by focusing of the pump beam.

gence of down-conversion photons along a certain emission direction, the evaluation
elements discussed step by step in this section are simply combined into a single proce-
dure. In short, this procedure repeats the calculation of internal emission angles [Eq.
(2.61)] and subsequent application of Snell’s law [Eqs. (2.68) and (2.69)] for an array
of input pump wave vectors and a range of phase-matched down-conversion wave-
lengths. The down-conversion emission distribution is then obtained as a weighted
sum of the results from all executed evaluation runs.

The representation of the pump as an array of characteristic wave vectors is
perfectly justified by the measurement of the transverse coherence area of signal
(idler) field, demonstrating the spatial incoherence of the down-conversion source
[49]. This was later corroborated by the theoretical analysis of second-order (ampli-
tude) and fourth-order (intensity) coherence functions at pairs of spatially-resolved
points within the signal (idler) field [50], showing that there is no spatial coherence in
the source other than the limits for the angular distribution defined by the conditions
of energy and momentum conservation. This suggests that the down-conversion emis-
sion from every point within the pump can be treated independently. Accordingly,
the transverse cross-section of pump beam inside the crystal can be decomposed into
a representative set of virtual fields, each characterized by its position {x, y} and a

wave vector k
(x,y)
p , as illustrated in Fig. 2.13. Moreover, a weight associated with

the pump intensity I(x,y) at the point {x, y} is assigned to each of the fields. The
allowed emission directions from each field are calculated and finally superposed with
corresponding weights to simulate the effect of a gaussian pump beam.
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Figure 2.13: Representation of the pump beam in the study of down-conversion emission
distribution. The cross-section of the pump beam in the crystal is decomposed into an
array of virtual fields (represented by squares in the 2D density plot), each characterized by
a position {x, y}, a wave vector k

(x,y)
p and an integrated intensity I(x,y). The vectors k

(x,y)
p

are determined in the far region from the beam waist position using simple geometrical
arguments. Each of the virtual fields can be treated separately in the evaluation, assuming
the spatial incoherence of the down-conversion source.

Apparently, in the far field, i.e. for substantial distances from the emission plane,
the source might be treated as dimensionless10, thereby allowing the definition of
the emission distribution in the phase space using the angles θ and φ, as already
shown in Figs. 2.9 and 2.10. However, in the near field the transverse dimension
of the down-conversion source cannot be neglected when determining the emission
pattern. Consequently, the results have to be given for a fixed distance z from the
source in the real space. In this case, we might imagine the angular distribution to
be projected on an observation plane positioned at a distance z from the nonlinear
crystal. Nevertheless, in either case it is straightforward to extract from the pattern
the angular divergence of the down-conversion photons along any emission direction.
Examples of simulated emission distributions from type II SPDC in BBO nonlinear
crystal are presented in the next chapter.

10A condition ρ2/(zλs,i) ¿ 1, where ρ2 = x2
max + y2

max is the maximum distance of an emission
point from the center of the pump beam and z is the distance from the source, can be applied in
accordance with the diffraction theory to guarantee the validity of this approximation.
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Finally, we add that the presented method to evaluate the emission characteris-
tics, does not include effects arising from the depth of the nonlinear process. For
substantial interaction lengths the spatial walk-off or the transverse deviation of
down-conversion light in the crystal might influence to some extent the emission
pattern, when determining it in the near field.

2.5 Bell state preparation

The preparation of a photon pair in one of the four possible Bell states requires that
there has to be only two discrete ways of creating and/or observing such a pair.
Regardless of a concrete physical embodiment, e.g., both photons must be in state
|0〉 or in state |1〉. Moreover, the two alternative ways have to coherently add up to
form the entangled state of the form displayed in Eq. (1.4). To achieve that, the
wave functions associated with the superposed terms in the entangled state have to
be made indistinguishable. Only then, the perfect correlations between the outcomes
of the independent measurements on the two photons in any common basis (for
example, {(|0〉+ |1〉)/√2, (|0〉 − |1〉)/√2}) can be always observed, thereby allowing
the violation of Bell’s inequalities.

It is the simultaneous emission of the two photons together with energy and
momentum conservation that make the creation of entanglement in SPDC process
possible [51]. Nevertheless, to observe the entanglement in various accessible degrees
of freedom, such as momentum, time, polarization etc., the proper spatial and tem-
poral selection of down-conversion photon pairs has to be always accomplished. In
the following, the most common examples of entanglement encoding are concisely
discussed, pointing out the advantages or drawbacks of the individual approaches.

2.5.1 Momentum and energy-time entanglement

Due to energy and momentum conservation the signal and idler photons emitted
from SPDC are strongly correlated in these two continuous degrees of freedom.
This is directly manifested in the presence of the functions δ(νp − νs − νi) and
sinc [(εkp − εks − εki)L/2] in the two-photon state |ψ(2)〉 [see Eq. (2.46)], thereby
precluding its factorization into a product of the states corresponding to signal and
idler photons. To prepare the down-conversion photons in the momentum or the
energy-time Bell state, the continuous spectrum of existing creation/observation pos-
sibilities has to be reduced to just two alternatives, as it was mentioned above.

Considering first the case of momentum encoding, this can be practically achieved
by selecting the two spatial mode pairs (emission directions) using pinholes [52], see
Fig. 2.14. If carried out properly, the pairs of selected spatial modes, denoted here
as a1, b2 and a2, b1, carry the two photons at slightly non-degenerate wavelengths
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Figure 2.14: Schematic set-up of the experiment to demonstrate momentum entanglement
from a down-conversion source.

λa and λb. Thus, the state of the photon pair behind the pinholes can be written as

|Ψ〉 =
1√
2

[
eiφa|λa〉a1|λb〉b2 + eiφb|λa〉a2|λb〉b1

]
. (2.70)

This state is not entangled at this stage, yet, because the spatial modes are evidently
distinguishable. If this spatial information is erased, e.g. by recombining the a-
modes and b-modes at beam-splitters, the momentum entanglement manifests itself
in a sinusoidal dependence of the coincidence count rate on the difference of the
phases φa and φb, which can be easily controlled with a pair of phase plates inserted
in the modes before the beam-splitter.

In case of the energy-time encoding, the two alternatives contributing to the Bell
state can be realized by the two possible creation/detection times of down-conversion
photons. This can be physically implemented by detecting the down-conversion pho-
tons behind the identical unbalanced interferometers, having their short (S) and long
(L) paths [53], see Fig. 2.15. Since the path-length difference of the interferome-
ters is designed to be much greater than the coherence length of the photons, no
interference is seen in a single-detector count rate. Nevertheless, due to energy-time
entanglement, the interference is observable in the rate of coincidence detections as
we vary the phase difference, φ1 − φ2, in either interferometer. This can be under-
stood, when closely inspecting the state of the photons within the interferometers.
Due to energy conservation in SPDC the emission of any pair is uncertain within the
coherence time of the pump (which is supposed to be very long) and therefore, the
state can be expressed as a coherent sum of the four combinations of the passage of
the down-conversion photons through the interferometers:

|Ψ〉 =
1

2

[
|S〉1|S〉2 + ei(φ1+φ2)|L〉1|L〉2 + eiφ2|S〉1|L〉2 + eiφ1|L〉1|S〉2

]
. (2.71)

The simultaneous emissions of the photons from CW-pumped SPDC in a nonlinear
crystal ensures that only the first two terms in Eq. (2.71), i.e. short-short (S1S2) and
long-long (L1L2) detections, are truly coincident. In practice, they can be filtered
from the remaining contributions with a proper coincidence gating. We thus end up
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Figure 2.15: Schematic set-up of the unbalanced interferometer to analyze energy-time
entanglement. In a pulsed version of energy-time entanglement, which is usually referred
to as time-bin entanglement, the unbalanced interferometer serves as a pump preparation
device, too. Then, the emission time of the photon pair from SPDC is given by a coherent
superposition of only two discrete terms (time-bins), instead of a continuous range bounded
only by the coherence length of the pump laser as in the case of energy-time entanglement.

with the maximally entangled Bell state encoded in the time basis {|S〉, |L〉}.
A notable variation of energy-time entanglement, often referred to as time-bin

entanglement, has been proposed [54], avoiding the need for a CW pump laser having
long coherence time. Instead, a pulsed laser is employed followed by the unbalanced
interferometer, identical to those used for the analysis of energy-time entanglement,
see Fig. 2.15. Here, it serves as preparation device, transforming the state of the
pump photon into the superposition α|S〉p +β|L〉p, provided that the pump duration
is short compared to the path length difference. With such pump preparation, the
emission time of the photon pair from SPDC is given by a coherent superposition
of only two discrete terms (time-bins), instead of a continuous range bounded only
by the coherence length of the pump laser as in the previous case. Thus, the down-
conversion photons are directly created in the Bell state:

|Ψ〉 = α|S〉1|S〉2 + β|L〉1|L〉2, (2.72)

where |S〉 and |L〉 form again the basis of our qubit space. The values of α and β can
be controlled by varying the coupling ratio and phase of the unbalanced pump inter-
ferometer. Hence any two-qubit entangled state can be prepared with the method.

Although its analysis using interferometers is rather demanding, the coding of
entanglement in the time basis found undeniably its practical use in fiber-based re-
alizations of certain communication protocols, such as entanglement-based quantum
key distribution or secret sharing. This is due to the inherent robustness of such a
coding against birefringence of fibres, which, e.g., poses a serious problem in case of
polarization encoding, that is discussed in the next part.

2.5.2 Polarization entanglement

Arguably the most illustrative and also the most popular encoding of entanglement
is in polarization degree of freedom. Contrary to energy-time entanglement provided
directly by SPDC process, the achievement of polarization entanglement between the
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down-conversion photons necessitates an additional effort. In particular, it is the
emission of the identically polarized photons from the type I phase matching and the
spatiotemporal characteristics of the type II emission that do not allow for a direct
extraction of polarization entanglement from either phase matching configuration.
Consequently, an additional optics has to be always supplied to bring the initially
separable polarization state of down-conversion photons into an entangled state.

The first experimentally examined method for producing polarization entangle-
ment used type-I emission from SPDC [55]. The degenerate pairs of momentum
correlated photons have been selected and the polarization of one of them rotated by
π/2, before being superposed with the other photon on a beam-splitter. Conditioned
upon the detection of one photon in either output mode of the beam-splitter (denoted
as “1” and “2”) the maximally entangled polarization state is obtained:

|Ψ〉 =
1√
2

[|H〉1|V 〉2 + eiφ|V 〉1|H〉2
]
, (2.73)

where |H〉 and |V 〉 stand for horizontal and vertical polarization, respectively. This
method, however suffers from a necessary postselection by coincidence measurement.
In fact, the total state of photons behind the beam-splitter is not entangled and it
is the act of postselection of only the half of the total states, which approximates an
entangled state.

To avoid this problem, two basic methods have been suggested and experimentally
demonstrated. The first uses non-collinear type-II phase matching in a single crystal
[56], whereas the other relies on the coherent spatial overlap of the emissions from two
adjacent type-I phase-matched nonlinear crystals [57]. Nowadays, these two methods
are widely used in sources of polarization-entangled photon pairs and as such deserve
a good deal of attention.

Type-II source. The use of type-II phase matching for the generation of the photon
pairs in polarization Bell states appears to be a natural solution. Recall just the
corresponding angular emission distribution [see Fig. (2.10)]. Considering the de-
generate case, the down-conversion photons are emitted along the two (orthogonally
polarized) cones, which intersect each other for certain orientations of the nonlin-
ear crystal. This intersections define two directions (“1” and “2”), along which the
polarization of each emitted photon is undefined, but perfectly anti-correlated with
the polarization of the other one. Therefore, it might seem that the photon pairs
in the polarization-entangled state (2.73) are directly produced in this configuration.
However, this is not yet true, because in the birefringent crystal the ordinary and the
extraordinary photons will propagate at different group velocities and under different
directions11.

11Historically, it was exactly the lack of understanding of spatiotemporal properties of the type-II
emission, which delayed the demonstration of the polarization entanglement in this configuration
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For example, if one uses a negative uniaxial crystal, such as BBO, the extraordinary-
polarized photons propagate faster than the ordinary-polarized photons inside the
crystal. Identifying the horizontal (vertical) direction with ordinary (extraordinary)
polarization, this causes that the detector 1 positioned in the mode “1” would fire first
in a |V 〉1|H〉2 term, whereas the detector 2 in the second mode would fire first in the
other |H〉1|V 〉2 term. Thus, the two terms are, at least in principle, distinguishable.
The propagation of ordinary and extraordinary polarization under different directions
in the crystal has a two-fold effect on the spatial characteristics of down-conversion
emission, see Fig. 2.12. First, the extraordinary-polarized photons are emitted from
a spot approximately the same size as that of the pump, whereas the emission region
of ordinary photons is considerably elongated in the direction of the transverse walk-
off. Second, the emission spot of the extraordinary photons is laterally displaced
with respect to that of the ordinary photons. As a result, this two-fold spatial effect
provides the partial label of the terms in (2.73), too.

The optimum compensation of the described spatiotemporal effect in the down-
conversion crystal is achieved by inserting identical crystals of half the length in each
of the two down-conversion modes [56]. If the polarization of the down-conversion
light is rotated by π/2 before passing the crystals, the spatial overlap of ordinary and
extraordinary emission modes is restored, thereby effectively erasing the spatial label
of the |V 〉1|H〉2 and |H〉1|V 〉2 terms in (2.73). Analogously, the temporal retardation
of the ordinary and extraordinary are exchanged in this way, introducing the temporal
indistinguishability of the terms in question.

To prove the latter, we can apply the evaluation tools of section 2.3.2 to deter-
mine the joint time distributions A(τ+, τ−) of the biphoton associated with the terms
|V 〉1|H〉2 and |H〉1|V 〉2. Assuming CW pumping of SPDC for convenience, the am-
plitude A(τ+, τ−) is independent of τ+ = (τ1 + τ2)/2, where τ1 and τ2 are individual
detection times of the photon at the first and the second detector, respectively. There-
fore, the analysis can be restricted only to the dependence on the time τ− = τ1 − τ2,
which is interpreted as the difference in the time of the two detections. Due to the
rectangular shape of A(τ−) in type II phase matching, and its asymmetry to τ− = 0
[see Fig. 2.5(b)], the two distributions do not overlap whatsoever, unless a proper
compensation is applied. The temporal distribution of |H〉1|V 〉2 stretches from 0 to
usiL, where the dispersion parameter usi is defined in Eq. (2.50) and L is the length of
the crystal. I.e, the horizontally-polarized photon arrives at the detector 1 always af-
ter registering of the vertically-polarized photon at the detector 2, τ1 > τ2. Applying
the analogous arguments to the term |V 〉1|H〉2, it is straightforward to deduce that
the corresponding distribution stretches from −usiL to 0, as illustrated in Fig. 2.16.
This proves the complete temporal distinguishability of the two terms in question. In
order to achieve the perfect overlap, both distributions has to be shifted by |usiL/2| in
the proper direction. Obviously, this is exactly realized by the suggested half-length
crystals, which are rotated by π/2 with respect to down-conversion crystal.

by approximately a decade, to the mid-90s.
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Figure 2.16: Explanation of the temporal distinguishability of the |H〉1|V 〉2 and |V 〉1|H〉2
terms in Eq. (2.73). Whereas, the temporal distribution of the first term stretches in
τ−(= τ1 − τ2) direction from 0 till usiL, the distribution of the latter is the mirror image
of the first one about τ− = 0. Consequently, no polarization entanglement can be observed
unless a proper compensation is applied.

The described compensation method completely erases any possible spatial and
timing information of the two terms and therefore the true polarization-entangled
photons in the state (2.73) are produced. Furthermore the compensation crystals
can be exploited to set the relative phase φ in the state. If an additional half-wave
plate in one of the two modes is inserted, we can prepare any of the four maximally-
entangled Bell states [see Eqs. (1.3) and (1.7)] in the polarization basis.

Double crystal type I source. The second widely used method to prepare polarization-
entangled photon pairs relies on the coherent spatial overlap of the two non-collinear
type I emissions. Consider two adjacent nonlinear crystals, both operated in type-I
phase-matching configuration and pumped with linearly polarized light. The other-
wise identical crystals are oriented such that their optic axes lie in mutually perpendic-
ular planes. For example, let the optic axis of the first (second) crystal define together
with the pump direction the vertical (horizontal) plane. Due to the type-I coupling,
the down-conversion process occurs only in the crystal, where the pump photon is ex-
traordinary polarized, emitting the ordinary polarized down-conversion photons into a
characteristic cone. That is, with the vertically-polarized pump the down-conversion
process occurs only in the first crystal, whereas with the horizontally-polarized pump
it occurs only in the second crystal. By pumping the crystals with light, linearly
polarized at 45◦ with regard to horizontal and vertical direction, there is an equal
probability that a pump photon will be down-converted in either crystal. Provided
that the two emission processes are coherent with one another, which is fulfilled as
long as there is no way of ascertaining whether a photon pair was produced in the
first or the second crystal, the following entangled state is automatically produced:

|Ψ〉 =
1√
2

[|H〉1|H〉2 + eiφ|V 〉1|V 〉2
]
. (2.74)

The labels “1” and “2” again correspond to the two spatial modes, which are experi-
mentally selected with e.g. pinholes or fibres. The relative phase φ is determined by
the details of the phase matching and thickness of the crystals, but can be controlled
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by adjusting the relative phase between the horizontal and vertical components of
the pump light.

The distinguishing information, which might possibly label the emission processes
and thereby reduce their mutual coherence, can be either of temporal or spatial char-
acter. The first type is usually precluded by using CW pumping. Nevertheless, if
pumping with (pulsed) light of short coherence length is required, e.g. for timing
purposes, the two processes could be at least in principle distinguished by the detec-
tion times. Therefore, in such a case a proper compensation is required to restore the
temporal coherence of the emission processes [58, 59]. The analysis of the joint time
distributions associated with the two emissions might be applied, similarly as in the
previous case of the type-II source, in order to determine the suitable compensation.
A particular example of such analysis is presented in the next chapter and therefore
it is not discussed here further. The second possibility, which can lead to the loss of
coherence between the two terms, occurs whenever the emission modes from the two
crystals are spatially distinguishable. To avoid this situation, the nonlinear crystals
have to be thin enough. Only then, the emission cones at certain wavelength overlap
to a great extent and very pure polarization-entangled photon pairs can be obtained
[57].

A remarkable feature of this source is that by a plain rotation of the linear
pump polarization, any non-maximally entangled state, i.e of the form |H〉1|H〉2 +
ε|V 〉1|V 〉2, |ε| 6= 1, can be prepared without degrading a production rate of the photon
pairs. In other sources this is often possible only by manipulating the down-conversion
light, thereby affecting significantly the accessible yield of the photon pairs.





Chapter 3
Sources of polarization-entangled
photon pairs

This chapter describes the design and implementation of two different compact
sources of polarization-entangled photon pairs using a blue laser diode as a
pump source for spontaneous-parametric down conversion. Whereas the first
source uses a well established concept of degenerate non-collinear emission from
a single type-II nonlinear crystal, the other features a fully collinear geometry
where the photon pairs at non-degenerate wavelengths emitted from two adjacent
type-I down-converters are collected to one single-mode fibre and subsequently
split using a wavelength division multiplexer.

3.1 Photons as information carriers

Photons are natural carriers of quantum information due to their easy distribution
and the fairly weak interaction with the environment. The other non-photonic sys-
tems, such as atoms and ions, do not offer such potential, which significantly lowers
their applicability for information transfer, leaving photons as the only practical al-
ternative for the foreseeable future.

The first quantum communication schemes were based on the exchange of sin-
gle photons [14]. Nevertheless, the vast majority of novel quantum communication
protocols, including quantum dense coding [16], quantum state teleportation [17] or
entanglement-enhanced classical communication [60] uses as a resource the photonic
entanglement. Also quantum key distribution, the most advanced application of
quantum communication, significantly profits when applying the entanglement-based
schemes [15]. With regard to further extension of bridgeable distances in quantum
communication, it even appears mandatory to apply entanglement in the quantum re-
peater [61] (or quantum relay [62]) architectures, where the communication channel is
divided into shorter segments connected via entanglement swapping. The technology

51
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of the generation of photonic entanglement, its distribution and detection, together
with the methods of controlling and recovery of the encoded data, are therefore vital
for the further progress in the field of quantum communication.

3.1.1 Challenges in quantum communication

To ensure the high-level performance of any application with entangled photons, the
selection of the proper operating wavelength must be done carefully. In this context
two communication systems are being currently under intensive development (for a
review, see e.g. [63, 64, 65]).

The first type, which is undeniably the most promising for future terrestrial quan-
tum communication, utilizes the transport of photons in single-mode optical fibres.
To take full advantage of today’s telecommunication technology, the most advanta-
geous wavelengths turn out to be at λ = 1.31 µm and λ = 1.55 µm, i.e., at the
low-dispersion and low-absorption spectral windows of fibres. The distortion of po-
larization due to birefringence and polarization mode dispersion in the fibres pose
the crucial obstacle for the use of any kind of polarization-encoding scheme. Hence,
in fiber-based communication systems energy-time or time-bin encodings of entan-
gled photons are usually employed. They offer a good stability for long-distance
applications since they are not sensitive to polarization fluctuations in optical fibers;
and chromatic dispersion can be passively compensated using linear optics. Efficient
and practical down-conversion sources of time-bin entangled photons at the telecom
wavelengths have been developed [54], [66], however, the only applicable single-photon
photodiodes made from germanium or InGaAs/InP semiconductor material show low
efficiencies (typically ranging from 10% to 25 %), and high dark count noise (over 10
kHz). The combination of the poor detection and the attenuation in optical fibres1

limit the communication distances to the order of 100 km. Without a major break-
through in the fiber and/or detector technology or the demonstration of the working
quantum repeater architecture, whose development is still in its infancy, no further
extension of communication reach by an order of magnitude is to be expected.

The second type of the communication system utilizes the transmission of the
photons over free space. The increase of atmosphere transmission towards infrared
wavelengths, together with the peak detection efficiencies of silicon avalanche pho-
todiodes (APD; typically up to 70%) in the visible red and the near-infrared (NIR)
spectral region, suggest that the optimal operating wavelengths lie within the 700–900
nm range. Furthermore, the atmosphere is only weakly dispersive and essentially non-
birefringent, allowing the use of polarization encoding, for which simple and efficient
control elements and analyzers are standardly available. The terrestrial communica-
tion using free-space links suffers from many problems, which are not encountered in

1The minimum attenuations in standard telecom fibers at λ = 1.31 µm and at λ = 1.55 µm are
of the order of 0.35 dB/km and 0.20 dB/km, respectively, corresponding in turn to the 99% loss
after about 57 and 100 km.
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fiber-based systems, e.g. requirement of line-of-sight path between the communicat-
ing parties, dependence of the system’s performance on the weather, pollution and
other atmospheric conditions etc. This generally limits the communication reach of
the terrestrial free-space links to the same order as the fiber links. To fully exploit
the advantages of free-space communication, it is necessary to use space and satellite
technology. Quantum communication via satellites appears to be feasible even with
today’s technology, thereby allowing to bridge distances on a global scale. Ultimately,
this solution holds a promise for establishing the global quantum communication net-
work.

3.1.2 Quest for high-flux entangled-photon sources

One of the major challenges to successfully implement free-space communication
systems is the development of practical, polarization-entangled photon sources with
sufficient performance2. The performance of sources can be conveniently quantified
in terms of their brightness, measured as a number of detected pairs per second
and miliwatt of pump power and the quantum-interference visibility of polarization-
entanglement. Besides reaching a high performance, the practical source has to fulfill
additional criteria regarding compactness and robustness of the design, as well as low
operation costs or turn-key operation requiring minimum alignment.

The development of the compact high-flux sources of (polarization-entangled)
photon pairs is not important only for quantum communication, but has undeniably
a great impact on the progress in the other research areas of quantum optics. Op-
tical quantum computing, particularly with KLM (Knill, Laflamme and Milburn)
architecture [68], involves as one of the key ingredients an efficient single-photon and
entangled-photon generation. The tight correlations of entangled photon pairs are
also of great benefit in the field of quantum metrology, e.g., for distant clock synchro-
nization [69] or for absolute calibration of detectors without the need for a reference
system [26, 70]. Other possible applications include quantum imaging with a fas-
cinating perspective of remote sensing; or quantum lithography (and microscopy),
where entangled photons are applied to write (and observe) structures at a resolu-
tion exceeding that imposed by classical diffraction theory [71]. Finally, the majority
of today’s multi-photon entangled sources, which are essential for advanced multi-
party communication or cluster state quantum computing, rely on the interference of
independently created entangled photon pairs.

Sources of polarization-entangled photon pairs made a rapid progress in the recent
years. The detected photon-pair flux increased tremendously - an empirical obser-
vation suggests that the brightness doubles approximately every 12 months, see Fig.
3.1. Keeping the present pace of the brightness growth, we might expect that the

2For example, the preliminary feasibility studies of the space quantum experiments estimate the
minimum required production rate of 106 pairs per second and quantum-interference visibility of at
least 98% [67].
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Figure 3.1: Growth of the
source brightness over the
recent years. The expo-
nential fit suggests that the
brightness doubles approxi-
mately every 12 months. Pa-
rameters of the sources used
in the plot are listed in ap-
pendix A.2.

production rate reaches the gigahertz level before 2015. Also the practicality of the
sources increases steadily. Only five years ago, large-frame ion lasers were used com-
monly for pumping the SPDC process. Nowadays, the new generation of blue and
violet laser diodes (LDs) starts to be widely utilized, making sources more compact
and economical.

3.2 Methods to generate entangled photon pairs

Since the first demonstration of a source producing polarization-entangled photon
pairs based on an atomic decay, a wealth of theoretical proposals and experimental
prototypes have been reported. Nowadays, the generation of entangled photon pairs
is a routine lab work and the development of sources focuses largely on their simplifi-
cation and/or optimization of their performance. The most widely spread way how to
generate entangled photon pairs relies on the emission from the SPDC. Nevertheless,
novel techniques of photon-pair generation based on the four-wave mixing process in
nonlinear optical fibres or on the decay processes in semiconductor structures have
been suggested, offering a great potential to outperform the traditional approaches
eventually, and thus to be once widely integrated in practical applications. In the fol-
lowing the most common methods are briefly described, pointing out their strengths
and/or weaknesses and possible future prospects.

3.2.1 SPDC sources

Presently, the two most established methods to generate polarization-entangled pho-
ton pairs utilize spontaneous parametric down conversion. The first makes use of
type-II phase-matching in a single crystal [56], whereas the second relies on the
coherent spatial overlap of the emissions from two adjacent type-I phase-matched
nonlinear crystals [57]; (for further details see section 2.5.2). Usually, due to the
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non-collinear geometry of the methods, the nonlinear crystal must be relatively short
(typically in the range from 0.5 mm to 3 mm), thereby limiting strongly the potential
brightness of the methods to the order of only hundreds of coincidence counts per
second. Many variations of the two original proposals including confinement of the
nonlinear crystal in a cavity [72] or phase-compensated collection of a wider solid
angle of the emitted light [73] were reported over the past few years enhancing the
yield of down-conversion photons by roughly an order of magnitude.

Birefringent phase matching in materials with a relatively high nonlinearity, such
as beta-barium borate or lithium iodate (LiIO3), is regularly applied for the SPDC
process. However, this method fails, when the material does not exhibit sufficient
birefringence at the interacting wavelengths. As an alternative, quasi-phase matching
in periodically poled structures can be used, opening the possibility to noncritically
phase match almost any combination of wavelengths within the transparency range
of the nonlinear materials. This enables to access the highest nonlinear coefficients
of many materials, such as lithium niobate (LiNBO3), lithium tantalate (LiTaO3) or
potassium titanyl phosphate (KTiOPO4), thereby enhancing the overall conversion
efficiency of the SPDC process.

Different configurations of sources using bulk periodically poled crystals were in-
vestigated over the recent few years. The best results were reported in collinear
geometry using bi-directional pumping of a single periodically poled crystal [74, 75]
or coherent overlap of the emissions from two crystals [76, 77, 78]. This way, the
brightness increased by at least one order of magnitude in comparison to sources
using BBO crystals, reaching values above 104 detected pairs/s/mW, while at the
same time keeping the high purity of polarization entanglement. A further boost of
photon-pair yield might be expected, when exchanging bulk crystals for nonlinear
periodically poled waveguides. Due to the field confinement, waveguides provide an
improved mode overlap of the interacting waves, leading to an enhancement of the
conversion efficiency. Conversion efficiencies of up to 10−6, roughly 4 orders of magni-
tude more than that obtained with BBO crystal, were already demonstrated, though
without the possibility for direct generation of polarization entanglement [79, 80].

3.2.2 Fiber sources

Four-wave mixing (FWM) via the third-order (χ(3)) nonlinearity of optical fibers can
be utilized to generate correlated photon pairs at unequal wavelengths [81]. The gen-
erated pairs are predominantly co-polarized with the pump, which can be exploited
for obtaining polarization entanglement by bi-directional pumping of a fiber Sagnac
loop [82]. This geometry has the advantage that the counter-propagating pairs re-
main in a coherent superposition without the need for any phase or path adjustments.
Substantial interaction lengths together with the strong mode confinement lead to
unprecedented brightness [83]. However, the occurrence of significant spontaneous
Raman background makes the actual production of high-purity polarization entan-
glement complicated. Usually, pumping at very low powers, a careful filtering of
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true correlated photon pairs and an operation at liquid nitrogen temperatures is re-
quired, to reach near-to-unity quantum-interference visibility [84]. This problem can
be somewhat avoided by pumping the fiber in normal dispersion regime generating
photons at widely spaced wavelengths (typically by hundreds of nanometers) outside
the Raman scattering region. In either case, the need of mode-locked picosecond
lasers for pumping the FWM process together with the difficulties in extracting high-
purity polarization entanglement make today’s fiber sources less suitable for practical
applications. Nevertheless, the achieved high production rates suggest their possible
future applicability in multi-photon quantum information experiments [85].

3.2.3 Semiconductor sources

Semiconductor quantum dots became widely utilized as optically and electrically
driven sources of single photons on demand. Few years ago, the biexciton decay in a
single quantum dot via an intermediate exciton level was proposed to provide a source
of triggered, entangled photon pairs [86]. In contrast to afore-mentioned methods
based on SPDC and FWM processes, which generate probabilistic numbers of photons
pairs, the biexciton decay produces no more than two photons per excitation cycle.
This makes such a compact and integrated device a favorable alternative to other
sources, with the additional benefit of being easily implemented using simple, LED-
like technologies.

Practically, structure asymmetries lead to polarization dependent splitting of the
intermediate exciton level, resulting in only polarization correlated photons. How-
ever, two schemes to eliminate the polarization splitting by control of growth or
application of magnetic field, have enabled the recent observation of polarization-
entangled photons, although at very poor quality [87]. Many tremendous engineering
challenges still remain in order to realize a practical quantum dot source of entangled
photons. Improvements must be made to the efficiency of the device, to the frequency
of operation, and, most importantly, to the degree of entanglement.

3.3 Compact non-collinear type-II SPDC source

To generate photon pairs in the NIR spectral region compatible with high-efficient
silicon APDs and the low-absorption window of the atmosphere, the pump-beam
wavelength for SPDC has to be shorter than 450 nm. This requirement generally
led to the use of large-frame ion lasers, which, due to their complexity and high
operating costs are not suitable for practical applications. Hence, a great deal of
attention has been recently devoted to replace these cumbersome and expensive lasers.
The first step towards this goal have been undertaken by Volz et al. [88], who
successfully demonstrated the generation of polarization-entangled photon pairs in
NIR using a frequency doubled, red LD. The advent of a new generation of gallium
nitride based blue LDs promised a further simplification of the system. The first
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reported implementation, however, did not reach the expected brightness and high-
purity polarization entanglement [89]. It was therefore our goal to demonstrate that
the performance of sources using low-cost LDs can be comparable to those using CW
ion lasers [90].

3.3.1 Method

For the generation of polarization-entangled photons we use a well-established tech-
nique based on SPDC emission from a single type II phase-matched nonlinear crystal.
For closer details of this method, addressing particularly the issue of entanglement
production, we refer to section 2.5.2. Since in many applications a well-defined spatial
mode is highly desirable, in our source single-mode fibres are used for coupling of the
down-conversion light. To increase the yield of photon pairs we aim at optimizing the
photon-pair collection efficiency into single-mode fibres. Due to a limited laser-diode
pump power available for SPDC, this issue is of particular importance in our source.

The problem of maximizing the coupling efficiency is investigated at length for
type-I phase matching in both CW and pulsed pumping regime [91, 92]. The fibre
coupling of type-II emission is less explored mainly due to difficulties in determining
the angular distribution of SPDC light along the intersection of the output rings.
The first work along this line was reported by Kurtsiefer et al. [93], who suggested
a simple hands-on method for determining the optimum parameters of the pump
and the collection optics. The method involves adjusting the crystal orientation till
the perpendicular intersection of the SPDC rings is provided. Then, emission modes
along the intersection lines might be approximated by gaussian profiles with a diver-
gence, which can be easily determined from the fixed relation between the emission
direction and the output wavelength. To maximize the yield of fibre-coupled pho-
ton pairs, collection modes with the same divergence are chosen. Furthermore, the
pump beam waist size is suggested to match the size of the target collection mode
in the crystal. Later Bovino et al. [94] presented a more rigorous approach to the
problem based on maximizing the overlap between the two photon amplitude A of
the entangled photon state and the field distribution of single-mode fibres. This al-
lowed to study the interplay of the major experimental parameters, including crystal
length, magnification of the coupling system or fibre mode field diameter, in deter-
mining the coupling efficiency. Both approaches have been verified experimentally,
demonstrating a high net coupling efficiency.

Here we propose yet another approach to the problem. Even though it resembles
the method proposed in [93] to some extent, it avoids using therein applied simpli-
fications, including rotational symmetry of the down-conversion rings or plane-wave
pumping. Using the evaluation tools introduced in section 2, our approach takes fully
into account the focusing geometry of all three interacting fields. Contrary to [93],
our results suggest that the maximum yield of fibre-coupled pairs is not achieved
if the pump beam waist size matches the size of the target collection mode in the
nonlinear crystal; see also [94].
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Our fibre-coupling strategy might be divided into a few successive steps: (i) de-
termination of the optimum pump beam divergence; (ii) evaluation of the emission
characteristics; and (iii) determination of the collection mode. In the following the
individual steps are discussed in more detail.

Pump-beam dependencies. The first important observation relevant to the deter-
mination of the optimum pump beam divergence αp for SPDC is the spatial incoher-
ence of the down-conversion source. If the transverse width of the source is too large,
the collective emission will be spatially multimode. This explains the impossibility
of efficient fibre-coupling of the photons in this regime.

The need of a focused pump for successful collection of down-conversion photons
has been demonstrated in several theoretical and experimental works [48, 93, 94, 95].
The only theoretical model predicting the opposite, i.e., achieving high coupling effi-
ciencies if the pump-beam waist size wp and the collection-mode divergence αC are
chosen large enough, has been suggested recently [96]. To disprove this hypothesis
and show that indeed the size of the emission region has to be sufficiently small, we
apply the evaluation steps described in section 2.4 and calculate the distribution of
down-conversion light with a certain spectral bandwidth. Similarly as in Kurtsiefer’s
optimization method [93], we analyze the configuration for a perpendicular intersec-
tion of the SPDC rings. This appears to be a convenient choice for achieving efficient
fibre-coupling due to an approximate rotational symmetry of the emission modes.
Next, from the calculated distributions of the two intersection regions we single out
only emission directions restricted within a small interval of polar angles φ (or, al-
ternatively within a small interval of azimuth angles θ). From a physical perspective
this step corresponds to a selection of down-conversion light from the intersection
regions using a very narrow vertical (or horizontal) slit apertures. Using this pro-
cedure, we obtain a representative set of light rays, which are to be coupled into a
single-mode fibre. To this end, the collection optics has to be designed first, matching
the angular width of the emission modes to a gaussian distribution of the receiving
modes. This distribution can be easily determined from a mode field diameter (MFD)
of single-mode fibres. To investigate the actual process of fibre-coupling, a standard
ray-tracing method allowing us to track the path of down-conversion photons through
the collection lens is applied3. This way, we arrive at clearly different regimes of fibre
coupling for a focused and collimated pump [compare Figs. 3.2(a) and 3.2(b)]. In
the first case, the coupling lens concentrates the down-conversion rays to a spot of
several microns in diameter, which is compatible to the core sizes of standard fibres
with single-mode operation in NIR spectral region [for the parameters in Fig. 3.2(a)
the focused spot has the diameter of ≈ 5.5 µm]. However, for the second case, a
roughly one order of magnitude larger diameter of the focus is observed, suggest-

3We note that even though the methods of geometric optics approach cannot be used for a
rigorous investigation of fibre-coupling efficiencies [97], the ray-tracing approach clearly demonstrates
the feasibility of coupling the down-conversion light into single-mode fibres.
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Figure 3.2: Ray tracing of representative set of down-conversion emissions (λ = 806 nm,
∆λ = 5 nm) through the aspheric coupling lens in different regimes of pumping: (a) for
focused pump with the divergence of αp = 1.9 mrad and (b) for almost collimated pump
with αp ≈ 0.1 mrad. An aspheric lens with effective focal length of f = 7.5 mm at a distance
of z = 210 mm and z = 370 mm from the crystal is used in (a) and (b), respectively.
The distances were determined to optimally match the calculated down-conversion angular
divergence to the numerical apertures of the receiving mode defined by the MFD = 5.2 µm
of a single-mode fibre. SPDC emission from BBO crystal cut at Θ0

p = 42.9◦ and pumped
at a wavelength of λp = 403 nm is assumed in the plots.

ing a transverse multi-mode character of the emission modes [for the parameters in
Fig. 3.2(b) the spot diameter is ≈ 39 µm]. One has to face the same situation, if a
nonlinear-crystal is moved well beyond the Rayleigh range of the focused pump - it is
the size of the pump cross-section inside the nonlinear crystal, which predetermines
the feasibility of efficient fibre-coupling of down-conversion light.

Notably, the results of ray-tracing also suggest that if down-conversion photons
are collected into spatially multi-mode channels4, such as a pair of circular apertures

4In multi-mode collection channels the emission angles of down-conversion photons are resolvable.
This is in contrast to single-mode channels, where all the information on emission angles is erased.
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in the far zone of the source, a collimated pump might be even preferred [56]. Due to
the reduced divergence of the emission modes in this regime, an increased collection
rate of down-conversion photons is achieved for a given opening of the apertures.
Thus, a collimated pump should yield a higher degree of polarization entanglement
for a given detected photon-pair flux than a focused pump [48, 98].

The rule of increasing fibre-coupling efficiency with decreasing size of pump-beam
waist inside the nonlinear crystal, however, fails below certain critical waist sizes.
Recall that a large wave-vector spread, which is associated with tight focusing causes
the asymmetric broadening of the emission rings [for further explanation see section
2.4]. As a result, the intensity distribution within the intersection of the rings loses
its approximate rotational symmetry and becomes elongated in one direction, see
Fig. 2.12. Thus, it can be mapped to the receiving modes of optical fibres only
with a limited efficiency. We note, that the integration of tailored cylindrical optical
elements into coupling optics can restore a high fibre-coupling efficiency. This is,
however, experimentally demanding and not practical.

To determine the critical pump beam waist size, which still leads to a tolerable
emission-mode asymmetry, a series of down-conversion emission distributions have
been evaluated for different values of pump-beam divergence αp, see Fig. 3.3. As
expected, the gradual transition of the ring intersection distribution from an initially
circular shape towards an elongated elliptical profile is observed. For the input diver-
gence of 2 mrad, the aspect ratio of the elliptical profile reaches the value of about
0.585. This corresponds to the maximum overlap between the emission modes and
the receiving modes of above 0.9, which we still consider as a tolerable value. For
the input divergence of 3 mrad, the aspect ratio is reduced to ≈ 0.42, resulting in a
maximum overlap of 0.85, which is below the set limit.

The asymmetry of the emission mode does not lead only to a reduction of fibre-
coupling efficiencies, but also limits the maximum accessible degree of polarization,
eventually. The effect arises, if the collection modes are dissimilar, resulting in fi-
bre coupling of one predominant polarization state and consequently, the detection
of nonmaximal entanglement [48]. Furthermore, the increase of pump-beam diver-
gence far beyond 1–2 mrad (provided that crystals with lengths in ∼ mm range are
used) was shown to be accompanied with a significant broadening of down-conversion
spectra [42], which is unwanted with regard to practical applications as well. In sum-
mary, all the above argumentation suggests that the best regime of source operation
is obtained for pump-beam divergence αp, ranging between 1 and 2 mrad.

SPDC emission dependencies. The fixed relation between the emission direction
and the output down-conversion wavelength allows a pure geometrical definition of
the fibre-coupled spectral bandwidth ∆λ by properly designing the collection modes.
In principle, any bandwidth ∆λ (of course, below the naturally phase-matched width

5The obtained values of aspect ratios are independent of the considered down-conversion spectral
width. Thus, any reasonable value can be entered in the evaluation of the emission distributions.
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Figure 3.3: Simulated down-conversion emission distributions restricted to the immediate
vicinity of the intersection of the rings as a function of the pump-beam divergence: (a)
αp = 0.1 mrad, (b) αp = 1.0 mrad, (c) αp = 2.0, (d) αp = 3.0 mrad, and (e) αp = 4.0
mrad. The patterns show the distributions determined at a distance of z = 250 mm from
the BBO crystal (Θ0

p = 42.9◦); the size of one pixel corresponds to 140 µm in real space
and the zero of the coordinate system is given by the position of the pump beam (λp = 403
nm).

for a given crystal length, see Fig. 2.3) can be freely chosen in this way and thus, no
interference filters reducing the resultant efficiency of the source are required.

Fixing the parameters of the pump beam, the corresponding emission distribu-
tion can be calculated at any distance from the nonlinear crystal for a given spectral
bandwidth ∆λ, which is aimed to be collected into the single-mode fibre. The eval-
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Figure 3.4: Basic emission properties of violet LDs. (a) The spectrum exhibits multiple-
peak structure (blue line; taken from [99]) with an aggregate FWHM bandwidth of roughly
0.5 nm (red line; measured). The broadening of measured spectral profile due to a spectrom-
eter resolution of 0.15 nm is subtracted from FWHM. (b) The angular emission distributions
in the two main planes show nearly ideal Gaussian profiles; taken from [99]. FWHM diver-
gences reach typically the values of ∼ 8◦ (blue; plane parallel to the diode junction) and
∼ 22◦ (red; plane perpendicular to the diode junction).

uation is repeated several times at different distances and the geometrical width of
the emission mode is determined by fitting the ring-intersection distribution with a
gaussian profile at each of them. This way, we can readily infer the divergence of the
emission mode αE.

Collection mode. We now define Gaussian collection modes, which are aligned with
the intersection directions of the emission rings. In order to maximize the fibre-
collection efficiency of down-conversion light with a desired bandwidth ∆λ, the diver-
gence of collection modes must match that of the emission modes [93], i.e. we set αC =
αE. This determines the waist size of a Gaussian collection mode of w0 = λs(i)/(παC),
which is optically mapped using a coupling lens to the MFD of the collection fibre.

3.3.2 Implementation

Pump-beam preparation. The pump beam for SPDC is provided by a violet trans-
verse single-mode LD (Nichia, No. NDHV310ACA) with a maximum optical output
power of 30 mW at about 60 mA driving current. Alternatively, a 60 mW LD (Nichia,
No. NDHV310APC) is applied as the pump. The diode is mounted in an aluminium
housing, which is temperature stabilized with a Peltier element to about 20 ◦C. Both
types of diodes operate at λp = 403 nm and exhibit multiple-peak spectra with an
aggregate FWHM ranging from ∆λp = 0.4 nm to ∆λp = 0.6 nm, depending on the
particular LD [see Fig. 3.4(a)]. This spectral bandwidth corresponds to a coherence
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Figure 3.5: A typical example of the beam-shaped violet-LD output captured with a CCD
camera. The snapshots of the beam profile at (a) beam waist position, and at (b) 240 mm
distance from the waist position are shown. Using cylindrical lenses a nearly circular beam
is achieved, exhibiting the ellipticity factor of > 0.95 in a wide region around the beam
waist position.

time of roughly 1 psec. Besides, a weak broadband in-line emission centered in the
visible red spectral range is observed.

The angular emission distributions of the laser-diode light show nearly ideal Gaus-
sian profiles [see Fig. 3.4(b)], suggesting that no mode filters are required to improve
the quality of the beam. The FWHM beam divergences typically reach θ‖ = 7–
10◦ and θ⊥ = 20 – 26◦ in the directions parallel (usually termed as slow axis) and
perpendicular (fast axis) to the diode junction. A quality factor, M2, defining the
deviation of the laser beam from a theoretical Gaussian (M2 = 1) was measured
along the slow and fast axes using the four-cuts method [100], yielding the values of
M2
‖ ∼ 1.3 and M2

⊥ ∼ 2.3, respectively. The radial asymmetry of the angular diver-

gence, together with the mismatch of the M2 factors along the slow and fast axes
make the laser-diode beam highly astigmatic. To correct the astigmatism, usually
an adjustable anamorphic prism pair or cylindrical lenses are utilized. The latter
technique delivered better results in our case and permitted complete removal of the
astigmatism inherent to the laser-diode light. This is simply accomplished by proper
focussing of the lenses in each direction. First, a pair of lenses, a positive aspheric
lens (focal length f = 4.6 mm) and a negative singlet lens (typically f = −15 to −30
mm), forming a Galilean-type telescope is used to focus the slow axis to the desired
size. Then, a cylindrical lens or lens pair (typically f = 150 to 350 mm) is used
to match the size and the position of the beam waist in the plane of the fast axis.
This way we are able to focus the laser beam to waist radii between 50 µm and 300
µm at a distance of 180–240 mm from the laser diode. The smaller focal length of
the negative lens results in a shortening of this distance, however at the expense of
stiffening the positioning tolerances. A typical example of the achieved beam profiles
of the focused laser-diode beam is shown in Fig. 3.5. For the operation of the non-
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collinear type II source we choose the waist radius of wp = 75 µm, corresponding
to a pump-beam divergence of αp = 1.7 mrad. In accordance with the conclusions
drawn above, such a divergence should allow an efficient coupling of down-conversion
photons into single-mode fibres.

Nonlinear crystal and SPDC emission. We use beta-barium borate (β-BaB2O4 or
BBO; basic characteristics are given in appendix A.1.1) as a nonlinear material for
SPDC. The crystal with dimensions 7× 7× 2 mm3 is cut for type II collinear phase
matching at an angle of Θc = 42.0◦ (Φc = 29.0◦). The perpendicular intersection of
the emission cones at the degenerate wavelengths of λs = λi = 806 nm is obtained for
a pump orientation of Θ0

p = 42.9◦ with respect to the optical axis (see green rings in
the altogether right pattern of Fig. 2.10). The corresponding intersection lines form
an external angle of φ = 3.26◦, measured with regard to the pump direction.

For the crystal length of L = 2 mm the output phase-matched spectral width
is expected to reach ∆λ ≈ 5 nm, according to Fig. 2.3. The finite pump-beam
coherence time of ≈ 1 psec contributes to a broadening of this width only negligibly,
see Fig. 2.4. Aiming for all the phase-matched bandwidth of 5 nm to be collected
into the fibres, the emission-mode divergence of αE ≈ 0.30◦ is determined from the
down-conversion distributions calculated at different distances from the BBO crystal
[see Fig. 3.6]. The pumping of the crystal by a Gaussian beam with a waist radius of
wp = 75 µm is assumed in the evaluation. The fibre-coupling optimization method
requires αC = αE, which fixes the waist size of the Gaussian collection mode to
w0 = 59 µm.

The non-collinear geometry of the nonlinear process puts the constraints on the
maximum depth Lmax of the down-conversion emission, which is still possible to
collect into single-mode fibres. The increase of the crystal length beyond Lmax brings
no further gain in the number of collected photon pairs. Using simple geometrical
arguments one can show that the maximum depth equals to Lmax = 2w0/ sin φ, see
Fig. 3.7. For the parameters of w0 = 59 µm and φ = 3.26◦ this implies the maximum
usable crystal length of about Lmax = 2.1 mm. This agrees well with the actually
chosen crystal length of L = 2 mm.

Compensation and fiber coupling. Due to birefringent nature of BBO material the
horizontally- and vertically- polarized down-conversion photons propagate at different
group velocities and under different directions. This provides a spatiotemporal dis-
tinguishability of the two created polarization states6 and thus leads to non-maximal
entanglement [for further explanation see section 2.5.2]. To compensate the effect and
to obtain polarization-entanglement for all wavelengths in the acceptance spectrum

6The maximum time delay and the maximum lateral displacement of down-conversion photons
at the output face of a 2-mm-long crystal amount to 382 fs and 145 µm, respectively. This has
to be compared to the photon coherence time and coherence width to estimate the extent of the
distinguishability.
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Figure 3.6: Emission characteristics of SPDC light calculated for the actual parameters
of the source. Figure (a) shows the intensity distribution of SPDC light with the central
wavelength of 806 nm and the bandwidth of 5 nm, which is determined at the distance
of 250 mm from the BBO crystal. The size of one pixel corresponds to 140 µm in real
space and the zero of the coordinate system is given by the position of the pump beam;
the parameters of the pump are: wp = 75 µm, λp = 403 nm. Figure (b) shows the linear
increase of the emission-mode radius with the distance from the crystal in the horizontal
(red full points) and in the vertical (blue open points) directions. The data are obtained
by fitting the ring-intersection distributions with gaussian functions.

Figure 3.7: The sketch of the non-collinear geometry of SPDC process. The waist size w0

and the relative orientation (determined by the angle φ) of the collection modes define the
maximum depth Lmax of the down-conversion emission, which is possible to collect with
fibres. Thus, the depth Lmax limits the practically usable crystal length.
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Figure 3.8: Schematic set-
up of the compact non-colli-
near type-II SPDC source:
half-wave plate (HWP), mir-
ror (M), compensation BBO
crystal (cBBO), longpass fil-
ter (LF), aspheric lens (AL),
single-mode fibre (SMF).

of down conversion photons, additional BBO crystals of length 1 mm preceded by a
half-wave plate are inserted into the emission modes of the photons.

The photons are coupled into single-mode fibres at a distance of about 270 mm
from the emission point. This spacing is determined by the aspheric coupling lenses
with focal length of f = 11.0 mm, the calculated waist size of the collection modes
of w0 = 59 µm, and the MFD of the used optical fibres of 5.2 µm.

Set-up overview. The sketch of the source set-up is shown in Fig. 3.8 (the photo of
the tested source is included in appendix A.3). The laser beam of a free-running LD
at 403 nm is focused into the type II phase-matched BBO crystal and produces pairs
of polarization-entangled photons at the degenerate wavelength of 806 nm, which are
collected into single-mode fibres. Two long-pass filters with a cut-off wavelength at
715 nm are used to block the residual violet light. For compensation of the walk-off,
two additional BBO crystals preceded by a half-wave retarder are used. To keep
the source compact, two mirrors are used to fold the paths of the down-conversion
photons.

3.3.3 Results

The two essential parameters characterizing the performance of sources are the qual-
ity of the produced polarization entanglement and the brightness. The first is usually
determined as a visibility of correlation curves in complementary bases and the lat-
ter as a number of detected pairs per second and milliwat of pump power. With
regard to some applications requiring a supply of narrow-band photons, such as for
addressing atoms, a better figure of merit is spectral brightness, which includes in
its definition the spectral bandwidth of the photons. A further benchmark quanti-
fying the performance of sources is the degree of violation of the CHSH inequality
in a fixed measurement period. Large speed of violation is possible only if both the
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Figure 3.9: Detected single
(black) and coincidence (red)
count rates depending on the
pump power, measured at the
crystal position.

brightness and the entanglement-purity reaches a high level. Additional parameters,
which show to be important in many applications, are the spectral bandwidth of the
down-conversion photons and the coupling efficiency.

Brightness. In order to determine the brightness and the coupling efficiency, the
output single-mode optical fibers are directly connected to two actively quenched
silicon APDs (Perkin Elmer, No. SPCM-AQ4C). Their detection efficiency is esti-
mated to be ≈ 51 % at 800 nm using a calibration method relying on the photon-pair
emission from SPDC [70] and a conventional measurement technique with a strong
reference beam. We detect a flux of roughly B = 800 pairs per second and milliwatt of
pump power, see Fig. 3.9. For the maximum LD output power of 25 mW measured
at the crystal position, this implies a coincidence count rate of about 20000 s−1. The
estimated accidental coincidences are negligible for the observed single-count rates
of ≈ 60000 and the gate time of τc = 5.8 ns. The coincidence to single count ratio,
characterizing the quality of coupling, reaches values of up to µ ≈ 0.34. Taking into
account the limited detection efficiency and other losses in the set-up, such as the
reflection at the tips of the fibers (together > 10 %) and the optics in the path of
down-conversion photons (> 2 %), the estimate of the net coupling efficiency reaches
values as high as 75%.

Entanglement quality. To verify the entanglement of fibre-coupled photon pairs,
their polarization correlations in two complementary bases are measured. This is
done by directing the down-converted light into adjustable polarization analyzers,
each consisting of a polarizing beamsplitter cube preceded by a rotatable half-wave
plate. After passing through the analyzers, the light is re-coupled into multi-mode
fibres and detected with APDs. Fig. 3.10 shows the expected sin2 dependence of
the measured coincidence rates on the rotation angle ϕ1 of one half-wave plate, while
keeping the other one at fixed orientation of ϕ2 = 0◦ or ϕ2 = 22.5◦, respectively.
For the setting of ϕ2 = 0◦, corresponding to a detection of photons in H/V linear
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Figure 3.10: Polarization
correlations between pho-
tons measured in the H/V
(red points) and +45/-45
(blue points) polarization
bases. The visibilities ob-
tained from sin2 fits (solid
lines) to the measured data
are 99.6 ± 0.3% and 94.2 ±
0.3 %, respectively.

polarization basis, a visibility of VH/V = 99.55 ± 0.31 % is observed. For the second
investigated setting of ϕ2 = 22.5◦, i.e., a detection of photons in +45/-45 linear
polarization basis, we obtain a visibility of V45 = 94.20± 0.30 %.

CHSH-inequality violation. The high-visibility sinusoidal coincidence fringes ob-
tained by measuring the polarization correlations of photon pairs suggest a violation
of a suitable Bell’s inequality. Particularly, according to the most frequently used in-
equality in the CHSH formulation, any local-hidden variable theory is bound by the
correlation coefficient |S| ≤ 2, whereas, according to quantum mechanics, |S| reaches
the value of 2

√
2 for maximally-entangled state with unit visibility. If the two-photon

polarization state decoheres equally in all polarization bases, a minimum violation
implies a visibility larger than 71 %. In the actual measurement, we recorded the coin-
cidence count rates for 16 combinations of analyzer settings ϕ1 = {0, π/2, π/4, 3π/4}
and ϕ2 = {π/8, 5π/8, 3π/8, 7π/8}. In section 1.1.3 this particular set of settings
is proved to be optimal. The chosen integration time per one measurement run is
TI = 5 s. Following the procedure of, e.g., [10], the obtained data are combined,
yielding the value S = 2.743± 0.006. This corresponds to a violation of the classical
bound by 124 standard deviations. To unify results obtained from the measurements
of CHSH-inequality violation over different integration times and to allow for a di-
rect comparison of sources, the parameter “normalized speed of CHSH violation” has
been suggested recently in [77]. It is defined as the number of standard deviations
σS by which the correlation coefficient S is violated per

√
s. For the measured values

we infer the speed of violation of (S − 2)/(σS

√
TI) ≈ 55 σS s−1/2.

Spectrum. In order to spectrally analyze the parametric down-conversion light cou-
pled into single-mode fibres, the fibres are individually connected to a grating spec-
trometer with single-photon sensitivity. We determine its wavelength resolution to
be about 1.2 nm at a wavelength of 785 nm. As shown in Fig. 3.11, the measured
spectral distributions are centered around the degenerate wavelength of 806 nm, with
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Figure 3.11: Spectral distri-
butions of down-conversion
light collected into single-
mode fibres. The solid lines
show Gaussian fits to mea-
sured data. The offset of
≈ 5400 counts is due to dark
counts of the APDs.

the separation of ≈ 0.7 nm due to residual misalignment of the fiber coupler positions.
The full widths at half maxima are found from the gaussian fits to be 6.24 ± 0.17
nm and 6.47 ± 0.19 nm. Correcting the inferred widths for the finite wavelength
resolution of the spectrometer, a reasonable agreement with the design parameters
of the coupling-optimization method is obtained.

3.3.4 Discussion

The brightness and the degree of polarization entanglement reached in the described
LD-pumped source are comparable to conventional systems utilizing ion lasers [93].
Also, the achieved coupling efficiency appears to be at the level of the best reported
values, indicating a successful implementation of the proposed fibre-coupling strategy.
These traits make the LD-based systems a compact and cheap alternative for a variety
of quantum-optics experiments. Moreover, the source shows to be a very suitable
tool to practically demonstrate the phenomenon of entanglement in undergraduate
laboratories [89, 101].

Nevertheless, no dramatic improvement of the present system, particularly re-
garding its brightness, is to be expected in future. This is due to the geometry of
non-collinear type-II emission, which has some disadvantages. First, only a small
fraction of the total SPDC output flux is polarization-entangled. Second, the overlap
of the intensity distribution of the emission modes with the guiding mode of single-
mode fibres is limited, lowering thus the accessible coupling efficiency to some extent.
Finally, the practically applicable length of nonlinear crystals is restricted within only
a few mm range. These drawbacks and the associated limitations certainly lower the
usability of this type of source in future demanding applications of quantum infor-
mation processing and communication and highlight the need for novel methods of
entangled photon-pair generation.
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Figure 3.12: Conceptual layout of the method to generate entangled photon pairs using
collinear geometry of SPDC operated in type I non-degenerate configuration.

3.4 Compact collinear type-I SPDC source

The concept of non-collinear SPDC entails several inevitable shortcomings. Besides
those linked to the output performance of the source, purely practical problems arise
as well. This is due to the use of two separate spatial collection modes defined by the
coupling optics and single-mode fibres. High-purity polarization entanglement can
be obtained only, if the divergences of these modes, as well as their mutual spatial
orientations, are perfectly matched. Consequently, a careful alignment is always
required, making such type of sources rather impractical for applications.

The following section introduces a novel method to generate entangled photon
pairs using a collinear geometry of SPDC operated in type I non-degenerate con-
figuration [102]. As will be demonstrated in the following, the proposed method
overcomes many deficiencies of the prior art, including those outlined above.

3.4.1 Method

The conceptual layout of the method is shown in Fig. 3.12. The photon pairs at non-
degenerate wavelengths are generated collinearly with respect to the pump light via
SPDC and collected into one single-mode fiber. The spectral information is exploited
to split the photons into two distinct spatial modes using a wavelength division mul-
tiplexer (WDM). To achieve a successful operation of the method, the wavelengths
of the down-conversion photons have to be such that, first, their propagation in the
same single-mode optical fiber, and second, their splitting with a high isolation ratio
is possible.

For the actual generation of the photon pairs, SPDC in a simple two-crystal
geometry is applied. Consider two adjacent nonlinear crystals, both operated in
type-I phase-matching configuration and pumped with linearly polarized light. The
orientation of otherwise identical crystals is adjusted such, that the optic axes of
the first and second crystal lie in vertical and horizontal plane, respectively. With
a 45◦-polarized pump light, SPDC occurs equally likely in either crystal, producing
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Figure 3.13: Collinearly
phase-matched output wave-
lengths of down-conversion
photons as a function of the
angle Θ0

p between the pump
and the optic axis. The
calculation assumes SPDC
in a BBO crystal pumped at
λp = 403 nm.

pairs of horizontally polarized (|H〉|H〉) or vertically polarized (|V 〉|V 〉) photons due
to type-I coupling. For further details on the method, which was originally suggested
for non-collinear configuration of SPDC in [57], we refer to the section 2.5.2.

By angle tuning the crystals, down-conversion is driven to a collinear phase-
matching configuration, emitting pairs of photons at non-degenerate wavelengths
[58]. This mode of operation has been proved to be feasible in section 2.4. Fig. 3.13
shows the calculated tuning curve of collinearly phase-matched SPDC assuming the
particular case of emission from BBO crystal. There are two clearly different regions
above and below a limiting angle Θmax, which corresponds to the degenerate emission
of photons at the double wavelength of the pump light. In the region above Θmax

no collinearly phase-matched output is obtained whatsoever. Yet, tuning the angle
in the regime of Θ0

p < Θmax, the photons at any desired conjugate non-degenerate
wavelengths λ1 and λ2 are phase matched in the nonlinear crystal .

Provided that the two emission processes are coherent with one another, which is
fulfilled as long as there is no way of ascertaining whether a photon pair was produced
in the first or the second crystal, the entangled state

|Ψ〉 =
1√
2

[|H〉λ1|H〉λ2 + eiφ|V 〉λ1|V 〉λ2

]
(3.1)

is automatically produced. The relative phase φ is determined by the details of phase
matching. The non-degenerate wavelengths are mapped onto two distinct spatial
modes (labelled as usual by “1” and “2”) using a WDM, thereby finally arriving at
the state in the form:

|Ψ〉 =
1√
2

[|H〉1|H〉2 + eiφ|V 〉1|V 〉2
]
. (3.2)

This way, the method produces polarization entangled photon pairs directly, with-
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out a need for any post-selection [103] or beam overlap [75], which is often required
in sources utilizing collinear geometry of SPDC. The fully collinear configuration of
the method utilizing only one spatial mode for collecting down-conversion photons
brings numerous advantages. First, it minimizes the complexity of the source and
thereby enhances its inherent robustness. Second, it precludes the occurrence of any
intrinsic spatial effect limiting the quantum-interference visibility, while at the same
time allows the use of long down-conversion crystals yielding a higher photon-pair
flux. From a practical point of view, the technical requirements and the demand for
alignment are enormously reduced. The only evident drawback of the method lies in
the restriction to non-degenerate wavelengths of the photons. Although this poses no
limitation for a practical realization of a majority of quantum-communication proto-
cols, some applications, e.g. those involving the overlap of down-conversion photons,
cannot be accomplished with the proposed source.

The generation of non-degenerate photons using SPDC in a two-crystal geometry
is accompanied with a detrimental spatiotemporal effect, which results in a poor fibre-
coupling efficiency and also low-quality polarization entanglement. In the following
we discuss this issue in detail and show, how to design an optimum compensation.

3.4.2 Spatial effect

It is well known that due to crystal birefringence the extraordinary wave gets spatially
deflected from the ordinary wave by a walk-off angle γ. This leads to a lateral
displacement of the two waves at the output surface of the crystal by δ = L tan γ.
One has to face the same situation in case of the SPDC process in the two crossed
type-I non-linear crystals. The down-conversion photons from the first crystal have
the extraordinary polarization in the second crystal and therefore they are laterally
displaced with regard to ordinary polarized photons created there. The situation is
somewhat more complex, because the ordinary and extraordinary components of the
pump wave undergo a birefringent spatial separation as well. This is schematically
summarized in Fig. 3.14(a). There, one can see that the spatial walk-off has a two-
fold effect on the emission characteristics. First, elliptical shapes are obtained for the
horizontally- and vertically-polarized down-conversion emission spots at the output
face of the second crystal. Second, the spots are laterally displaced with regard to each
other, thereby reducing their mutual overlap. The resulting down-conversion emission
region has an L-shaped profile. The spatial separation of the photons precludes the
possibility of efficient fibre-coupling. Either the photons originating in the first crystal
can be collected into the single-mode fibre or those originating in the second crystal,
but never both together. Using simple geometrical arguments one can show that
optimum compensation includes the same pair of crystals, but only half as long. This
is graphically illustrated in Fig. 3.14(b).

We note that the described lateral displacement between the horizontally- and
vertically-polarized photons does not impair the resultant purity of polarization en-
tanglement. This is due to the fact that the single-mode nature of the collection fibre
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Figure 3.14: Schematic explanation of the detrimental spatial effect inherent to SPDC
emission in two-crystal geometry. (a) The vertically- (Vp; blue) and horizontally-polarized
(Hp; blue) components of the pump down-convert in the first and second crystal, respec-
tively, producing pairs of horizontally- (HsHi; red) and vertically-polarized (VsVi; green)
photon pairs due to type I nonlinear coupling. The orientation of the first (second) crystal
with its optic axis (OA) in the vertical (horizontal) plane implies that vertically-polarized
(horizontally-polarized) waves will deviate from the normal propagation direction. This
effectively leads to, first, elliptical shapes of down-conversion emission spots at the output
face of the crystals, and second, to a lateral displacement between the horizontally- and
vertically- polarized down-conversion photons. (b) An optimal compensation involves two
crystals identical to the down-conversion crystals, but only half as long.

removes all the spatial information the photons may have carried before entering the
fibre.

3.4.3 Time effect

In the time domain, the crystal birefringence in combination with dispersion lead
to an unwanted effect as well. The arrival times of photons at the output face of
the second crystal depend on their wavelengths and polarizations, which reveal the
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Figure 3.15: Explanation of the detrimental time effect inherent to SPDC emission in a two-
crystal geometry. Due to crystal birefringence and dispersion, the arrival times of photons
at the output face of the second crystal differ in general for the two emission possibilities.
Consequently, a compensation erasing their temporal distinguishability has to applied.

actual position of the photon-pair’s origin. This leads to a partial loss of the coher-
ence between the two emission processes, and thus to a reduced entanglement. The
detrimental temporal effect is two-fold, which is illustrated in a simplified fashion in
Fig. 3.15. First, it is primarily the group-velocity mismatch between the pump and
the down-conversion light, which causes that the photon pairs born in the first crys-
tal are advanced with regard to those originating in the second crystal. Second, the
dispersive delay of the down-conversion photons at the non-degenerate wavelengths
is different for the two emission possibilities, because the photons generated in the
first crystal acquire an extra spread by propagating through the second crystal.

To investigate the time effect and to find the optimum compensation, the evalu-
ation tools introduced in section 2.3.2 are applied to determine the joint time distri-
butions of the two-photon wave-packets A1(τ+, τ−) and A2(τ+, τ−), associated with
the down-conversion emission in the first and second crystal, respectively. Since the
non-degenerate wavelengths effectively label the photons of the emitted pair, we may
define τ+ = (τλ1 + τλ2)/2 and τ− = τλ1 − τλ2 , where τλ1 and τλ2 are individual arrival
times of the photons at λ1 and λ2 to the output face of the second crystal. Putting
λ1 < λ2 for convenience, the two-photon amplitudes will be constrained only to the
region of positive values of τ− due to τλ1 > τλ2 in normally dispersive materials.

The two-photon amplitudes are evaluated using Eq. (2.58). To find A1(τ+, τ−)
originating in the first crystal, we put Tλ1 ≡ exp[ike

1(λ1)L] and Tλ2 ≡ exp[ike
2(λ2)L].

This way, the propagation of the photons through the second crystal is automatically
accounted for. In the calculation the wave numbers ke

1(λ1) and ke
2(λ2) of the extra-

ordinary polarized photons at non-degenerate wavelengths have to be expanded into
a power series according to Eq. (2.43). The correct form of A2(τ+, τ−) is obtained
when putting Tλ1 ≡ Tλ2 ≡ 0. In this case we must insert a function exp[iko

p(λp)L] into
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Figure 3.16: Absolute value of the normalized two-photon amplitudes (a) A1(τ+, τ−) and
(b) A2(τ+, τ−) revealing the time distribution of photon wave-packets originating from the
first and second crystal, respectively. The evaluation assumes SPDC in the pair of BBO
crystals, each L = 15.76 mm long and cut at Θ0

p = 28.95◦, corresponding to collinear phase
matching of the wavelengths λ1 ≈ 765 nm and λ2 ≈ 850 nm (see Fig. 3.13). The parameters
of the pump are: λp = 403 nm, τp = 1 ps.

Eq. (2.58) to include the effect of the pump propagation through the first crystal7.

Fig. 3.16 shows the time distributions of the numerically calculated amplitudes
assuming type I SPDC in the pair of BBO crystals, each with the length of L = 15.76
mm. The limited extent of the amplitudes in the τ+ direction signifies that a pump
with a finite coherence time has been used for the evaluation (compare to two-photons
amplitudes obtained in CW-pumped regime, see Fig. 2.5). In particular, we assumed
the pump with a duration of 1 psec, which roughly corresponds to the coherence time
of the used blue LDs. The distribution of A2(τ+, τ−) is shifted towards larger values
of τ+ in comparison to A1(τ+, τ−). From a physical point of view this corresponds
to a time delay of the photons created in the second crystal with regard to those
created in the first. The time distributions of amplitudes in the τ− direction is
determined by the extent of the chromatic dispersion: a huge difference of group
velocities vλ1 and vλ2 at non-degenerate wavelengths will manifest itself by a large
spread of the amplitudes in this direction and vice versa. Whereas the distribution of
A2 is constrained to roughly 0 < τ− < L(1/vo

λ1
− 1/vo

λ2
), the amplitude A1 stretches

7Note that the polarization of the pump photon, which eventually down-converts in the second
crystal, has to be ordinary in the first crystal. Analogously, when evaluating A1 we have to take
into account that the down-conversion photons generated in the first crystal become extraordinary
polarized in the second crystal.
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in a range of L(1/ve
λ1
− 1/ve

λ2
) < τ− < L(1/ve

λ1
− 1/ve

λ2
) + L(1/vo

λ1
− 1/vo

λ2
). The

offset L(1/ve
λ1
− 1/ve

λ2
) is due to the passage of the photons originating in the first

crystal through the second crystal. For the present parameters we calculate L(1/vo
λ1
−

1/vo
λ2

) = 285 fs and L(1/ve
λ1
−1/ve

λ2
) = 258 fs. A slight broadening of the amplitudes

in Fig. 3.16 compared to these calculated values is due to the finite phase-matched
bandwidth of the photons. The tilt of both amplitudes in the τ+/τ− plane expresses
the fact that the photons created at the very end of either crystal are always delayed
with regard to those created at the beginning. This is again caused by the group-
velocity mismatch between the pump and the generated down-conversion photons.

The overlap of the amplitudes A1 and A2 provides a measure of the maximum
accessible quantum-interference visibility V in polarization correlation measurements.
To understand that, the overlap might be interpreted from the perspective of mutual
distinguishability of two paths (or Feynman alternatives) leading to a coincidence
detection [39, 104]. No overlap signifies the paths being totally distinguishable. Con-
sequently, no quantum interference can be observed whatsoever. When the overlap
is complete, the interference pattern has a maximum visibility. Mathematically, the
overlap O12 of the amplitudes A1 and A2 is expressed in the form

O12 =

∫ ∞

−∞
dτ+

∫ ∞

−∞
dτ− Re

[A1(τ+, τ−)A∗
2(τ+, τ−)

]
, (3.3)

where the symbol Re denotes the real part of its argument. Normalizing the overlap
O12 to the modulus squared of the amplitudes, D, which is defined as

D =

∫ ∞

−∞
dτ+

∫ ∞

−∞
dτ−

∣∣A1(τ+, τ−)
∣∣2 =

∫ ∞

−∞
dτ+

∫ ∞

−∞
dτ−

∣∣A2(τ+, τ−)
∣∣2, (3.4)

we directly obtain the quantum-interference visibility V (i.e., V = O12/D).
Without a further evaluation it is directly apparent from Fig. 3.16 that the

amplitudes A1 and A2 do not overlap whatsoever. The detrimental distinguishing in-
formation has to be eliminated by temporal engineering of the two-photon amplitudes
[58, 104]. This is physically achieved by including additional special birefringent ele-
ments in front and/or behind the nonlinear crystals. They effectively redistribute the
amplitudes and, if designed properly, they allow restoring of their complete overlap.

First, we investigate the effect of a birefringent crystal placed in the path of the
down-conversion photons. As a material we conveniently choose yttrium orthovana-
date (YVO4; basic characteristics are given in appendix A.1.2) due to its very high
birefringence of ∆n = |ne − no| > 0.2 at NIR wavelengths. For this crystal the slope
of chromatic dispersion, which was shown to determine the projected distribution of
the amplitudes onto the τ− axis, is higher for the extraordinary polarization. Thus,
if we adjust the crystal orientation such that the photons born in the second BBO
crystal have extraordinary polarization within the compensation YVO4, the overlap
of A1 and A2 becomes larger in the τ− direction. For a certain length of the crystal,
which is calculated to be l = 8.20 mm in the considered example, the overlap reaches
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Figure 3.17: Absolute value of the normalized two-photon amplitudes (a) A1(τ+, τ−) and
(b) A2(τ+, τ−), revealing the time distribution of photon wave-packets originating from the
first and second crystal, respectively. The plots show the amplitudes after passage through
the compensation element YVO4 with a length of l = 8.20 mm positioned behind the
down-conversion crystals. All the other parameters are the same as in Fig. 3.16.

its maximum. In this case the temporal spread of photons at non-degenerate wave-
lengths inside the YVO4 reaches l(1/go

λ1
− 1/go

λ2
) = 585 fs for ordinary polarization

and l(1/ge
λ1
− 1/ge

λ2
) = 843 fs for extraordinary polarization. Here gλ1 and gλ2 denote

the corresponding group velocities in YVO4. That is, passing through the YVO4

crystal, the amplitude A1 is confined within the range

0.843 ps = l

(
1

go
λ1

− 1

go
λ2

)
+ L

(
1

ve
λ1

− 1

ve
λ2

)
< τ−

< l

(
1

go
λ1

− 1

go
λ2

)
+ L

(
1

ve
λ1

− 1

ve
λ2

)
+ L

(
1

vo
λ1

− 1

vo
λ2

)
= 1.128 ps, (3.5)

which perfectly matches the limits found for the amplitude A2:

0.843 ps = l

(
1

ge
λ1

− 1

ge
λ2

)
< τ− < l

(
1

ge
λ1

− 1

ge
λ2

)
+L

(
1

vo
λ1

− 1

vo
λ2

)
= 1.128 ps. (3.6)

The calculated amplitudes are shown in Fig. 3.17.

Although the suggested compensation provides an optimum overlap of the ampli-
tudes in the τ− direction, it makes them more distinguishable along the τ+ axis at
the same time. This is due to the fact that YVO4 is a positive birefringent crystal, in
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Figure 3.18: Absolute value of the normalized two-photon amplitudes (a) A1(τ+, τ−) and
(b) A2(τ+, τ−) revealing the time distribution of photon wave-packets originating from
the first and second crystal, respectively. The plots show the amplitudes after complete
compensation using two tailored birefringent elements with lengths of lp = 9.03 (in the
path of the pump light) mm and l = 8.20 mm (in the path of the down-conversion light).
All the other parameters are the same as in Fig. 3.16.

which the ordinary-polarized light propagates always faster than the extraordinary-
polarized light. This way, the total temporal retardation of down-conversion pho-
tons originating from the second crystal relative to those from the first crystal in-
creases to ∆τ+ = 13.28 ps. To counteract the effect, the respective delay between
the horizontally- and vertically-polarized pump components has to be introduced8.
This shows to be very convenient, because the birefringent delay in the pump does
not cause any relative change of the amplitudes in the τ− direction. The desired
delay of ∆τ+ = 13.28 ps is achieved using lp = ∆τ+/(1/go

λp
− 1/go

λp
) = 9.03 mm

long YVO4 crystal. After the compensation, the two-photon amplitudes A1 and A2,
which are associated with the |H〉λ1|H〉λ2 and |V 〉λ1|V 〉λ2 terms, show to be tempo-
rally indistinguishable (see Fig. 3.18), so that the resultant state takes the form of
(3.1).

The necessary temporal indistinguishability between the terms |H〉λ1|H〉λ2 and
|V 〉λ1|V 〉λ2 can be built using the pump with a sufficient coherence length as well. This
effectively leads to elongation of the amplitudes A1 and A2 in the τ+ direction, and
thus to their overlap. No birefringent element introducing a relative delay between
the two orthogonal polarization components of the pump is then needed. Fig. 3.19

8Particularly, we need to delay the pump-polarization component which down-converts in the
first BBO crystal.
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Figure 3.19: The map of maximum accessible quantum-interference visibility V as a func-
tion of the length l of the compensation YVO4 crystal and the pump duration τp. If a laser
light with a sufficiently long coherence length is applied for pumping SPDC, no birefringent
compensation element preceding the down-conversion crystals is required for achieving a
high visibility. Values of the parameters are the same as in Fig. 3.16.

Figure 3.20: The map
of maximum accessible
quantum-interference vi-
sibility V as a function
of the lengths l and lp of
the compensation YVO4

crystals. Values of the pa-
rameters are the same as
in Fig. 3.16.

illustrates the issue in a quantitative way. It shows the map of visibility V as a
function of the length l of the compensation YVO4 crystal and the pump duration
τp. To achieve the quantum-interference visibility of at least V = 90 % the pump
duration has to be longer than τp ≈ 31 ps in the considered example of the temporal
retardation of ∆τ+ = 13.28 ps.

Finally, Fig. 3.20 shows the density plot of visibility V evaluated in dependence
on the lengths l and lp of either YVO4 compensation crystal. It demonstrates that
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a deviation of several hundreds of microns from the determined optimum values of l
and lp might be accompanied by a notable drop in the achieved quantum-interference
visibility. The suggested compensation method using a pair of birefringent elements
works equally efficient for even shorter pump-coherence lengths than the one investi-
gated. Yet, we must be aware of the substantial stiffening of the tolerances imposed
on the lengths l and lp when very short pump pulses, such as with fs duration, are
used.

The described time effect can be understood from another, but completely equiv-
alent perspective, which is based on the investigation of the relative phase φ in the
state (3.2). This phase generally depends on the particular wavelengths of pump and
down-conversion photons being considered. The following argument might be used
to determine this dependence: both |H〉1|H〉2 and |V 〉1|V 〉2 terms in (3.2) receive an
equal ordinary phase in the crystals, where they are created. Therefore, these phases
can be neglected as a global phase. Besides, the |H〉1|H〉2 term originating in the
first crystal9 acquires an additional extraordinary phase in the second crystal equal
to

2πL

λ
ne(λ, Θ0

p) +
2πL(λ− λp)

λλp

ne

(
λλp

λ− λp

, Θ0
p

)
, (3.7)

and the |V 〉1|V 〉2 term originating in the second crystal acquires an additional ordi-
nary phase,

2πL

λp

no(λp), (3.8)

which is given by the propagation of the pump photon in the first crystal. In the ex-
pression (3.7) λ denotes the wavelength of one of the down-conversion photons. The
difference of the phases (3.7) and (3.8) determines the relative phase φ = φ(λ, λp), up
to irrelevant constant phase factors. As demonstrated in Fig. 3.21(a), a strong varia-
tion of φ(λ, λp) over a relevant spectral region is observed for the parameters consid-
ered above, which corresponds to an effective dephasing of photon-pair polarization
state. Consequently, no interference pattern can be observed in the polarization-
correlation measurements.

The distinct dispersive delay between the down-conversion photons at the non-
degenerate wavelengths for the two emission possibilities, results in a dependence
of the phase map φ(λ, λp) on the wavelength λ. Previously, it was shown to be a
cause of different distributions of two-photon amplitudes A1(τ+, τ−) and A2(τ+, τ−)
in the τ− direction, which could be compensated using a tailored YVO4 crystal with
the length of l = 8.20 mm inserted in the path of down-conversion photons. Such
a crystal has an effectively reverse phase characteristics to φ(λ) and therefore, after
the compensation the relative phase φ becomes independent of the down-conversion
wavelength λ, see Fig. 3.21(b).

9Here, without any loss of generality we assume a particular setting, where the optic axis of the
first crystal defines, together with the pump direction, the vertical plane, and the optic axis of the
second crystal the horizontal plane.
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Figure 3.21: Calculated de-
pendence of the relative phase
φ on the wavelengths of
pump λp and one of the
down-conversion photons λ
for different configurations:
(a) Uncompensated configu-
ration. (b) With the birefrin-
gent YVO4 element of length
l = 8.20 mm included in
the path of down-conversion
photons. (c) Ideally com-
pensated configuration using
a pair of YVO4 with lengths
of lp = 9.03 mm (in the
path of pump light) mm and
l = 8.20 mm (in the path of
down-conversion light). Af-
ter compensation, the initially
strongly varying phase map
φ(λ, λp) becomes flat over the
relevant spectral region (note
the change in the vertical
scale), which signifies that all
the detected photon pairs are
described by essentially the
same polarization state.

The group-velocity mismatch between the pump and the down-conversion light,
which causes the delay of the photons born in the second crystal with regard to those
originating in the first crystal, manifests itself as a finite slope of the phase map
φ(λ, λp) in the λp direction. This effect can be simply precluded using the narrow-
band pump, which effectively corresponds to a selection of a particular phase value
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from the phase map in Fig. 3.21(b). If a short-coherence-length source is used in-
stead, a special birefringent compensation crystal has to be inserted into the path
of the pump, introducing a proper temporal retardation between its horizontally-
and vertically-polarized component, and thus effectively compensating the predicted
slope. The YVO4 thickness of lp = 9.03 mm was proved to be optimal in the previous
analysis of the two-photon amplitudes. In this way, the initially strongly varying
phase map φ(λ, λp) becomes flat after the compensation [see Fig. 3.21(c)], repre-
senting the complete temporal indistinguishability of the emission processes. Conse-
quently, all detected photons will be described with essentially the same polarization
state.

3.4.4 Implementation

Some of the tools or techniques required for the implementation of the source, in-
cluding LD or pump-beam shaping and focusing, were already discussed in section
3.3.2. Here we describe only the parts of the set-up not introduced therein.

Nonlinear crystal and SPDC emission. As a nonlinear medium for SPDC we use
a pair of BBO crystals, both cut for type-I phase matching at an angle of Θc = 29.0◦

(Φc = 0.0◦). The crystals, each with dimensions of 6 × 6 × 15.76 mm3, are oriented
with their optic axes aligned in perpendicular (horizontal and vertical) planes and
cemented together. Tilting the crystal assembly in horizontal and vertical direction,
the output phase-matched wavelengths are tuned for either crystal separately. We
choose the operation at non-degenerate wavelengths centered on λ1 ≈ 765 nm and
λ2 ≈ 850 nm. Alternatively, two other BBO pairs with lengths of L = 7.88 mm and
L = 3.94 mm are tested with the aim to experimentally determine the dependence
of the output photon-pair flux and the output spectral width on the crystal length.

For the crystal length of L = 15.76 mm and the wavelength non-degeneracy of
λ2−λ1 ≈ 85 nm the phase-matched spectral width is expected to reach ∆λ1 = ∆λ2 =
6.42 nm for narrow-band pumping [for reference see also Fig. 2.3]. Nevertheless, the
spectral characteristics of the non-degenerate type-I phase-matching shows to be very
dependent on the coherence length of the pump. Reducing the coherence length to 1
ps, corresponding to the value inferred for the blue LDs, the output spectral widths of
the down-conversion light at λ1 and λ2 are roughly doubled to ∆λ1 = 11.86 nm and
∆λ2 = 12.85 nm. Note that for the coherence length of 1 ps almost no broadening
was observed in the case of degenerate type I and type II phase matching, see Fig.
2.4. Similarly as in the type II phase matching, the broadband pumping results in
a weak asymmetry of the spectra at non-degenerate wavelengths. Fig. 3.22 shows
the numerically simulated down-conversion spectra for different coherence lengths of
the pump and different crystal lengths. Particularly interesting is the observation
that extending the crystal length beyond a certain boundary brings only a negligible
reduction of the output spectral width for a given coherence length of a broadband
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Figure 3.22: Calculated non-degenerate spectra centered on λ1 ≈ 765 nm and λ2 ≈ 850
nm obtained from type I phase-matched BBO crystal for (a) different coherence lengths of
pump light: CW pumping, i.e. τp = ∞ (red,“r”), τp = 1.0 ps (green, “g”), τp = 0.5 ps
(blue, “b”); and (b) for different crystal lengths: L = 3.94 mm (red,“r”), L = 7.88 mm
(blue, “b”), L = 15.76 mm (green, “g”), L = 31.52 mm (cyan, “c”). In plot (a) the crystal
length of L = 15.76 mm is assumed and in plot (b) a coherence length of the pump light of
τp = 1.0 ps is assumed.

pump. In such a case the only possibility to achieve narrower spectral distributions
is to enlarge the pump-beam coherence length.

Wavelength division multiplexer. The collinearly emitted photons at the wavelengths
of λ1 = 765 nm and λ2 = 850 nm are coupled into a single-mode fibre using an
aspheric lens. The fibre is pigtailed to the custom made visible WDM (Fiber Op-
tic Network Technology Co.), which demultiplexes the two wavelengths into output
single-mode fibres each carrying one wavelength. The WDM was characterized using
a broadband light source, yielding the spectral dependence of the insertion loss and
isolation into both outputs, see Fig. 3.23. The isolation of > 17 dB is obtained in the
bandpass of 15 nm around the operating wavelengths of 765 nm and 850 nm. The
peak isolation reaches nearly 22 dB. The insertion loss was found to be about 0.35 dB
in 765 nm output port and 0.3 dB in 850 nm port. A separate measurement of the
internal polarization effects at the operating wavelengths determined the maximum
polarization-dependent loss to be below 0.1 dB.

Set-up overview. The schematic set-up of the source is shown in Fig. 3.24 (the
photo of the experimental source is included in appendix A.3). The linearly polarized
pump light is provided by a 60 mW free-running laser diode. The light is reflected
several times at dichroic mirrors to remove the background broadband laser emission
and passes through a half-wave plate rotating the angle of polarization to 45◦ with
regard to the horizontal direction. A triad of lenses is used to focus the pump beam
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Figure 3.23: Spectral depen-
dence of the isolation in the
765 nm (blue curve) and 850
nm (red curve) output ports of
the WDM.

Figure 3.24: Schematic set-
up of the compact collinear
type-I SPDC source: dichro-
ic mirror (DMUV and DMNIR),
half-wave plate (HWP), cyli-
ndrical lens (CL), compensa-
tion YVO4 crystal (cYVO4),
compensation BBO crystal
(cBBO), longpass filter (LF),
aspheric lens (AL), single-
mode fibre (SMF).

to a diameter of ≈ 200 mm within the two BBO crystals10, oriented for a collinear
emission of photons at the non-degenerate wavelengths of λ1 = 765 nm and λ2 = 850
nm. The emitted photons are separated from the pump light using a dichroic mirror
and a long-pass filter, and are collected into a single-mode fiber guiding the photons
to the WDM, which splits the non-degenerate wavelengths into two single-mode fibers
with a probability higher than 99%. To reach high collection efficiency, the lateral
displacement of the orthogonally polarized down-conversion photons is compensated
using the same pair of BBO crystals, but only half as long. The detrimental time

10No theoretical investigation of optimum focusing of the pump mode was performed. The ex-
ceptional simplicity of the source and its alignment allowed the efficient optimization directly in the
experiment. This way, the optimum regime of focusing was found when reaching the values of ≈ 2
in the ratio between the Rayleigh range of the mode and the double-crystal length.
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Figure 3.25: Detected single and coincidence count rates depending on the pump power
measured at the position of BBO crystals. To avoid failure of the detectors, the peak
count rate was electronically regulated to ≈ 2× 106 detections per second, thereby limiting
the directly observed pair rate to ≈ 6.5× 105 per second. We note that the measured LD
maximum pump power of 57 mW was reduced to 38 mW at the crystal position, mainly due
to attenuation in the compensation YVO4 crystal (length lp = 9.03), which was estimated
to be above 2 % per one mm of the crystal.

effect is compensated with a pair of tailored YVO4 crystals; one of them (length
lp = 9.03 mm) is put into the path of the pump, whereas the another (l = 8.20
mm) is included in the path of the down-conversion photons, in accordance with the
explanation given above. The cut of both YVO4 crystals is at 90◦ with regard to
pump- and down-conversion-light direction, thus precluding the occurrence of any
unwanted spatial walk-off effects.

3.4.5 Results

Since the measurement techniques follow those already applied for the compact non-
collinear type-II SPDC source, a minimum of technical details about the performed
measurements is given here. For more information we refer to section 3.3.3.

Brightness. For the detection of the down-conversion photons two actively quenched
silicon APDs with a measured efficiency of ≈ 51% at 800 nm were used. Balancing
the photon-pair flux obtained from either crystal by aligning the focus position of the
collection mode to the contact plane of the crystals, we detected B ≈ 27000 pairs
per second and milliwatt of pump power, see Fig. 3.25. This is somewhat lower
than the maximum rate of up to B = 37000 pairs/s/mW observed after rotating the
pump polarization to horizontal or vertical direction such that the emission from only
one crystal is collected, and after refocusing the collection mode to the mid of the
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respective crystal11.
The output photon-pair flux was measured also for shorter BBO crystals with

L = 7.88 mm and L = 3.94 mm. In the first case we detected about B = 25000
pairs/s/mW in the balanced configuration and up to B ≈ 28000 pairs/s/mW when
the collection from one crystal was optimized. In the latter case no apparent dif-
ference in the output rates was observed in both configurations; the brightness was
B ≈ 23000 pairs/s/mW. This clearly suggests that we cannot take full advantage of
higher photon-pair fluxes converted in longer crystals, because of the impossibility to
optimally collect photons from both crystals at the same time. Furthermore, from the
detected rates we can infer that the fibre-coupled photon pair flux scales maximally
with the square root of the crystal length (∝ √

L). This is in agreement with the
conclusions drawn in [95].

The impossibility of optimum simultaneous collection of photons from long crys-
tals, however, does not preclude achieving of a high coincidence/single ratio µ. This
can be explained by the perfect rotational symmetry of the collinear emission mode:
if one of the photons from the pair is emitted within the acceptance angular region of
the single-mode fibre, the other photon must occupy this region as well, even in the
case of non-optimum focusing of the collection mode. This hypothesis is evidently
verified in the experiment, where we measured µ ≈ 0.38 for crystals with the length
of L = 15.76 mm. Taking into account the limited detection efficiency and other
losses in the set-up, such as the reflection at the tips of the fibers (together > 10 %)
and the optics in the path of down-conversion photons (> 3 %) or the insertion loss
of the WDM (> 5 %), the moderate estimate of the net coupling efficiency reaches
values as high as 90%.

Entanglement quality. To verify the entanglement of photon pairs, the degree of
polarization correlations in two complementary bases was measured using a pair
of polarizers. After correction for accidental coincidences, we obtain a visibility of
VH/V = 98.85 ± 0.11 % in the horizontal/vertical basis and V45 = 98.48 ± 0.13 % in
the basis rotated by 45◦, see Fig. 3.26. The corrected visibilities are, within errors,
consistent with those obtained at low pump power of about 1 mW, where accidental
coincidences are negligible. The gap between the measured value and the maximum
quantum-interference visibility is attributed to polarization-dependent loss inside the
WDM rather than to the state preparation.

We note that the removal of one of the compensation YVO4 elements from the set-
up was accompanied with a dramatic drop of quantum-interference visibility. In order
to confirm that high-purity polarization entanglement can be achieved in the narrow-

11The applied divergence of the collection mode was optimized with regard to maximum photon-
pair flux obtained in the balanced configuration. Although the reduction of collection-mode diver-
gence results in a relaxation of the tolerances imposed on the positioning of its focus, the reduced
angular range implies a coupling of a smaller proportion from the total SPDC emission and thus
smaller detected rate.
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Figure 3.26: Polarization
correlations between pho-
tons measured in the H/V
(red points) and +45/-45
(blue points) polarization
bases. The solid lines in
corresponding colors are sin2

fits to the measured coinci-
dence count rates, yielding
visibilities of about 98.5% in
both bases.

band pumping regime even without YVO4 crystal preceding the down-conversion
BBO crystals (for explanation see section 3.4.2), the external cavity laser diode with
the spectral line-width of < 50 MHz was applied as the pump. The measurement
of polarization correlations yielded the visibility of above 98% also without a com-
pensation in the pump beam, thereby supporting the conclusions of the theoretical
model.

CHSH-inequality violation. The measurement of CHSH-type Bell inequality was
accomplished at the maximum pump power of LD using a pair of polarizers. By
performing the whole measurement within 16 s (i.e., TI = 1 s per angle setting),
we obtained the value of the correlation coefficient of S = 2.80399 ± 0.00125. This
corresponds to a violation of the inequality by 694 standard deviations. The specified
values assume the correction of raw data for accidental coincidences. Note that an
even higher violation should be possible with the present source if one employs the
optimized polarization analysis with high-transmission elements. The corresponding
speed of CHSH violation [= (S − 2)/(σS

√
TI)] is 694 σS s−1/2.

Spectrum. The fibre-coupled down-conversion light was spectrally analyzed using
the grating spectrometer with single-photon sensitivity and a measured resolution of
about 1.2 nm. The bandwidths of photons determined from the gaussian fits to the
measured data were found to be ∆λ1 = 14.56±0.72 nm and ∆λ2 = 15.38±1.23 nm at
the non-degenerate wavelengths of λ1 = 762.8± 0.4 nm and λ1 = 849.4± 0.6 nm, see
Fig. 3.27. Taking into account the given wavelength resolution of the spectrometer,
the measured values are consistent with the theoretical widths of ∆λ1 = 11.86 nm
and ∆λ2 = 12.85 nm.

The spectra of down-conversion photons were measured for shorter BBO crystals
with L = 7.88 mm and L = 3.94 mm as well. In the first case we obtained the widths
of ∆λ1 = 18.65±1.74 nm and ∆λ2 = 22.37±2.23 nm, which are again in a reasonable
agreement with the theoretically inferred values of ∆λ1 = 16.21 nm and ∆λ2 = 16.94



88 Sources of polarization-entangled photon pairs 3.4

Figure 3.27: Spectral distribution of down-conversion light collected into a single-mode
fibre. The solid line shows a Gaussian fit to the measured data. The photons of the pair
are centered on the wavelengths of λ1 =≈ 763 nm and λ2 =≈ 849 nm, which agree well with
the operation wavelengths of WDM. The lower peak number of counts at λ2 is attributed to
a reduced efficiency of the spectrometer towards NIR wavelengths and the offset of ≈ 1100
counts is due to dark counts of the APDs.

nm. For L = 3.94 mm we measured ∆λ1 = 31.21± 1.68 nm and ∆λ2 = 40.33± 1.91
nm. This has to be compared to theoretically determined widths of ∆λ1 = 30.75 nm
and ∆λ2 = 31.03 nm.

Spectral brightness. From the afore-mentioned results we infer that the spectral
brightness of the source increased from the initial rate of B(s) ≈ 650 s−1nm−1mW−1

for L = 3.94 mm to B(s) ≈ 1220 s−1nm−1mW−1 for L = 7.88 mm and finally
to B(s) ≈ 1800 s−1nm−1mW−1 for the crystal length of L = 15.76 mm. Fitting the
experimentally recorded growth of brightness in dependence on the crystal length, we
obtain the scaling of B(s) ∝ L0.72. This is considerably slower than the theoretically
assumed dependence of B(s) ∝ L for degenerate phase-matching. Due to the fact
that at a high non-degeneracy the phase-matched down-conversion width approaches
that obtained in type II phase matching (see also Fig. 2.3), it seems that even faster
scaling of up to B(s) ∝ L

√
L should be obtained in such a case. The slower increase of

the experimentally inferred scaling of B(s)(L), compared to that inferred theoretically,
is due to the two-crystal geometry of the SPDC emission, which does not allow the
optimum simultaneous coupling of photons from both crystals.

3.4.6 Discussion and outlook

The recorded performance of the source shows to be extraordinarily high. To the
best of our knowledge, the achieved brightness is the highest using a conventional
crystal [73] and at the level of the best results obtained with quasi-phase matched



3.4 Compact collinear type-I SPDC source 89

periodically poled crystals [75, 105]. Together with the purity of the polarization
entanglement, which appears to be only limited by a weak depolarization effect in
WDM, we could measure the violation of CHSH inequality as high as 694 σS s−1/2.
This exceeds even the speed of 468 σS s−1/2, inferred from the results reported using
an ultra-bright source, where almost 10 times higher pump power was applied to the
down-conversion crystals [73]. The only shortcoming in the source characteristics lies
in the down-conversion spectra, which might appear to be rather broad with regard
to certain applications. Nevertheless, we have theoretically shown that a substantial
reduction of the spectral widths should be feasible when applying a pump light with
sufficiently long coherence length. This was also verified experimentally to some
extent, by observing a reduction of spectral widths by about 6 nm in narrow-band
pumping regime for BBO crystals with the length of L = 3.94 mm.

The use of other materials with higher nonlinearity, such as bismuth triborate
(BiB3O6), or the use of quasi-phase matched periodically poled crystals, such as peri-
odically poled potassium titanyl phosphate (KTiOPO4), will lead to further immense
improvement of the source parameters regarding the bandwidth of down-conversion
photons and its brightness. For example, the relative magnitude between the effective
nonlinearities of BiB3O6 (deff = 3.41 pm/V) and BBO (deff = 1.93 pm/V) implies
an increase in photon-pair yield by a factor ≈ 3. At the same time the calculation
predicts the reduction of the phase-matched spectra to below 3 nm for narrow-band
pumping (for L = 15.76 mm) and to about 10 nm, when the pump source is a free-
running blue laser diode. In case of quasi-phase matched KTiOPO4 (deff ≈ 9.5 pm/V,
[106]), an even higher relative ratio of the effective nonlinearities of ≈ 5 is reached,
which suggests that an increase of the brightness by a factor of 15–25 should be
certainly feasible. Remarkably, this potential brightness is at the level of the best
results reported using four-wave mixing process in the optical fibres [83]. The already
demonstrated performance and the future prospects for its improvement, along with
the simple configuration requiring minimum alignment, make this type of source an
especially promising candidate for integration into future practical applications.

Apart from the practical motivations, the described source might find its relevance
also in fundamental tests of quantum mechanics. Particularly, to eliminate the fair-
sampling hypothesis in photonic Bell tests, high detection and collection efficiencies of
entangled photon pairs are indispensable; for a brief introduction into the problem see
also section 1.1.3. The lower bound on the overall coincidence/single ratio necessary
to close detection loophole has been proven to be 2(

√
2−1) ≈ 0.83 (assuming all other

aspects of the experiment to be ideal) [107], which, in the limit of no background noise,
reduces to 2/3 ≈ 0.67 [108]. Whereas high detection efficiencies in the visible spectral
region of up to η = 90 % have been reported with visible-light photon counters
(VLPC) [12], the experimental demonstration of the required collection efficiency of
entangled photon pairs is missing. With our source we achieved the coincidence/single
ratio of µ ≈ 0.38 (detection efficiency η ≈ 0.51), to our knowledge the highest value
ever reported (for comparison see appendix A.2). Scaling our result to a VLPC
detection efficiency of η = 90 %, we arrive at the overall coincidence/single ratio of
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0.67, i.e. exactly at the theoretical limit for successful detection loophole-free Bell test
for no background. The further increase of this ratio to ≈ 0.8 should be possible after
eliminating the current inefficiencies inherent in the source, including the reflection
at the tips of the single-mode fibers or absorption in other optical elements placed
in the path of the down-conversion photons. Our results are very encouraging and
indeed, move the feasibility of a loophole-free photonic Bell test into the realm of
state-of-the-art technologies.



Chapter 4
Single-qubit multiparty quantum
communication

This chapter deals with two distinct multiparty communication tasks, the secret
sharing and communication complexity. Whereas the goal of the first is to split
a secret among several parties in a way that its reconstruction requires their
collaboration, the latter aims at reducing the amount of communication during
distributed computational tasks. We describe the simple and practical quantum-
assisted solutions of both tasks and show their proof-of-principle experimental
implementations.

The use of quantum resources leads to a speed-up in solving many communication
tasks or even achieving goals which are classically not possible at all. Probably the
best-known example is quantum key distribution, the first commercialized application
of quantum information science. While there is already quite a number of other
two-party tasks demonstrated in the lab, there is hardly anything for more than two
parties. This is due to the fact that most of such tasks require as a resource multiparty
entangled states, which are very difficult to be produced with current methods and
moreover suffer from a high noise.

In the following it is shown that entanglement is not the only non-classical resource
giving quantum information processing its power. Instead, only sequential commu-
nication and transformation of a single qubit can be sufficient to accomplish cer-
tain tasks. Such simplification makes multiparty communication tasks feasible and,
most importantly, technologically comparable to quantum key distribution. This we
demonstrate for two distinct multiparty communication tasks, communication com-
plexity [109] and secret sharing [110].

The chapter is subdivided into two parts. The first part is concerned with com-
munication complexity. After it, the section analyzing secret sharing follows.

91
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4.1 Communication complexity

4.1.1 Introduction

Complexity theory addresses the problem of reduction of inherent costs required for
solving information processing tasks. In its most widespread branch, computational
complexity, the inherent costs are traditionally measured by the number of operations
required and/or the amount of memory spent during a large-scale computation. Here,
we deal with yet another type of problems - communication complexity problems
(CCPs) - where the resource under investigation and aimed to be minimized is the
amount of communication during distributed computation.

The notion of communication complexity was introduced by Andrew Yao [111],
who investigated the following two-party scenario: The parties P1 and P2 receive
each an n-bit string X1 and X2 with the common goal to compute the value of a
given function T (X1, X2). Before distribution of the strings, the parties are allowed
to communicate freely and prepare themselves jointly in any way, e.g., by sharing
classically correlated random variables, agreeing on a common strategy etc. However,
once received, they must communicate as little as possible. The question is how many
bits of information exchange then is enough to compute T (X1, X2), or alternatively
how high is the probability to reach the correct value of T (X1, X2) under a specific
communication restriction.

In general terms CCPs are aimed at finding the communication protocols mini-
mizing the amount of information that parties, performing some local computation,
have to exchange in order to accomplish some globally defined goal. This abstract
problem finds its relevancy in many contexts: First and foremost in distributed com-
puting, where enhancing the communication efficiency among the local computers,
processing in parallel a large-scale computational task, leads to a speed-up. Besides,
the problem finds its practical use in optimizing the design of Very Large Scale Inte-
grated (VLSI) circuits or computer networks as well as in studies of data structures
(for survey of the field, see [112]).

4.1.2 Quantum-assisted communication complexity

The pioneer of communication complexity, Andrew Yao, was also the first who in-
troduced a qubit-communication model, where the parties are allowed to exchange
qubits rather than bits [113]. It is not immediately clear whether this variation might
bring some savings in communication, given a fundamental theorem in quantum in-
formation theory by Holevo [114]. The theorem implies that the mutual information
between two unentangled parties cannot increase by more than one bit per qubit
of communication between them. This still holds even if the communication is not
restricted to be one-way [115]. More generally, if the parties share a prior entangle-
ment the information capacity of communication increases to maximally two bits per
exchanged qubit [16].
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The first example that quantum-assisted protocols enhance the communication
efficiency compared to any known classical ones, was given by R. Cleve et al. [116].
They considered a different model than that of Yao, the entanglement model, where in
addition to the classical communication we allow the parties to perform measurements
on previously shared set of qubits in an entangled state. As with the qubit model,
there are no trivial communication advantages in this model, because entanglement
alone cannot be used to signal information. Even though, R. Cleve et al. showed
that entanglement can act as a substitute for communication, when the goal is to
compute inner product function with the data distributed among three parties.

Since then, it was theoretically proven that entanglement or qubit communication
can help to solve a range of tasks more efficiently compared to the best classical
scenarios [115, 117, 118, 119, 120]. For some tasks even an exponential separation
in efficiency between quantum and classical protocols was demonstrated [121, 122].
Moreover, the generic link between the classical/quantum conflict exposed by Bell’s
theorem and the advantage of quantum communication complexity protocols over the
classical ones, was shown in [123, 124]. It was established there that the violation of
Bell’s inequality is the criterion of the advantage of the quantum protocols over the
classical ones.

Despite many theoretical results, to date no experiment showing a genuine quan-
tum advantage in solving CCPs has been reported; see also feasibility studies [125,
126]. The only laboratory demonstrations corrected the measured results for the
experimental inefficiencies [127, 128], and thus did not provide the conclusive and
unambiguous practical manifestation of the superiority of quantum-assisted proto-
cols in distributed computations.

4.1.3 Communication complexity problems

In general, one can distinguish two types of CCPs, related to the following two
questions: (i) What is the minimal amount of communication for the parties to
determine the value of a searched function T with the success probability of P = 1,
that is with certainty [115, 118, 119]? (ii) What is the highest possible probability of
success P if only a restricted amount of communication is allowed [119, 123, 124, 125]?
The particular tasks might further differ according to whether all the parties or only
one of them are required to determine the value of T , whether they are restricted to a
certain communication architecture (such as sequential or tree-like communication),
etc.

In the following we consider only the second class of problems. This choice is
motivated primarily by the goal of performing a fair comparison between the optimum
classical protocol and the quantum-assisted protocol in a realistic experiment, which
is inherent of many inefficiencies. Whereas the inefficiencies are directly reflected in
the reduction of the measured success probability Pexp, which is readily compared to
the classically allowed value, it is not directly obvious how to deal with the issue of
experimental imperfections in the first class of problems. Let us now introduce the
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two CCPs analyzed and implemented here [109].

Problem A. The problem A is the so-called modulo-4 sum problem. It was first
defined for three parties by Buhrman et al. [119] and later generalized to N parties
in [118]. The problem in the setting with restricted communication is stated as
follows: Imagine N separated partners P1, . . . ,PN . Each of them receives a two-
bit input string Xk, (Xk = 0, 1, 2, 3; k = 1, . . . , N). The Xks are distributed such
that their sum is even, i.e., (

∑N
k=1 Xk)mod2 = 0. No partner has any information

whatsoever on the values received by the others. Next, the partners communicate
with the goal that one of them, say PN , can tell whether the sum modulo-4 of all
inputs is equal 0 or 2. That is, PN should announce the value of a dichotomic
function1 T (X1, . . . , XN) given by TA = 1 − (

∑N
k=1 Xkmod4). The total amount of

communication is restricted to only N − 1 bits (classical scenario). The partners can
freely choose a communication protocol as long as it does not depend on input data2.
Such a dependence would imply a violation of the communication restriction.

An alternative description of the task A, simplifying the calculation of the maxi-
mum classical success probability and making the connection with the task B more
visible, can be introduced. It puts the probability distribution for local data as

pA(X1, . . . , XN) =
1

22N−1

∣∣∣∣∣cos

(
π

2

N∑

k=1

Xk

)∣∣∣∣∣ , (4.1)

and the global task function as

TA(X1, . . . , XN) = cos

(
π

2

N∑

k=1

Xk

)
. (4.2)

Problem B. Problem B has a similar structure as A, but now N real numbers
X1, . . . , XN ∈ [0, 2π) with probability density

pB(X1, . . . , XN) =
1

4(2π)N−1

∣∣ cos(X1 + . . . + XN)
∣∣ (4.3)

are distributed to the partners. Their task is to compute whether cos(X1 + . . .+XN)
is positive or negative, i.e. to give the value of the dichotomic function

TB = S

[
cos

(
N∑

k=1

Xk

)]
, (4.4)

1A dichotomic function is a function with a range restricted to two values of ±1.
2E.g. they can choose between sequential communication from one to the other, or any arbitrary

tree-like structure ending at the last party PN .
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where S(x) = x/|x|. The communication restriction is the same as for problem A,
i.e., only N − 1 bits are allowed to be exchanged.

4.1.4 Optimal classical protocol

To find the best performing protocols for these two CCPs, it is convenient to first
rewrite the random inputs Xks. For the task A we put Xk = (1 − yk) + xk, where
yk ∈ {−1, 1}, xk ∈ {0, 1}. For the task B we write Xk = π(1− yk)/2 + xk, with yk ∈
{−1, 1}, xk ∈ [0, π). Accordingly, the task function T can now be reformulated in a
common form: T = f(x1, . . . , xN)

∏N
k=1 yk and p(X1, . . . , XN) = 2−Np′(x1, . . . , xN)3.

Specifically, for the task A we have f = fA = cos(π
2

∑N
k=1 xk) with p′ = p′A =

2−N+1| cos(π
2

∑N
k=1 xk)|, and for the task B, f = fB = S[cos(

∑N
k=1 xk)] with p′ =

p′B = 2−1π−N+1| cos(
∑N

k=1 xk)|.
We note that the dichotomic variables yk are not restricted by the probability

distributions, p, for the Xks. Thus, they are completely random. Furthermore, since
T is proportional to the product of all yks, the answer eN = ±1 of PN is completely
random with respect to T , if it does not depend on every yk. Thus, an unbroken
communication structure is necessary: the information from all N − 1 partners must
directly or indirectly reach PN . Due to the restriction to N−1 bits of communication
each of the partners, Pk, where k = 1, . . . , N−1, sends only an one-bit message, which
for convenience will be denoted as ek = ±1.

The task function T as well as the answer eN of PN takes only two values, ±1.
If the answer is correct, then T = eN and thus TeN = 1; otherwise, TeN = −1.
Therefore, following [124] we can quantify the average success of the protocol with
the fidelity F =

∑
X1,...,XN

pTeN , or equivalently

F =
1

2N

∑
x1,...,xN=0,1

p′(x1, . . . , xN)f(x1, . . . , xN)

×
∑

y1,...,yN=±1

N∏

k=1

ykeN(x1, . . . , xN ; y1, . . . , yN) (4.5)

For the problem B integrations replace summations (
∑

xk
→ ∫ π

0
dxk); the probability

of success reads P = (1 + F )/2.
In any classical protocol the answer eN given by PN can depend on yN , xN , and on

the messages, ei1 , . . . , ei` , received directly from partners Pi1 , . . . ,Pi` . That is, eN =
e(xN , yN , ei1 , . . . , ei`). Let us fix xN , and treat e as a function exN

of the remaining
` + 1 dichotomic variables, yN , ei1 , . . . , ei` . In the 2`+1 dimensional space of such

functions one has an orthogonal basis given by Vjj1...j`
(yN , ei1 , . . . , ei`) = yj

N

∏`
k=1 ejk

ik
,

3This reformulation enables one to adopt the mathematical formalism developed for
entanglement-assisted communication complexity models in [123, 124].
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where j, j1, . . . , j` = 0, 1. Thus, one can expand exN
:

exN
=

∑
j,j1,...,j`=0,1

cjj1...j`
(xN)yj

N

∏̀

k=1

ejk
ik

, (4.6)

where

cjj1...j`
(xN) =

1

2`+1

∑
yN ,ei1

,...,ei`
=±1

exN
Vjj1...j`

.

Since |exN
| = |Vjj1...j`

| = 1, one has |cjj1...j`
(xN)| ≤ 1. We put the expansion to

Eq. (4.5). As,
∑

yN=±1 yNy0
N = 0, and

∑
yk=±1 yke

0
k = 0, only the term with

j, j1, . . . , j` = 1 in expansion (4.6) can give a non-zero contribution to Fc. Thus,
without changing the result of Eq. (4.5), eN in (4.5) can be replaced by a function
e′N = yNcN(xN)

∏`
k=1 eik , where cN(xN) stands for c11...1(xN). Next, notice that, e.g.,

ei1 , which is in the formula for e′N , can depend only on xi1 , yi1 and the messages
obtained by Pi1 from a subset of partners: ep1 , . . . , epm (this set does not contain any
eik). In analogy with (4.6), ei1 , for a fixed xi1 , can be expanded in terms of orthogonal
basis functions:

ei1 =
∑

j,j1,...,jm=0,1

c′jj1...jm
(xi1)y

j
i1

m∏

k=1

ejk
pk

. (4.7)

Again, |c′jj1...jm
(xi1)| ≤ 1. If one puts this into e′N one obtains for the fidelity

Fc =
1

2N−2

∑
x1,...,xN

g(x1, . . . , xN)cN(xN)ci1(xi1)
∑

y′

∏

k 6=N,i1

yk

m∏
r=1

epr

∏̀

k=2

eik , (4.8)

where g = p′f , ci1(xi1) = c′11...1(xi1), and
∑

y′ represents summation over y1, . . . , yi1−1,
yi1+1, . . . , yN−1 = ±1. Note that each message appears in the product only once. We
continue this procedure of expanding the messages, till it halts (i.e., till we reach the
level of those partners who do not receive any messages). The end result is

Fc =
∑

x1,...,xN

g(x1, . . . , xN)
N∏

n=1

cn(xn), (4.9)

with |cn(xn)| ≤ 1. Since Fc in Eq. (4.9) depends on the product of local functions
cn(xn), it has to be bounded from above, i.e., |Fc| ≤ B(N), where B(N) is the max-
imum classical fidelity. The reasoning is similar to that leading to Bell inequalities4

[123, 124]. The extrema of Fc are at the limiting values cn(xn) = ±1, because Fc

is linear in every cn(xn). It becomes apparent now that the class of protocols, in
which the partners P1 to PN−1 calculate ek = ykck(xk), with ck(xk) = ±1, and send

4As a matter of fact the inequality |Fc| ≤ B(N), where Fc is defined in (4.9), is an algebraic
version of a general Bell inequality for N observers.
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the result, encoded in ek, to PN , who puts eN =
∏N

k=1 ykck(xk), contains an optimal
protocol of fidelity B(N).

The specific forms of the bound B(N) for our problems A and B are calculated
in appendix B.1. In both cases the fidelity decreases exponentially with the number
of parties N . For the task A we found Fc,A ≤ 2−K+1, where K = N/2 and K =
(N + 1)/2 for even and odd numbers of parties, respectively. This analytic result
confirms the numerical simulations of [125] for small N . For the task B we derived
Fc,B ≤ (2/π)N−1.

4.1.5 Optimal quantum protocol

For the quantum protocols, we note that the Holevo bound [114] limits the informa-
tion storage capacity of a qubit to no more than one classical bit. Thus, we must now
restrict the communication to N − 1 qubits, or alternatively, to N − 1-fold exchange
of a single qubit.

The optimal solution of the task A starts with a qubit in the state |ψ0〉 =
1/
√

2(|0〉 + |1〉). Parties then sequentially act on the qubit with the phase-shift
transformation |0〉〈0| + eiπXk/2|1〉〈1|, in accordance with their local data Xk. After
all N phase shifts the state takes the form:

|ψN〉 =
1√
2
(|0〉+ eiπ(

∑N
k=1 Xk)/2|1〉). (4.10)

Since the sum over Xk is even, the phase factor eiπ(
∑N

k=1 Xk)/2 is equal to the dichotomic
function TA to be computed. Thus, a measurement of the qubit in the basis (|0〉 ±
|1〉)/√2 reveals the value of TA with fidelity Fq,A = 1, that is, always correctly.

Task B starts also with a qubit in the state |ψ0〉. Each party performs according
to his/her local data a unitary transformation |0〉〈0|+ eiXk |1〉〈1|, leading to

|ψN〉 =
1√
2
(|0〉+ ei

∑N
k=1 Xk |1〉). (4.11)

The last party makes the same measurement as in the task A. The probability for the
detection of state 1/

√
2(|0〉±|1〉), which we associate with the result r = ±1, is given

by P (±) = [1± cos(
∑N

k=1 Xk)]/2. The expectation value for the final answer eN = r

is E = P (+) − P (−), and reads cos(
∑N

k=1 Xk). The fidelity of eN , with respect to
TB is

Fq,B =

∫ 2π

0

dX1 . . .

∫ 2π

0

dXNpB(X1, . . . , XN)TB(X1, . . . , XN)E(X1, . . . , XN).

(4.12)
With the actual forms of pB, TB, and E, one gets Fq,B = π/4, i.e., the protocol gives
the correct value of TB with probability Pq,B = (1 + π/4)/2 ≈ 0.892.

For both problems the classical fidelity Fc or the probability of success Pc decreases
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Figure 4.1: Experimental set-up for qubit-assisted CCPs. Pairs of orthogonally polarized
photons are emitted from a BBO crystal via the type-II SPDC process. The detection of
one photon by the trigger detector DT indicates the existence of the protocol photon. The
polarization state is prepared with a half-wave plate (HWP1) and a polarizer, placed in the
trigger arm. Each of the parties introduces a phase-shift by the rotation of a birefringent
YVO4 crystal (C1 to C5). The last party performs the analysis of a photon-polarization
state using a half-wave plate (HWP2) followed by a polarizing beam-splitter (PBS).

exponentially with growing N to the value corresponding to a random guess by PN .
I.e., communication becomes useless. In contrast, Pq does not change with N . For the
task A it equals 1, and for B we have≈ 0.892. The simple, one qubit assisted quantum
protocol, without any shared multi-particle entanglement, clearly outperforms the
best classical protocols.

4.1.6 Implementation

We implemented the quantum protocols for N = 5 parties [109], using a heralded
single photon as the carrier of the qubit communicated sequentially by the partners.
The qubit was encoded in the polarization, so that the computational basis, “0” and
“1”, corresponds to horizontal H and vertical V linear polarization, respectively. The
data Xk of each party was encoded on the qubit via a phase shift, using birefringent
materials. The last party performed a measurement in the basis 1/

√
2(|H〉 ± |V 〉) to

obtain the answer eN .
The experimental set-up is shown in Fig. 4.1. Time-correlated photon pairs are

produced via non-collinear SPDC process in a 2-mm-long BBO crystal pumped by
a blue LD (λp = 402.5 nm) with the output optical power of about 10 mW. The
detection of one photon by the trigger detector DT heralds the existence of the other
one used in the protocol. The narrow gate window of 4 ns for coincidence detection
between these two photons, along with the single-count rates of ≈ 140000 s−1 at the
detectors D+ and D−, warrant that the recorded data are due to single photons only5.

5The probability of having more than one photon per heralding signal and during time corre-
sponding to the gate window is estimated to 2 × 10−3, assuming the given parameters and the
Poissonian photon-number statistics of SPDC photons.
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Figure 4.2: Deviation of the phase
shift by an YVO4 crystal from the ex-
pected value, measured over the full
range [0, 2π] in steps of π/60.

Since a type II degenerate phase-matching scheme is used, the emitted photon pairs
at λ = 805 nm (∆λ ≈ 6 nm) are orthogonally polarized. Filtering of the vertical
polarization for the trigger photons, ensures that the protocol photon has horizontal
polarization initially. A half-wave plate (HWP1) transforms the qubit to the initial
state 1/

√
2(|H〉+ |V 〉) as required by the optimal quantum protocol.

The individual phase shifts of parties are implemented using a 200 µm thick
Yttrium-Vanadate (YVO4) birefringent uniaxial crystals (Ci). The crystals, cut with
their optic axes parallel to the surface, are aligned in such a way that H and V polar-
ization states correspond to their normal modes. In this configuration the difference
between optical paths of horizontal and vertical polarization can be continuously
tuned using motor-driven rotations of the crystals along their optic axes, thereby
allowing to set any desired phase-shift from 0 to 2π independently from the incoming
polarization state. The precision in applying an arbitrary phase shift was measured
to be better than 0.02π over the full phase range, see Fig. 4.2. An additional YVO4

crystal (Ccomp,1000 µm long), aligned with its optic axis in the plane perpendicular to
the direction defined by the optic axes of the previous crystals, is used to compensate
dispersion effects (for details, see [129]). To analyze the polarization state of photons
in the basis (|0〉 ± |1〉)/√2, a half wave-plate (HWP2) at an angle of 22.5◦ followed
by polarizing beam-splitter (PBS) is used.

For a fair comparison of the quantum protocols with the classical ones, no heralded
events are discarded, even if the detection of the protocol photon fails. In such a case
one can still guess the value of T , but with success rate of only 1/2. Therefore, a high
detection efficiency η of the heralded photons, i.e. high coincidence/single ratio for our
set-up, is essential for an unambiguous demonstration of the superiority of the qubit-
assisted protocol6. To minimize the cases with no detection of the photon, the yield
of heralded photons was maximized by adopting an unbalanced SPDC scheme. We
select a restricted spatial mode with well defined polarization of the trigger photons by

6E.g., in a realistic implementation of the five-party problem A, the efficiency of η & 0.33 was
estimated to be sufficient to beat the optimum classical protocol, see [125].
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coupling them into a single-mode fiber behind a polarizer, whereas no spatial filtering
is performed on the protocol photons. As a result, we observed ≈ 5000 trigger events
per second at the detector DT with ≈ 2400 coincident events per second of protocol
detections, i.e. an overall detection efficiency of η ≈ 0.48, close to the limit given by
the detector efficiency of our silicon APDs (measured to be about ≈ 55 %).

The protocols were run many times, to obtain sufficient statistics. Each run took
about one second. It consisted of generating a set of pseudorandom numbers obeying
the specific distribution, subsequent setting of the corresponding phase shifts, and
opening detectors for a collection time window τ . The limitation of communicating
one qubit per run requires that only these runs, in which exactly one trigger photon
is detected during τ , are selected for the evaluation of the probability of success Pexp.
To maximize the number of such runs, n, the length of τ was optimized to 200 µs,
assuming a Poissonian photon-number distribution of SPDC photons.

We merely remark that essentially the same set-up could be used to solve the
CCPs using bright polarized pulses. However, in such a case, a suitable polarization
measurement of the pulses reveals all the encoded input data of any party: two
bits for the task A, and arbitrarily many for the task B. Thus, the communication
restriction to N − 1 bits is violated. Attenuation of the pulses to the single-photon
level does not help either. The efficiency of the protocol is significantly lowered in
such a case, due to many non-detection events, forcing one to guess the answer most
of the time.

4.1.7 Results

In order to determine the probability of success from the data acquired during the runs
we have to distinguish the following two cases. First, the heralded photon is detected,
which happens with probability η, given by the coincidence/single ratio. Then, the
answer eN can be based on the measurement result. However, the answer is correct
only with a probability γ, due to experimental imperfections in the preparation of
the initial state, the setting of the desired phase shifts, and the polarization analysis.
This must be compared with the theoretical limits given by Pq,A and Pq,B for the
task A and B, respectively. Second, with the probability 1 − η the detection of the
heralded photon fails. Forced to make a random guess, the answer is correct in half
of the cases. This leads to an overall success probability Pexp = ηγ + (1− η)0.5, or a
fidelity of Fexp = η(2γ − 1).

Due to a finite measurement sample, our experimental results for the success
probability are distributed around the value Pexp as shown in Fig. 4.3 for both
tasks. The width of the distribution is interpreted as the error in the experimental
success probability. For the task A we obtain a quantum success probability of
Pexp,A = 0.711 ± 0.005. The bound Pc,A = 5/8 of the optimal classical protocol for
N = 5 parties is violated by 17 standard deviations. For the task B we reached
Pexp,B = 0.669± 0.003, whereas the classical bound is Pc,B ≈ 0.582. The violation is
by 29 standard deviations. Expressing the final results in terms of fidelities, we obtain
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Figure 4.3: Histograms of measured quantum success probabilities (a) for the task A and
(b) for task B. The bounds for optimum classical protocols are displayed, too.

n η γ

task A 6692 0.452± 0.010 0.966± 0.003
task B 18169 0.471± 0.006 0.858± 0.004

Table 4.1: Relevant experimental parameters in the implementation of communication
complexity problems A and B: n - number of correct runs, η - overall detection efficiency
of heralded photons, and γ - success rate of the protocol for the fraction of the runs with
detected heralded photon.

Fexp,A = 0.421 ± 0.010 for the task A, and Fexp,B = 0.337 ± 0.006 for the task B.
This must be compared to the performance of the best classical protocol for N = 5
parties reaching Fc,A = 0.25 for A and Fc,B ≈ 0.164 for B. Table 4.1 summarizes the
relevant experimental parameters for both tasks.

4.2 Secret sharing

4.2.1 Introduction

Splitting a secret in a way that a single player or an unauthorized subset of players is
not able to reconstruct it, is a common task in information processing and especially,
in high security applications. Suppose, for example that a launch sequence of a
nuclear missile is protected by a secret code. Yet, it has to be ensured that a single
lunatic is not allowed to activate it, as well as two are not. At least three out of five
officers are required to be lethal lunatics before the missile launch can be initiated.
This problem, together with its many possible variations and generalizations, is called
secret sharing.

The secret sharing problems are extensively studied in the framework of classical
cryptography [130]. The classical solution usually involves a randomized encoding of
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a secret into an n-tuple, the coordinates of which are each distributed to n different
players. The encoding, i.e the partitioning of the secret into so-called shares given to
players, has to be such that the reconstruction of the secret requires a specified level of
concurrence by the players. This can be expressed in the majority of cases by a single
number - the so-called concurrence threshold k - which means that (i) knowledge of
any k or more shares makes the secret easily computable and (ii) knowledge of any
k − 1 or fewer shares leaves the secret completely undetermined in the sense that all
its possible values are equally likely7.

The two classic examples of the algorithms for the general (k, n) threshold secret
sharing scheme are due to A. Shamir [131] and G. R. Blakley [132]. Shamir’s technique
relies on the fact that k points in an R2 space uniquely determine a (k − 1)th degree
polynomial, but there are infinitely many polynomials of degree k−1 defined by k−1
points. Clearly, k or more players, each knowing the coordinates of one point, are then
able to recover the polynomial by interpolation of their values. The Blakley’s scheme
is geometric in nature. The secret is defined as a point in a k dimensional space
and the shares distributed among n players are the equations of (k − 1)-dimensional
hyperplanes comprising that point. Moreover, the intersection of the hyperplanes
defines the coordinates of the point. Analogously to Shamir’s version, any collusion
of k − 1 or fewer players will not be able to obtain a unique point by intersecting
their hyperplanes. Thus, they have no better chance of recovering the secret than
an outsider who does not hold any of the shares. On the other hand, as soon as any
k players concur, they can easily compute the coordinates of the point and retrieve
thus the secret.

That is, both schemes are unconditionally secure in the sense that the security
they provide is independent of the computing time or power that the cheater may
bring to bear on subverting the system; or put in another way, even with infinite
computing power the cheater can do no better than guess the secret.

4.2.2 Quantum-assisted secret sharing

So far we did not address the issue of distribution of the shares among the players.
Obviously, if the shares are accessed during this phase by an eavesdropper or even
by some dishonest player (i.e. by a cheater), the security of the system is ruined8.

Unfortunately, classical and conventional cryptographic solutions offer no tools
to guarantee the security of the shares during their communication to the players.
They are vulnerable to eavesdropping attacks. The only provable way how to defeat
eavesdropping is provided by quantum cryptography [14, 15]. Unlike the conven-

7In view of this definition the example with the missile launch is a (k = 3, n = 5) threshold
scheme.

8By eavesdropping we refer to an attack from an outsider, that is from a person who is not
involved with the group of players whatsoever, whereas by cheating we refer to an attack from one
of the players.
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tional cryptography with its security relying only on computational assumptions, the
security of quantum cryptography is based upon the laws of quantum mechanics,
which ultimately guarantee that distributed keys cannot be captured without being
irretrievably altered and therefore rendered useless - a process that is provably de-
tectable. Therefore, quantum cryptography has to be integrated into secret sharing
protocols with the principal motivation of discovering whether an eavesdropper or
cheater has been active during the protocol. The most obvious way how to achieve
this goal is to establish a mutual secret key with each of the players separately via a
standard two-party quantum key distribution protocol and then implement a classical
secret sharing procedure, such as in the Shamir’s or Blakley’s version. This solution
is however not efficient and scalable with regard to the number n of the participating
players.

An elegant way how to achieve the task of secret sharing via the resource of mul-
tiparty entanglement was outlined by Żukowski et al. [133]9 and later discussed in
more depth by Hillery et al. [134]. They showed that a shared maximally-entangled
GHZ-state allows the information splitting and the protection against eavesdrop-
ping simultaneously. But, due to lack of efficient and stable entangled multi-photon
sources, an experimental demonstration of a working quantum secret sharing (QSS)
shows to be very challenging. Till now, solely the in-principle feasibility of was shown
in an experimental realization using pseudo-GHZ states [135] and very recently the
scenario for three players was implemented [136].

In the following we propose a general protocol for n players, in which a sequential
single qubit communication between them is used with no need for GHZ-states [110].
As our protocol requires only single qubits it is realizable with the current state-of-the-
art technologies, and above all, scalable with respect to the number of participating
players. These merits made the experimental demonstration of our protocol for six
players possible. To grasp the essential elements in the construction of QSS let us
first briefly describe the entanglement-based protocol using a multiparty GHZ state
[134, 137].

4.2.3 Entanglement-based protocol

Consider a group of n players, each having a particle from the maximally-entangled
n particle GHZ-state

|GHZ〉 =
1√
2

(
| 00 . . . 0︸ ︷︷ ︸

n

〉+ | 11 . . . 1︸ ︷︷ ︸
n

〉
)

, (4.13)

9To be perfectly accurate the task being discussed in [133] is a bit different from secret sharing.
It is often termed as “Third-Man” cryptography, and its goal is the generation of the cryptographic
key between the players in such a way that its activation can be controlled by the Third Man.
Nevertheless, as a matter of fact both tasks in question are very similar and their quantum-assisted
solutions are closely inter-linked.
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where |0〉 and |1〉 are orthogonal states in an arbitrary Hilbert space. Next, the
partners randomly and independently choose the value of a local parameter φj = 0
or φj = π/2 and perform a measurement on the local particle of the observable

σ̂j(φj) =
∑

kj=±1

kj |kj, φj 〉〈 kj, φj |, (4.14)

with the eigenstates |kj, φj〉 = 1/
√

2(|0〉+ kj exp(iφj)|1〉), (j = 1, 2, . . . , n) associated
with eigenvalues kj = ±1. The correlation function for an n-particle GHZ state,
defined as the expectation value of the product of n local results, is given by

E(φ1, . . . , φn) = 〈
n∏

j=1

σ̂j(φj)〉 = cos

(
n∑

j=1

φj

)
. (4.15)

After the measurement each player publicly announces her/his choice of φj, but keeps
the result kj secret. Then all of them know whether this procedure leads to perfect
correlations, i.e. when | cos(

∑n
j φj)| = 1. This happens in half of the runs. In these

instances, on the basis of the perfect correlations, any subset of n−1 players is able to
infer the measurement result of the dealer, PD, if and only if the players collaborate.
Thereby they achieve the principal task of secret sharing in the particular setting with
the threshold of k = n− 110. One can prove that the entanglement-based scheme is
unconditionally secure in the sense of the aforementioned definitions; security issues
are analyzed in references [134, 139, 140].

4.2.4 Single-qubit protocol

An n party scheme [see Fig. 4.4(a)] for the same task, where only the sequential com-
munication of a single qubit is used, runs as follows. The qubit is initially prepared
in the state

|+ x〉 =
1√
2

(|0〉+ |1〉). (4.16)

During the protocol the qubit is sequentially communicated from one player to the
other, each acting on it with the unitary phase operator

Ûj(ϕj) =

{
|0〉 → |0〉
|1〉 → eiϕj |1〉, (4.17)

10The efficient construction of all threshold schemes is given in [138]. It is also shown therein that
for a certain class of threshold schemes the secret must be distributed in a globally mixed state.
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with the randomly chosen value of ϕj ∈ {0, π, π/2, 3π/2}. Therefore, having passed
all parties, the qubit will end up in the state

|χN〉 =
1√
2

(
|0〉+ ei(

∑n
j ϕj)|1〉

)
. (4.18)

The last party performs a measurement on the qubit in the basis |±x〉 = 1√
2
(|0〉±|1〉)

leading to the result ±1. As it will be clarified later, for her/him it suffices to choose
only between ϕn = 0 or ϕn = π/2. The probability that she/he detects the state
|+ x〉 reads

p+(ϕ1, . . . , ϕn) =
1

2

[
1± cos

(
n∑
j

ϕj

)]
, (4.19)

whereas the probability to detect the state | − x〉 is

p−(ϕ1, . . . , ϕn) =
1

2

[
1± cos

(
n∑
j

ϕj

)]
. (4.20)

That is, the expectation value of the measurement is

E ′(ϕ1, . . . , ϕn) = p+(ϕ1, . . . , ϕn)− p−(ϕ1, . . . , ϕn) = cos

(
n∑
j

ϕj

)
. (4.21)

Note that this expectation value (Eq. 4.21) has the same structure like the correlation
function (Eq. 4.15) and can therefore also be used to obtain a shared secret. For
this purpose each participant divides his action for every run into two classes: a
class X corresponding to the choice of ϕj ∈ {0, π} and a class Y corresponding to
ϕj ∈ {π/2, 3π/2}. Following this classification they broadcast the class of their action
for each run, but keep the particular value of ϕj secret. This corresponds in the GHZ
scheme to the announcement of φj while keeping kj secret. The order in which they
announce the classification is each time randomly chosen. From that procedure they
can determine which runs lead to a deterministic measurement result, i.e. when
cos(

∑n
j ϕj) equals to either 1 or -1, or equivalently, to either p+ = 1 or p− = 1,

respectively. Such sets of ϕs occur on average in half of the runs. These are valid
runs of the protocol. In such cases any subset of n−1 players is able to infer the choice
of phase ϕD of the dealer, if and only if, they concur and reveal among themselves
their values of ϕj. In case that this subset contains the last partner, he/she must
reveal the measurement result11. The task of secret sharing in the particular setting

11Note that although doing different things in practice (measurement/phaseshift) all parties are
equal as far as the amount of information is concerned. In fact the state preparation and detection
could be formally separated from the parties and be performed by some higher instance etc. Yet we
do not think this is in any way of practical importance.
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RNG RNGRNG

RNG RNG RNG

Figure 4.4: (a) Scheme for n party single qubit secret sharing. A qubit is prepared in an
initial state and sequentially communicated from one player to the next, each applying a
randomly chosen phase ϕj from a preselected set. The last player performs a measurement
on the qubit leading to the result ±1. In half of the cases the phases add up such that the
measurement result is deterministically depending on the sum of phases. These instances
can be used to achieve the aim of secret sharing. (b) Experimental set-up. Pairs of orthog-
onally polarized photons are generated via type II SPDC. The detection of one photon by
DT heralds the existence of the other one used in the protocol. The initial polarization state
is prepared using a polarizer in the trigger arm. Each of the players (P1, . . . ,P6) introduces
one out of four phase shifts, according to the output of a pseudo random number generator
(RNG), using a half- and quarter-wave plate (HWP1, QWP) or YVO4 crystals (C1,. . . ,C5),
respectively. The last party analyzes additionally the final polarization state of the photon
by detecting it behind a half-wave plate (HWP2) and a polarizing beam splitter (PBS).

with the threshold of k = n− 1, is now achieved via local manipulation of phases on
a communicated single qubit, and no multi-particle entangled GHZ state is required
anymore.

Security of the protocol. In order to ensure the security of the protocol against
eavesdropping or cheating, the dealer PD of the secret arbitrarily selects a certain
subset (the size depends on the degree of security requirements) of valid runs. For
these runs the value of ϕD is compared with the one inferred by the players. To this
end each of the players sends, in a random order, the value of his/her phase ϕj. The
comparison reveals any eavesdropping or cheating strategy. That can be easily seen
by discussing the following intercept/resend eavesdropping attacks.

Imagine for instance the first player Pj who follows directly after the dealer PD

tries to infer the secret on her/his own, i.e. without the required level of concurrence

k = n − 1, by measuring the qubit, before acting on it with Ûj(ϕj) and afterwards
sending it to the next player Pj+1. For convenience, let us assume Pj chooses for this
measurement one of the two protocol bases |±x〉 or |±y〉 = 1√

2
(|0〉±i|1〉). The choice

of these bases appears to be natural because at any stage of the protocol the qubit is
in one of these four states. As PD applies randomly one of four different phase shifts,
the probability that the qubit is an eigenstate of the measurement chosen by Pj is 1/2
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and thus in half of the cases the measurement result of Pj will be completely bitwise
random, because |〈±y | ±x 〉|2 = 1/2. Thus, the cheater Pj gets no information
about the secret. Furthermore, such cheating causes an overall error of 25% in the
final measurement results. Simply, if Pj chooses the wrong basis, the final state of
the qubit after all the introduced phase shifts will not always be of the form (4.18).

An eavesdropper following such a strategy faces a similar situation. The usage of
the bases x and y for an intercept/resend attack is the optimal with regard to the
information gain on the valid runs. One might also consider using the intermediate
(or so-called Breidbart) basis |±b〉 = 1√

2+
√

2
(|±x〉+ |±y〉) = 1√

2
(|0〉±eiπ/4|1〉) which

gives the eavesdropper maximum information on all exchanged bits [141]. But even
here the error rate goes necessarily up to 25%. The security of the presented protocol
against a general eavesdropping attack follows from the proven security of the well
known BB84 protocol [14, 63]. Each communication step between two successive
parties can be regarded as a BB84 protocol using the bases x and y. Any set of
dishonest players in our scheme can be viewed as an eavesdropper in BB84 protocol.

4.2.5 Implementation

The single-qubit protocol for secret sharing was experimentally implemented for n =
6 players with a threshold of k = n − 1 = 5, thereby clearly demonstrating the
practicality of the scheme [110]. The implementation exploits numerous tools already
applied in the experimental set-up to solve CCPs. Therefore, the following description
is rather cursory; for more details we refer to section 4.1.6.

The experimental set-up for single-qubit secret sharing is shown in Fig. 4.4(b);
(photo of the set-up is included in appendix B.2). The protocol qubit is encoded
in a polarization state (the computational basis states |0〉 and |1〉 correspond to the
horizontal |H〉 and vertical |V 〉 polarization states) of a single photon provided by the
heralded single photon source based on a correlated photon pair emission from type
II SPDC. Filtering of the vertical polarization of the trigger photon by a polarizer,
ensures that the protocol photon has horizontal polarization initially.

The first player P1 is equipped with a motorized half-wave plate (HWP1) followed
by a quarter-wave plate (QWP) at an angle of 45◦. By rotating of HWP1 to the angles
0◦, 45◦ and 22.5◦, −22.5◦ he transforms the horizontally polarized photons coming
from the source to | ± y〉 and | ± x〉. This corresponds to applying the phase-shifts
ϕ ∈ {π/2, 3π/2} and ϕ ∈ {0, π}, respectively. As the phase-shifts of the other players
(P2, . . . ,P6) have to be applied independently of the incoming polarization state, the
usage of standard wave plates is not possible. Therefore the unitary phase operator
is implemented by rotating 200 µm long YVO4 birefringent crystals (Ci) along their
optic axis, oriented perpendicularly to the beam. An additional YVO4 crystal (Ccomp)
compensates dispersion effects. The last party performs the measurement behind a
half-wave plate (HWP2) at an angle of 22.5◦ followed by polarizing beam-splitter
(PBS).
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ztotal zraw zval QBER (%)

| ± x〉 27501 883 452 25.22± 2.04
| ± y〉 24993 784 409 30.32± 2.27
| ± b〉 38174 1137 588 30.27± 1.89

Table 4.2: Results of the simulation of an intercept/resend eavesdropping strategy in the
protocol bases as well as in the intermediate bases. The attack was done by inserting a
polarizer between the first two players. In each case the quantum bit error rate (QBER)
rises up to more than 25 % and by this blows the eavesdropper’s cover.

The photons are detected at D+/D− and DT by passively quenched silicon APDs
with a measured efficiency of about 35% at our operating wavelength. At the typical
single-count rates of ≈ 35000 s−1 both in D+ and D− and about 5000 s−1 in DT we
obtained a coincidence rate of 1200 s−1. Together with a chosen coincidence gate
window of 4 ns this implies the communication of single photons only. Accidental
coincidences or multi-coincidences were negligible.

4.2.6 Results

The protocol was repeated ztotal = 25000 times. One run consisted of generating
pseudo-random variables, rotating the crystals accordingly and opening the detectors
for a collection time window τ = 200 µs, what took all together about 1 s. The
requirement of communicating a single photon imposes that only those runs were
included into the protocol in which just one coincidence between DT and either D+

or D− was detected during τ . In these runs a single coincidence detection happened
zraw = 2107 times which provided us with the raw key. From this we extracted
zval = 982 valid runs where | cos(

∑n
j ϕj)| = 1 [506 times cos(

∑n
j ϕj) = 1 and 476

times cos(
∑n

j ϕj) = −1] with a quantum bit error rate (QBER) of 2.34± 0.48%. To
calculate the error on the QBER the experiment is considered to be a sequence of
Bernoulli trials implying a binomial distribution of error events. The error correction
protocols (like, e.g., parity check) could be used exactly like in conventional quantum
cryptography to further reduce the errors.

In order to show that the QBER increases significantly by an eavesdropping attack
we simulated an intercept/resend strategy by inserting a polarizer between the first
two players. The attack was done in the protocol bases | ± x〉, | ± y〉 as well as in the
intermediate bases |±b〉. For the latter two the polarizer was additionally sandwiched
by two quarter-wave plates. The angular settings {1st QWP, polarizer, 2nd QWP}
were {45◦, 0◦,−45◦} and {−45◦, 22.5◦, 45◦}. For every choice of the basis the QBER
went up to at least 25% (or even higher due to other experimental imperfections).
The results are summarized in Table 4.2.

A different eavesdropping/cheating strategy could be of a Trojan Horse type.
One of the players could pass polarized light through the devices of the other play-
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ers and therefore attempt to gain information on local phase shifts. However, such
action might be easily discovered by the players by checking the nature of light
passing through their devices from time to time. Note further that any excess pho-
tons, i.e. those not in coincidence with the trigger, cannot be utilized for eaves-
dropping/cheating as they do not have a defined polarization12. Only higher-order
emissions, i.e. two pairs emitted within the coherence time (≈ 360 fs), are useful for
beam-splitting attacks; this is just the same as in entanglement-based quantum cryp-
tography, see e.g. [142, 143, 144]. The probability for such a opportunity, however,
for our parameters is as low as 7.1× 10−8 per run.

We merely remark that the use of weak coherent pulses of light containing much
less than one photon on average, instead of a heralded single photon source, is possible
and further reduces the required experimental resources. However, this would be at
the expense of the concept of communicating strictly one qubit and can be also
disadvantageous for the practical performance of the protocol [145, 146]. While we
have realized our secret sharing protocol using photons and polarization encoding,
alternative schemes, like proposed or realized in BB84-type protocols can be adopted
as well.

4.3 Discussion and outlook
We introduced new schemes for solving the multiparty communication tasks of com-
munication complexity and secret sharing. Unlike other quantum-assisted methods
employing multi-particle entangled states, our protocols involve only the sequential
communication and transformation of a single qubit. As single-qubit operations using
linear optical elements and the analysis of photon polarization states are efficiently
realizable with today’s technology, we were therefore able to present the first success-
ful experimental demonstrations of the protocols for as many as five and six parties,
respectively. This is to our knowledge the highest number of actively performing
parties in a quantum protocol ever implemented. In principle, we see no experimen-
tal barrier to extend the performed protocols to even significantly higher number of
participants.

From theoretical point of view, our work unambiguously demonstrates the power
of qubit communication in multiparty tasks. Even though a qubit can be used to
communicate only one bit of information between two unentangled parties [114], the
full continuous nature of the quantum state still helps when performing some quan-
tum information tasks. The trick is not to require that the information encoded in
a qubit is actually read out, but rather substituted for a large amount of classical

12The initial polarization of the heralded photons is fixed in the experiment by putting the polar-
ization filter in the path to the trigger detector, see Fig. 4.4(b). Since the photons form polarization
entangled EPR pairs, detection of a trigger photon behind a polarization filter collapses the initially
undefined polarization state of the heralded one to the required |+ x〉. All other photons, since no
trigger event accompanies them, remain unpolarized.
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information, which is sequentially processed by every party.

(i) In CCPs with restricted amount of communication this allows to achieve the
exponential separation between the quantum/classical performance with increasing
number of parties. The performance of the quantum protocol and of its implemen-
tation is so high that even without any correction for detector efficiency, loss in the
set-up etc., our experimental results significantly outperform the best classical pro-
tocols for both studied tasks.

(ii) In QSS this allows to induce among the players the GHZ-like correlations, which
are essential for achieving secret sharing task. Still, due to the different architectures
of the GHZ-assisted and single-qubit schemes one has to be aware of possibly new
security dangers. Since eavesdropper might have an access to input and output ports
of the partners, particulary the attacks of Trojan Horse type have to be carefully
analyzed in our scheme. Yet, they can be precluded by the players with a reasonable
technological effort like, e.g., discussed in [147]. Also, very recently it was shown that
by using a quantum memory and a teleportation protocol the cheater/eavesdropper
can learn a minor random part of the key (the size depends on her/his position in the
communication chain) in our protocol [148]. To close this subtle security loophole
various classical methods, like e.g. hash functions, have to be applied or the quantum
protocol has to be further refined [149].

Interestingly, our single-qubit communication protocols for CCPs and QSS can be
considered as a direct adaptation of the corresponding entanglement-based protocols
using GHZ states. While the entanglement-based protocols use a non-local quantum
phase, which can be operated on locally by each party, the single-qubit protocols
use a quantum phase of a qubit to sequentially encode local information as it flies
by the parties towards the last party, who performs a suitable measurement. The
expectation value of such a measurement has the same structure as a correlation
function of GHZ state (defined as the expectation value of the product of the local
measurement results by parties). This explains why the tasks of secret sharing and
communication complexity are efficiently solvable with protocols involving only the
communication of a single qubit. It appears rather plausible that our single-qubit
approach may be a practical solution for many other problems, which were believed
to be possible only with the use of multiparty entangled states until now.

In summary, by successfully solving and implementing a cryptographic task as
well as a task originating in computer science, we clearly illustrate the potential to
introduce multiparty communication problems into real life.



Chapter 5
Conclusions and Outlook

The work presented in this thesis addresses two topics related primarily to the de-
velopment of technologies and systems for practical quantum communication. The
first topic is the efficient generation of photonic entanglement and the second is the
simplification and implementation of quantum-assisted solutions to multiparty com-
munication tasks.

Generation of photonic entanglement. In the last decade we witnessed a dramatic
progress of photon pair sources in terms of the output flux and the practicality of
systems. It appears safe to say that some of the concepts have come to reach an
upper bound, forcing one to develop novel methods and techniques for the generation
of photonic entanglement. This gradual progress is also clearly perceptible in this
thesis, which describes the work on two distinct sources of polarization-entangled
photon pairs, spanning the period of over four years.

The first type of source was designed and implemented using the well established
concept of degenerate non-collinear emission from a single type-II nonlinear crys-
tal. With a blue laser diode as a pump source of SPDC, this configuration yields
maximally hundreds of detected pairs per second and mW of pump power. More
importantly, no substantial increase of the brightness is to be expected in the future.
This is due to the limitation of the crystal length to a few mm range and due to
the fact that only a small fraction of the total SPDC output flux is polarization-
entangled. However, the main goal of this design, to demonstrate the feasibility of
sources using blue laser diodes as replacement of costly large frame ion lasers, was
achieved. Moreover, based on this design, a setup for a lab course on entanglement
and the EPR-Bell-problem could be built.

Deficiencies of the first setup are overcome in the second type of source, which
features a novel configuration with only a single spatial mode for collecting non-
degenerate photon pairs generated via SPDC in a double-crystal geometry. This fully
collinear configuration greatly enhances the practicality of the source. Particularly, it
allows one to use very long nonlinear crystals, resulting in a highly increased photon-
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pair flux. With a pair of 16-mm-long crystals we observed almost two order of
magnitudes higher photon-pair flux compared to the non-collinear type II source.
The usage of the only spatial mode for coupling of the photons also precludes the
occurrence of any intrinsic spatial effect limiting the quantum-interference visibility.
Applying a tailored dispersion compensation, we were thereby able to reach nearly
99% quantum-interference visibility, even though a free-running laser diode as a
pump of SPDC was used and no filtering of generated photons was applied. These
merits, together with almost free-of-alignment operation, suggest that this type of
source is an especially promising candidate for many future practical applications,
including quantum cryptography, detector calibration or use in undergraduate lab
courses. Apart from the practical applicability, the source might find its relevance also
in fundamental tests of quantum mechanics. Particularly, a measured net coupling
efficiency of photons pairs of about 90% offers a unique chance to accomplish a
photonic Bell test excluding a fair sampling hypothesis for the first time.

There is a multitude of future research directions following on from the work on
photon pair sources presented in this thesis. As the technology for manufacturing
quasi-phase-matched materials have progressed, periodically poled crystals like PP-
KTP have become commonly available, offering a greater freedom in the choice of
wavelengths and an access to the highest nonlinear coefficients. Their integration
into the collinear type I source should bring a higher output brightness, reduction of
photon bandwidth, and possibly, complete suppression of the spatial walk-off effect,
which has to be compensated in the current realization using additional birefrin-
gent crystals. Another issue deserving more attention is the usage of ultrashort (fs
to ps range) pulse pumped SPDC. The precise timing information inherent to such
type of pumping showed to be very useful for the realization of certain experiments
in quantum optics including generation of multi-photon entangled states, quantum
teleportation or other advanced communication protocols. Although the theoretical
model developed in the thesis suggests that the concept of collinear type I source
works equally efficient for ultrashort pulse pumping, the experimental verification
has to be accomplished.

Turning to applications, it is the next goal for the source of non-degenerate en-
tangled photon pairs to be used for a real world experiment such as a demonstration
of long-distance quantum cryptography; see also [150]. The preliminary steps in
this direction have been already taken by testing the source outside an ideal lab
environment, showing no impairment of the output performance and an overall long-
term stability of the system. Concerning the applicability of the source for future
applications a great deal of effort has to be also made to miniaturize the system,
to further minimize the necessary adjustment, and to use a design with superior
(thermo-)mechanical stability such as, for example, using fixed components.

Multiparty communication tasks. The use of quantum resources leads to a speed-up
in solving many communication tasks or even achieving goals which are classically
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not possible at all. While the recent rapid progress in the development of bright
entangled photon-pair sources has been followed with ample experimental reports on
two-party quantum communication tasks, the practical implementations of tasks for
more than two parties have been quite rare, so far. This is primarily due to the re-
quirement of multiparty entangled states, which are very difficult to be produced with
current methods and, moreover, suffer from high noise and (depending on the num-
ber of partners) exponentially decreasing output yield. We show that entanglement
is not the only non-classical resource endowing the quantum multiparty information
processing its power. Instead, only the sequential communication and transformation
of a single qubit can be sufficient to accomplish certain tasks in a highly efficient way.
This we prove for two distinct communication tasks, communication complexity and
secret sharing.

Quantum communication complexity addresses the problem of communication re-
duction for distributed computation tasks by the utilization of quantum effects. In
the thesis we study two CCPs, in which N separated partners with local random data
must determine in common the correct value of a globally defined Boolean function
with the highest possible probability of success. In these tasks the parties can com-
municate only N−1 bits (classical scenario) or N−1 qubits (quantum scenario). We
theoretically show that for such tasks with restricted communication the advantage
of single-qubit assisted protocols over the corresponding classical ones may increase
even exponentially with the number of partners. Furthermore, we successfully imple-
ment the quantum protocols for N = 5 partners using a heralded single photon from
parametric down-conversion as the carrier of the qubit communicated from one part-
ner to the other. For a fair comparison with the classical scenario, no correction for
imperfections of the state-of-the-art set-up was done whatsoever. The performance
of the protocol and of its implementation is so high that even without any correction
for detector efficiency, loss in the set-up etc., we significantly outperform the best
classical protocols for both studied tasks.

Secret sharing is a cryptographic task with the aim of distributing a secret in such
a way that its reconstruction requires the collaboration of the participating partners.
Classically the problem is solved by splitting the information using some mathemati-
cal algorithms and distributing the resulting pieces to the legitimate parties. However,
classical communication is not secure and thus integration of quantum cryptography
to secret sharing was proposed. In this protocol a shared GHZ-state allows the in-
formation splitting and the eavesdropper protection simultaneously. We propose a
protocol for N partners, in which only single-qubit communication is used with no
need for GHZ-states. As our protocol requires only single qubits it is realizable with
the current state-of-the-art technologies and, above all, scalable with respect to the
number of participating partners. These merits enabled us to accomplish the first
experimental proof-of-principle demonstration of secret sharing for as many as six
partners. This is to our knowledge the highest number of actively performing parties
in a quantum protocol ever implemented.

By successfully solving and implementing a cryptographic task as well as a task
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originating in computer science, we clearly illustrate the potential to introduce mul-
tiparty communication problems into real life. Yet, a great deal of effort need to be
spent for this to succeed. It was our aim to provide proof-of-principle realizations of
single-qubit protocols. Further work should be focused on the demonstration of more
elaborate implementations and on the design of optimum system architectures. Also,
many theoretical issues remain open. As concerns quantum communication com-
plexity, the following questions of considerable significance should be answered: Do
all entanglement-based protocols with higher-than-classical performance have single-
qubit counterparts? Can one use the single-qubit approach to solve a broader class
of CCPs? Does the higher-dimensional encoding (qudits) bring an increased per-
formance of quantum protocols? Turning to secret sharing, first and foremost, the
security of the single-qubit protocol has to be inspected in more detail. The next
issue to be investigated is the usage of other types of qubit encoding (in particular
time-bin encoding, which is suitable for fiber-based systems). Finally, on a more
general note, it appears rather plausible that our single-qubit approach may be a
practical solution for many other problems, which were believed to be possible only
with the use of multiparty entangled states until now. The quest for such problems
should certainly not be left out from the future research.



Appendix A
Sources of polarization-entangled
photon pairs

A.1 Crystals

A.1.1 Beta-barium borate

Beta-barium borate (β-BaB2O4 or BBO) is a common non-linear optical material.
Its useful characteristics include transparency over a large bandwidth from ultravi-
olet through infrared wavelengths, wide phase-matching capabilities, high nonlinear
coefficient and damage threshold, and low hygroscopic susceptibility. Table A.1 lists
basic optical properties of BBO crystal.

Crystal type Negative uniaxial (no > ne)

Crystal structure Trigonal, point group 3m

Transparency range 0.198–2.6 µm

Nonlinear coefficients d22 = ±(2.22± 0.09) pm/V
d31 = ±(0.16± 0.08) pm/V

Effective nonlinearity deff = d31 sin θ − d22 cos θ sin 3φ (type I)
deff = d22 cos2 θ cos 3φ (type II)

Sellmeier coefficients Ao = 2.7359 Ae = 2.7353
Bo = 0.01878 µm2 Be = 0.01224 µm2

Co = −0.01822 µm−2 Ce = −0.01667 µm−2

Eo = −0.01354 µm−2 Ee = −0.01516 µm−2

Table A.1: Basic nonlinear optical properties of BBO crystal according to [30] and references
therein.
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A.1.2 Yttrium vanadate
Undoped yttrium orthovanadate (YVO4) is widely used in optical polarization com-
ponents due to its very high birefringence of ∆n > 0.2 within its entire transparency
range and due to its superior physical and mechanical characteristics. Basic optical
properties of YVO4 crystal are given in Table A.2.

Crystal type Positive uniaxial (no < ne)

Crystal structure Tetragonal, point group I41/amd

Transparency range 0.4–5.0 µm

Sellmeier coefficients Ao = 3.77834 Ae = 4.59905
Bo = 0.06974 µm2 Be = 0.11053 µm2

Co = −0.04724 µm−2 Ce = −0.04813 µm−2

Eo = −0.01081 µm−2 Ee = −0.01227 µm−2

Table A.2: Basic structural and optical properties of YVO4 crystal according to [151].

A.2 Historical progress of sources
The parameters of the sources reported over the recent 15 years have been collected
into the Table A.3 and used to quantify the historical growth of the achieved photon
pair fluxes. To make a fair comparison, only sources emitting photon pairs in the
visible and the near-infrared spectral region compatible with today’s high-efficiency
silicon APDs, and exhibiting at least 90 % quantum-interference visibility, have been
selected.

The following data are listed in the columns: (i) reference and year of publication;
(ii) method used for the generation of entangled photon pairs and wavelengths of the
pump, signal and idler; (iii) type of nonlinear crystal and pump laser; (iv) type of
detectors and their efficiencies; (v) quantum-interference visibility V of polarization
correlations; (vi) brightness B (detected pairs/sec/mW) and spectral brightness B(s)

(detected pairs/sec/mW/nm); (vii) detected coincidence/single ratio µ.

Ref. method/ laser/ detectors V B/ µ
(year) wavelengths medium (efficiency) B(s)

[103] SPDC (type II)/ Ar+/ Si APD ∼ 99% 0.2 ?/ ?
(1993) 351 → 702 + 702 BBO (30-60%?) 0.2 ?
[56] SPDC (type II)/ Ar+/ Si APD 97.8% 10/ ?

(1995) 351 → 702 + 702 BBO (30-60%?) 2
[57] SPDC (type I)/ Ar+/ Si APD ∼ 95% 140/ 0.05

(1999) 351 → 702 + 702 BBO (65%) 28
continues on the next page. . .
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. . . continued from the previous page

Ref. method/ laser/ detectors visibility B/ µ
(year) wavelengths medium (efficiency) B(s)

[72] SPDC (type II)/ Ar+/ Si APD 92.2% 105/ ?
(2000) 351 → 702 + 702 BBO (30-60%?) ?
[93] SPDC (type II)/ Ar+/ Si APD 96.3% 900/ 0.28

(2001) 351 → 702 + 702 BBO (30-60%?) 210
[94] SPDC (type II)/ Ti:Sapp/ Si APD 97.2% ∼ 200/ 0.3

(2003) 415 → 830 + 830 BBO (50%) ∼ 20
[90] SPDC (type II)/ LD/ Si APD 94.3% 220/ 0.19

(2004) 402 → 805 + 805 BBO (36%) 37
[152] SPDC (type II)/ Kr+/ Si APD 96.0% 775/ 0.26

(2004) 407 → 815 + 815 BBO (45-60%?) 16
[76] QPM (type II)/ Ti:Sapp Si APD 90.0% 12000/ 0.18

(2004) 398 → 797 + 797 PPKTP (45-60%?) 4000
[73] SPDC (type I)/ Ar+/ Si APD ∼ 95%? 3640/ > 0.3

(2005) 351 → 702 + 702 BBO (65%) 146
[153] QPM (type II)/ Ti:Sapp Si APD 96.0% 820/ ?

(2005) 398 → 797 + 797 PPKTP (45-60%?) 820
[75] QPM (type II)/ ECLD/ Si APD 96.6% 18600/ ?

(2006) 405 → 810 + 810 PPKTP (45-60%?) 18600
[ a ] SPDC (type I)/ LD/ Si APD 98.5% 27000/ 0.38

(2007) 402 → 805 + 805 BBO (51%) 1800
[105] QPM (type II)/ LD/ Si APD 97.3% 28000/ 0.15

(2007) 405 → 810 + 810 PPKTP (45-60%?) ?
[105] QPM (type II)/ ECLD/ Si APD 99.5% 50000/ 0.28

(2007) 405 → 810 + 810 PPKTP (45-60%?) 80500
[ a ] This work (section 3.4).

Table A.3: Comparison of sources of polarization entangled photons pairs. Exponential
growth of the brightness with time can be deduced from the parameters. Moreover, in
a few last years the gradual exchange of ion lasers (Ar+ and Kr+) for blue laser diodes,
and the exchange of conventional crystals (typically BBO) for quasi-phase matched (QPM)
periodically poled crystals (typically KTP), can be observed.
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A.3 Photos

Figure A.1: Photo of the compact non-collinear type-II SPDC source of polarization-
entangled photon pairs pumped with a blue laser diode.

Figure A.2: Photo of the compact collinear type-I SPDC source of polarization-entangled
photon pairs pumped with a blue laser diode.



Appendix B
Single-qubit multiparty quantum
communication

B.1 Classical bounds of success probability in commu-
nication complexity problems

In the following we calculate the classical fidelity bounds B(N) for the problems A
and B defined in section 4.1.3.

The bound B(N) is found as the maximum of the fidelity Fc expressed in (4.9).
With the use of formulas (4.1) and (4.2) we obtain for the specific problem A the
following form of Fc,A:

Fc,A =
1
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Each of the numbers x1, . . . , xN takes only the values 0 and 1, so the sum in (B.1.1)
reduces to ∑

xk
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Since ck are dichotomic functions of spectrum ±1, the possible values of (B.1.2) are
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)
, (B.1.3)

where n is an integer. Considering an even number N of parties, i.e. N = 2K,
K being an integer ≥ 1, the expression in (B.1.1) is maximized by using pairs of
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conjugate values (B.1.3). Thus the maximum is given by

B(N = 2K) = max(Fc,A) =
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(B.1.4)
and one can easily show that the bound for even number of parties is

B(N = 2K) = 2−K+1. (B.1.5)

Analogously, for odd number of parties, i.e. N = 2K − 1, we can find the bound

B(N = 2K − 1) = 2−K+1. (B.1.6)

For the problem B, the fidelity Fc,B is given by
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(B.1.7)
Since |y| · S[y] = y and |ck(xk)| = 1, one can derive the following inequality [154]:
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Therefore, the classical bound B(N) for the task B involving any number of parties
N is given by

B(N) = max(Fc,B) =
1

2πN−1
2N =

(
2

π

)N−1

. (B.1.9)
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B.2 Photo

Figure B.1: Photo of the demonstration of single-qubit quantum secret sharing for 6 players.
Each of them uses a rotatable birefringent crystal to introduce a relative phase shift to the
qubit encoded in polarization state of a single photon, which is provided by a heralded
single photon source.
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[133] M. Żukowski, A. Zeilinger, M. A. Horne, and H. Weinfurter. Quest for GHZ
states. Acta Phys. Pol. 93, 187–195 (1998).



BIBLIOGRAPHY 135
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