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Abstract

Quantum mechanics is without doubt one of the most successful theories in the
history of science. Yet, due to its counter intuitive predictions, it still challenges
many physicists. In this context, as a consequence of the principle of superposi-
tion, especially the phenomenon of entanglement has to be named. Although en-
tanglement lacks any classical interpretation, it is nonetheless at the heart of novel
methods for data processing like quantum communication or quantum computa-
tion. In an interdisciplinary effort of mathematics, computer science and physics,
researchers from the respective fields try to better understand and characterize
multipartite entanglement and to pave the way for its practical application.

In this work, the focus is on the development of appropriate tools to analyze
and characterize multipartite entangled states as well as their experimental imple-
mentation by means of polarization encoded multiphoton states. More precisely,
Bell states, and especially symmetric Dicke states with up to six photons are in-
vestigated. In order to generate these states, photon sources based on the process
of spontaneous parametric down-conversion are used.

In the first part of this work, two schemes that allow to detect entanglement of
two- and multiqubit states with possibly few correlation measurements are pre-
sented and experimentally implemented. In the first scheme, the state is trans-
formed into the Schmidt basis such that entanglement can be verified with at most
three correlation measurements. The second scheme makes use of the principle of
correlation complementarity in order to perform only those measurements which
are most advantageous for entanglement detection. The scheme can be represented
in a compact form called decision tree which determines the next measurement to
be carried out depending on the result of the previous measurement. In another
experiment, it is investigated what kind of correlations are typical for genuine
N -partite entanglement. Interestingly, it can be shown that N -partite entangle-
ment does not necessitate the presence of correlations between all parties. This is
demonstrated on the example of photonic three- and five-qubit states.

In the second part of this work, permutationally invariant tomography is pre-
sented which is a novel partial tomography scheme for the efficient analysis of
symmetric multiqubit states. In the experimental implementation of this scheme,
the emphasis was to increase the count rates thus far that full tomography of
six-photon states became possible. In experiments with four- and six-photon
symmetric Dicke states, various tomography schemes, like full tomography and
permutationally invariant tomography, were compared against each other and it
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Abstract

was shown that the results of the respective schemes are compatible. In this con-
text, it is of utmost importance that not only the measurement scheme itself is
scalable but also subsequent data analysis. This can be achieved by a specially
adopted algorithm which, on the one hand, utilizes the symmetry of the state
to be analyzed, and, on the other hand, resorts to highly efficient methods from
convex optimization. It was also observed that data analysis itself can cause sys-
tematic errors of the final result. As it turned out, for the measurement statistics
that are typical of today’s multiqubit experiments, the systematic errors are of
the same magnitude as the statistical errors and can therefore not be ignored.
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Zusammenfassung

Die Quantenmechanik zählt zweifelsohne zu einer der erfolgreichsten wissenschaft-
lichen Theorien, die aber aufgrund ihrer kontraintuitiven Vorhersagen viele Phy-
siker nach wie vor herausfordert. In diesem Zusammenhang ist insbesondere das
aus dem Superpositionsprinzips folgende Phänomen der Verschränkung zu nen-
nen. Auch wenn sich Verschränkung klassisch nicht verstehen lässt, so bildet sie
doch das Herzstück für neuartige Methoden der Datenverarbeitung wie Quanten-
kommunikation oder Quantenrechnen. In einer interdisziplinären Anstrengung von
Mathematik, Informatik und Physik versuchen Forscher Vielteilchenverschränk-
ung besser zu verstehen und zu charakterisieren, sowie für die praktische Anwen-
dung nutzbar zu machen.

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung von geeigneten Me-
thoden zur Analyse und Charakterisierung von vielteilchenverschränkten Zustän-
den sowie deren experimentellen Realisierung anhand von verschiedenen polari-
sationskodierten Mehrphotonenzuständen. Hierbei werden, neben Bell-Zuständen,
insbesondere symmetrische Dicke-Zustände mit bis zu sechs Photonen untersucht.
Als Photonenquelle wird dabei der Prozess der spontanen parametrischen Fluo-
reszenz in verschiedenen Varianten verwendet.

Im ersten Teil dieser Arbeit werden zwei Methoden vorgestellt und experimen-
tell implementiert, die es erlauben die Verschränkung von Zwei- und Mehrqubit-
Zuständen mit möglichst wenigen Korrelationsmessungen nachzuweisen. Hierbei
beruht die erste Methode auf einer Transformation des Zustandes in die Schmidt-
basis, wodurch sich im Anschluss Verschränkung mit maximal drei Korrelations-
messungen nachweisen lässt. Die zweite Methode verwendet das Prinzip der Kor-
relationskomplementarität, um nur die Messungen durchzuführen, die am vor-
teilhaftesten sind um Verschränkung möglichst schnell nachzuweisen. Das Sche-
ma lässt sich kompakt in Form eines Entscheidungsbaumes ausdrücken, der die
als nächstes durchzuführende Messung in Abhängigkeit des vorherigen Messer-
gebnisses festlegt. In einem weiteren Experiment wird untersucht, welche Arten
von Korrelationen für genuine N -Teilchenverschränkung notwendig sind. Dabei
kann gezeigt werden, dass für N -Teilchenverschränkung interessanterweise keine
N -Parteien-Korrelationen zwingend erforderlich sind. Dies wird exemplarisch für
photonische Zustände mit drei und fünf Qubits demonstriert.

Im zweiten Teil dieser Arbeit wird mit permutationsivarianter Tomographie ei-
ne neuartige partielle Tomographiemethode vorgestellt, die eine effiziente Unter-
suchung von symmetrischen Multiqubitzuständen erlaubt. In der experimentellen

xix



Zusammenfassung

Umsetzung liegt der Schwerpunkt hierbei insbesondere darauf, durch viele Detail-
verbesserungen die Zählraten soweit zu erhöhen, dass eine vollständige Zustands-
analyse auch für sechs Photonen möglich ist. In Experimenten mit symmetrischen
Dicke-Zuständen mit vier und sechs Photonen werden verschiedene tomographi-
schen Methoden, darunter vollständige Tomographie und permutationsinvariante
Tomographie, miteinander verglichen. Dabei konnte gezeigt werden, dass alle Me-
thoden kompatible Resultate liefern. Hier ist es insbesondere wichtig, dass nicht
nur das Messschema selbst skalierbar ist, sondern auch die anschließende Auswer-
tung der Daten. Dies wird durch einen speziell angepassten Algorithmus erreicht,
der einerseits die Symmetrie des zu analysierenden Zustandes ausnutzt und an-
dererseits auf hocheffiziente Methoden der konvexen Optimierung zurückgreift. In
diesem Zusammenhang wurde auch untersucht, in wieweit die Datenauswertung
selbst zu systematischen Fehlern führen kann. Wie sich herausstellte, sind bei
für Multiqubitexperimenten typischen Messstatistiken die systematischen Fehler
von der gleichen Größenordnung wie die statistischen und können folglich nicht
vernachlässigt werden.
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1. Introduction

The nineteenth century witnessed an unprecedented deepening in the understand-
ing of the laws of physics culminating in the theories of electrodynamics and ther-
modynamics. Together with the theory of classical mechanics, these theories form
the core of what is today called classical physics. However, at the turn of the
century, there were, due to refined experimental techniques, more and more new
findings that could not be understood within the framework of classical physics.
Especially, black body radiation, the stability of atoms and the spectra of atoms
lacked a satisfactory explanation. In 1900, when Max Planck [1] derived the ra-
diation law, the first of these puzzles could by resolved, thereby constituting the
birth of quantum mechanics. In the first decades of the twentieth century, quan-
tum mechanics developed further and comprehensive explanations for all of the
above mentioned problems could be given. Despite its tremendous success, there
was no consensus about the correct interpretation of the new theory, as shown by
the historical debate between Nils Bohr and Albert Einstein [2, 3].

Especially, the probabilistic nature of quantum mechanics lead to a strong feel-
ing of unease in Albert Einstein. In 1935, he made his concerns explicit by pub-
lishing a seminal paper [4] together with Boris Podolski and Nathan Rosen. In
this paper, the authors consider a state that was later called “entangled” by Erwin
Schrödinger [5]. Entangled states allow for situations where, although the system
as a whole is perfectly known, the knowledge about its individual subsystems can
be minimal. In such cases, the system can only be treated as a whole, even if its
subsystems are arbitrarily far separated. This lead Einstein and his coworkers to
the conclusion that quantum mechanics must be incomplete and they postulated
the existence of additional, so-called hidden variables. For almost three decades,
entanglement was mainly considered as a strange peculiarity of the theory which
is, at best, of philosophical interest but has no practical relevance.

This situation changed completely, when John Bell reformulated the original
argument of Einstein, Podolski and Rosen in a way that allowed to deduce exper-
imentally testable predictions which differ from those of quantum mechanics [6].
Over the years, these tests, which are now known under the term “Bell tests”,
were further refined, but already the first experimental tests made a clear state-
ment in favor of quantum mechanics [7–9]. Nonetheless, hidden variable theories
could not be completely eradicated since all Bell tests that were performed up to
now have some “loopholes” which allow, at least in principle, for a classical in-
terpretation. While certain loopholes have been closed separately [10, 11], at the
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1. Introduction

time of writing, an experiment where all the loopholes are closed simultaneously
is still missing. However, it is more than likely that such an experiment will be
carried out in the near future [12–14].

Additionally to the these fundamental aspects, it was realized that quantum
mechanics also allows for novel approaches with respect to information process-
ing [15, 16]. Examples for potential new applications with entanglement as a
key resource comprise, to name just few, dense coding [17], quantum cryptogra-
phy [18], quantum enhanced metrology [19] or quantum teleportation [20]. For
some computational tasks, like, searching in huge databases [21] or factoring large
numbers [22], it could be shown that they can, at least in principle, be performed
exponentially faster than classically.

Central to quantum information is the quantum bit, or shortly qubit [23], which
is the quantum mechanical analog of the classical bit. The main difference between
qubits and their classical counterparts is that they cannot only be in the ground
or the excited state of a two-level system but in any superposition of the two.
Experimentally, qubits can be implemented with various physical systems, like,
e.g., trapped atoms [24, 25], trapped ions [26], superconducting qubits [27–29], NV
centers in diamond [30], and photons [31]. Each of the different approaches has its
advantages but also its specific drawbacks. For quantum computational problems,
localized, well controllable systems like atoms, ions or superconducting qubits
seem to be preferable, whereas for quantum communication tasks where qubits
have to be exchanged over large distances, photons are the system of choice. In the
last years, due to refined experimental techniques, the number of entangled qubits
was constantly increasing [32–35]. However, despite of this enormous progress, it
remains an open question whether it will be possible to control hundreds of qubits
one day and to really harness the power that lies within quantum computation. In
this context, it is still an open issue how large a quantum system can grow before
inherent decoherence, even arbitrarily small, induces a transition from quantum
to classical [36, 37].

In this thesis, the polarization degree of freedom of photons was used for the
experimental implementation of qubits and to investigate various quantum infor-
mation tasks. Photons are an ideal test system for proof-of-principle realizations
of many quantum information protocols [31] as they experience almost no deco-
herence. However, the major advantage of photons is at the same time their worst
drawback, namely, that they practically do not interact with each other. Con-
sequently, two-qubit gates as they are required for quantum computation cannot
be realized in a simple manner. This restriction could be overcome in 2001, when
Emanuel Knill, Raymond Laflamme, and Gerard Milburn presented a scheme for
optical quantum computing that requires only single-photon sources, linear optical
components and photon number resolving detectors [38]. The original scheme was
later on further refined and could be reduced to the deterministic preparation of
specific multipartite entangled quantum states together with suitable single-qubit

2



operations [39–43]. At the time of writing, the main drawback of optical quantum
computation is still the lack of practical single-photon sources but the technical
development proceeds fast [44–48]. Until such sources are available, one has to
resort, as also in this work, to the process of spontaneous parametric down con-
version [49, 50] together with linear optical networks in order to prepare photonic
multiqubit states.

Although the number of qubits is still moderate in today’s multiqubit exper-
iments, up to six in this work, full quantum state tomography, i.e., a complete
characterization of the state, becomes already a great challenge. The limit where
full tomography becomes infeasible due to experimental restrictions, like set-up
stability, drifts, measurement time etc. will soon be reached. Thus, it is of ut-
most importance to find simple and experimentally friendly tools where relevant
quantities about a quantum state, like, e.g., its overlap with respect to a target
state, can be inferred from partial information. The research focus of this work
is twofold. On the one hand, it is on the development and application of tools
for entanglement detection from possibly few correlation measurements [51–53]
(the corresponding publications are included in this work as P3.1 and P3.2). In
this context, also the connection between genuine N -partite entanglement and the
existence of N -partite correlations is investigated [54] (see publication P3.3). On
the other hand, the focus is on the increase of rates such that full tomography of
a six-qubit state becomes possible and can be compared against highly efficient
tomography protocols which require only partial information [55–58] (see publica-
tions P4.1, P4.2 and P4.3). There, it was also observed that the standard analysis
tools for tomography can lead to systematic errors [59] (see publication P5.1).

For many entanglement criteria, it is required that the state to be characterized
is properly aligned with respect to the local measurement bases [60, 61], which
does not pose a problem, when all observers share a common reference frame. If,
however, a common reference frame cannot be guaranteed, a situation that may
likely occur in quantum information protocols where the observers are far sepa-
rated from each other, entanglement might therefore not be detected, although
it is present. In order to overcome this problem, two different schemes are dis-
cussed (see P3.1 and P3.2). The first one, which is designed for pure two-qubit
states, effectively performs a Schmidt decomposition [62] of the state. Then, after
a redefinition of the local measurement bases, entanglement can easily be verified
with a simple criterion [51] which requires at maximum three correlation mea-
surements. The second scheme is more general and is based on the principle of
correlation complementarity [63], where the results of the performed correlation
measurements determine which is the next measurement to be carried out.

In order to detect entanglement between N parties, one normally resorts to
entanglement criteria which depend on correlations between all parties [51, 60, 64–
71]. In this context, correlations are defined by the standard correlation function
as used in classical statistics and signal analysis [72, 73]. However, as first shown
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1. Introduction

by Kaszlikowski et al. in [74], quantum mechanics allows for states that are
genuinely N -partite entangled, but lack N -partite correlations. At no surprise,
these findings triggered a vivid discussion about the distinction between classical
and quantum correlations [75, 76]. In this work, the result by Kaszlikowski et al.
is generalized and a constructive scheme is presented which allows to generate an
infinite family of genuinely N -partite entangled states with vanishing N -partite
correlations. In three- and five-qubit experiments, such peculiar quantum states
were prepared for the first time [54] (see also P3.3).

As already mentioned above, full quantum state tomography is not feasible for
larger systems. However, many prominent and highly relevant quantum states
belong to subclasses of states which can be represented by few parameters. For
such states, efficient tomography schemes exist, like, e.g., tomography of matrix
product states [77], compressed sensing [55] or permutationally invariant tomog-
raphy [56]. As these schemes are to be applied in situations where full tomography
cannot be performed, it is absolutely necessary to test these schemes against full
tomography for systems where this is still possible. In this work, full tomography
of a symmetric six-photon Dicke state [78, 79] was performed and the result was
compared with the results from compressed sensing, permutationally invariant to-
mography and a combination of the two [58] (see publications P4.1 and P4.2). For
scalable tomography schemes, it is also crucial to have highly efficient algorithms
for data analysis at hand [57] (see P4.3).

In every experimental situation one has to perform a thorough and careful
analysis of all the errors that might influence the final result. Here, one has to
distinguish between unavoidable statistical errors [80] and systematic errors, like,
e.g., drifts of the experimental apparatus [81]. Interestingly, also data analysis
itself can lead to systematic errors if additional constraints, like the physicality of
an estimated quantum state, are applied. In this context, the standard procedures
to analyze tomography data were investigated. There, it was observed that, for
typical count statistics of today’s multiqubit experiments, the deviations can be
considerable [59] (see publication P5.1).

The thesis is structured as follows: In chapter 2, a short review of the founda-
tions of quantum information is given and the notations used throughout this work
are introduced. More precisely, the theoretical concepts of two- and multiqubit
entanglement are explained together with the most relevant tools to detect and
quantify entanglement. Additionally, the basic building blocks of the experiments
that were performed in the course of this work are discussed. Then, in chapter 3,
both theoretical and experimental results how entanglement can be detected in an
experimentally efficient way are presented. In chapter 4, novel methods for effi-
cient state tomography are presented and compared against the standard method.
Finally, in chapter 5, the standard tools for data analysis are reviewed, especially
with respect to their reliability. The respective chapters also contain the relevant
research papers that were written in the course of this work.
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2. Fundamentals of quantum
information theory

In this chapter, the basic concepts and tools required to describe and analyze single
and multiqubit systems are introduced. Section 2.1 starts with a formal definition
of what a qubit is [23] and discusses both the similarities and differences between
a classical and a quantum bit. Then, in section 2.2, systems consisting of more
than a single qubit are considered. As a consequence of the superposition princi-
ple, such systems can be in a state without classical analog, a so-called entangled
state. After a formal definition of entanglement [82], several possibilities how to
classify entangled states are presented. More precisely, entangled states with more
than two qubits feature a rich hierarchical structure, i.e., they can be entangled
in more than just one way [83].

If entanglement is to be used as a resource for practical applications, it is vital to
detect and quantify its amount in an experimentally prepared state. Therefore, in
section 2.2.3, several tools that allow to detect entanglement [84, 85] of a state are
discussed and in section 2.2.4, some well-known entanglement measures [86, 87]
are listed.

In section 2.3, the last part of this chapter, the focus lies on the practical real-
ization of multiphoton entangled states. It begins with a review of photon sources
based on the process of spontaneous parametric down-conversion (SPDC) [49, 50]
as such photon sources are still the workhorse of today’s multiphoton experi-
ments. Then, the basic building blocks to further process the generated photons
and to prepare the desired state are discussed. In detail, these building blocks are
beam splitters (BS), both polarizing and non-polarizing, phase shifters such as
half (HWP) and quarter wave plates (QWP) and combinations thereof, e.g. for
polarization analysis.

In summary, this introductory chapter can be considered as a short review of
the most relevant concepts and tools required to carry out experiments with mul-
tiphoton entangled states. The discussion goes largely along the same line as
in [88] and the introductory chapters of [89–91]. The chapter lays the necessary
foundations to understand the experiments described in chapters 3 to 5.

5



2. Fundamentals of quantum information theory

2.1. Single qubits

2.1.1. From classical bits to quantum bits

In the following, the basic notation and concepts necessary to describe single two-
level quantum systems are introduced. Such systems, called quantum bit or, for
short, qubit [23], are the quantum mechanical analog of the classical bit. Contrary
to a classical bit, which can either be in the ground state 0 or in the excited state 1,
a quantum bit can be in any superposition of these two states. Formally, a pure
single-qubit state is given by [62, 92–95]

|ψ〉 =
1√

|α|2 + |β|2
(α|0〉+ β|1〉) (2.1)

where |0〉 and |1〉 designate two orthogonal basis states of the Hilbert space
H = C⊗2 and with complex numbers α and β. Here, and later on in this
thesis, the Dirac notation |·〉 will be used to discriminate quantum states from
classical states. Since the state |ψ〉 has to be normalized, i.e. |〈ψ | ψ 〉|2 = 1, it
can be rewritten, up to a negligible global phase, as

|ψ(θ, φ)〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (2.2)

with θ ∈ [0, π] and φ ∈ [0, 2π[. Written in the form of Eq. 2.2, it is obvious that |ψ〉
can be represented as a point on a three dimensional sphere called Bloch sphere,
see Fig. 2.1.

Alternatively, a pure single-qubit state |ψ(θ, φ)〉 can also be interpreted as the
eigenvector of an observable σ(θ, φ) with eigenvalue +1. The operator σ(θ, φ) can
be expressed in terms of any operator basis, like, e.g., the frequently used Pauli
basis

σ(θ, φ) = sin θ cosφσx + sin θ sinφσy + cos θσz (2.3)

where σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
are the Pauli spin ma-

trices. The second eigenvector of σ(θ, φ) with eigenvalue −1 is labeled |ψ(θ, φ)〉⊥
and is perpendicular to |ψ(θ, φ)〉, i.e., 〈ψ(θ, φ) | ψ(θ, φ) 〉⊥ = 0. Each of the Pauli
matrices has two eigenvectors, one with eigenvalue +1 and the other one with
eigenvalue −1, i.e.,

σx|x±〉 = ±|x±〉, (2.4)

σy|y±〉 = ±|y±〉, (2.5)

σz|z±〉 = ±|z±〉 (2.6)

with |x±〉 = 1/
√

2(|0〉 ± |1〉), |y±〉 = 1/
√

2(|0〉 ± i|1〉), |z+〉 = |0〉, and |z−〉 = |1〉.
The eigenvectors define the x-, y- and z- axes of the Bloch sphere, see Fig. 2.1.
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2.1. Single qubits

Figure 2.1.: A pure quantum state |ψ(θ, φ)〉 can be represented as a point on
the surface of the Bloch sphere. The mixed states lie inside the sphere with the
totally mixed state 1/2 at the origin of the sphere. The x-, y- and z-axes of the
coordinate system are defined by the eigenvectors of the Pauli matrices σx, σy
and σz.

Therefore, from now on, “measuring in the σx basis” will be used as a synonym for
performing projection measurements on the pair of orthogonal vectors |x+〉 and
|x−〉. Correspondingly, the expressions “measuring in the σy basis” and “measur-
ing in the σz basis” will be used.

As already mentioned, the points on the surface of the Bloch sphere can be
interpreted as pure quantum states. In addition, also the points lying inside the
sphere can be associated with quantum states, the so-called mixed states, which
are states with a classical statistical distribution over pure states. A mixed state
cannot be described by a state vector |ψ〉 anymore but, instead, by a density
matrix

% =
1∑
i=0

pi |ψ(θi, φi) 〉〈ψ(θi, φi) | (2.7)

with probabilities pi which have to fulfill the constraints pi ≥ 0 and
∑

i pi = 1.
Of course, also every pure state |ψ(θ, φ)〉 can be expressed by means of a density
matrix. Then, the sum Eq. 2.7 collapses since all pi except one vanish, i.e.,

|ψ(θ, φ)〉 −→ %|ψ(θ,φ)〉 =|ψ(θ, φ) 〉〈ψ(θ, φ) | . (2.8)

The complete information about a quantum state % is contained in its density
matrix. Hence, in order to uniquely specify a quantum state, it is sufficient to
define all entries of the corresponding density matrix. However, especially for
theoretical arguments, expressing % by means of Pauli matrices turns out to be
advantageous. Then, % is given by

% =
1

2
(T01 + Txσx + Tyσy + Tzσz) (2.9)

7



2. Fundamentals of quantum information theory

with the coefficients called Bloch vector, ~T = (T0, Tx, Ty, Tz). The elements of
the Bloch vector are the expectation values of the Pauli matrices and are called
correlations. They can be determined as

Tx = Tr[%σx], (2.10)

Ty = Tr[%σy], (2.11)

Tz = Tr[%σz] (2.12)

which simplifies to

Tx = 〈ψ|σx|ψ〉, (2.13)

Ty = 〈ψ|σy|ψ〉, (2.14)

Tz = 〈ψ|σz|ψ〉 (2.15)

for pure states. The correlation T0 is always 1, independent of the state, due
to normalization. The actual physical meaning of the Bloch vector can best be
understood when it is compared to the Stokes vector ~S = (S0, S1, S2, S3) which

describes the polarization state of light. The components of ~S are given by

S0 = P|z+〉 + P|z−〉, (2.16)

S1 = P|z+〉 − P|z−〉, (2.17)

S2 = P|x+〉 − P|x−〉, (2.18)

S3 = P|y+〉 − P|y−〉 (2.19)

where P|z+〉 is the power observed behind a polarizer oriented along |z+〉 and P|z−〉
etc. defined correspondingly. Usually, the Stokes vector is normalized to the total
intensity, i.e., ~SN = 1

S0

~S. By expressing the Pauli matrices in Eq. 2.10-2.12 in
terms of their corresponding eigenvectors, i.e., σx =|x+ 〉〈x+ | − |x−〉〈x−| etc.,
one obtains

Tx = Tr[% |x+ 〉〈x+ |]− Tr[% |x− 〉〈x− |], (2.20)

Ty = Tr[% |y+ 〉〈 y+ |]− Tr[% |y− 〉〈 y− |], (2.21)

Tz = Tr[% |z+ 〉〈 z+ |]− Tr[% |z− 〉〈 z− |]. (2.22)

Since Tr[% |x+ 〉〈x+ |] is the probability to successfully project % on |x+〉 and thus
proportional to the intensity of a classical light field, the Bloch vector can be seen
as the quantum mechanical analog of the Stokes vector. However, the ordering
of the entries is swapped, S1 corresponds to Tz, S2 corresponds to Tx, and S3

corresponds to Ty.
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2.1. Single qubits

2.1.2. Single-qubit manipulation and discrimination

Unitary transformations

Any two points on the surface of the Bloch sphere, i.e., any two pure single-qubit
states, can be mapped onto each other by an appropriate reversible transforma-
tion U . In order to be reversible, such transformations, called unitary, have to
fulfill the constraints U †U = UU † = 1 and det(U) = 1. For many quantum infor-
mation protocols unitary single-qubit manipulations are required. In setups using
polarized photons, these transformations are implemented with λ/4 wave plates
(QWP), λ/2 wave plates (HWP) or, for a pure phase shift, by tilting a birefringent
crystal around its optical axis which is aligned parallel to vertical polarization.
These components will be discussed in detail in section 2.3.2.

Single-qubit characterization

So far, the basic concepts to describe pure and mixed single-qubit states as well
as possible manipulations have been discussed. However, what is still missing, are
appropriate tools to distinguish and quantify different states. Therefore, in the
following, the most important quantities for the characterization and discrimina-
tion of single-qubit states will be introduced. Please note that these quantities
will also be used later on in order to characterize multiqubit states. Then the
summation indices have to be adopted correspondingly to reflect the larger sys-
tem size.

Fidelity Probably the most popular measure to quantify how close two quantum
states % and σ are is the fidelity. Formally, the fidelity F is given by [96, 97]

F(%, σ) = Tr

[√√
σ%
√
σ

]2
= Tr

[√√
%σ
√
%

]2
= F(σ, %). (2.23)

If, one of the states is pure, the expression for the fidelity simplifies to

F(%, σ) = Tr[%σ] (2.24)

as can easily be shown by direct calculation.

Hilbert-Schmidt norm Another widely spread measure to quantify the closeness
of two quantum states is the Hilbert-Schmidt norm. It is defined as

‖%‖2 =

√√√√ 1∑
i=0

1∑
j=0

|%i,j|2 (2.25)

9



2. Fundamentals of quantum information theory

for a single quantum state %. Based on this definition, the difference between %
and σ can then be quantified by

‖%− σ‖2 =

√√√√ 1∑
i=0

1∑
j=0

|%i,j − σi,j|2. (2.26)

Trace distance The trace distance between two states % and σ is given by the
sum of the absolute value of the (real) eigenvalues of their difference, i.e.,

‖%− σ‖1 =
4∑
i=1

= |λi| (2.27)

with eigenvalues λi.

Purity In order to quantify how pure a state % is, i.e., how close it lies to the
surface of the Bloch sphere, the purity P(%) is used. It is given by

P(%) = Tr[%2] (2.28)

which can, in terms of the Bloch vector elements, be rewritten as

P(%) =
1

2
(T 2

0 + T 2
x + T 2

y + T 2
z )

=
1

2
(1 + T 2

x + T 2
y + T 2

z ). (2.29)

From Eq. 2.29, it can be directly seen that the purity is proportional to the square
of the Bloch vector’s length. For a pure state, the purity is 1 whereas for the totally
mixed state 1/2 it is 1/2.

2.2. Multiqubit states and entanglement

2.2.1. Multiple qubits

In the previous section, the conceptual basics necessary to describe single-qubit
states were discussed. In the following, these concepts will be generalized to
systems consisting of multiple qubits. One possible choice of basis states of a two-
qubit Hilbert space H2 = C4 is given by the tensor products of the basis states of
the single-qubit Hilbert space H1 = C2 as introduced in section 2.1,

|00〉 = |0〉 ⊗ |0〉 (2.30)

|01〉 = |0〉 ⊗ |1〉 (2.31)

|10〉 = |1〉 ⊗ |0〉 (2.32)

|11〉 = |1〉 ⊗ |1〉. (2.33)

10



2.2. Multiqubit states and entanglement

A general pure two-qubit state is then given by an arbitrary superposition of the
basis states

|ψ〉1,2 = c0,0|00〉+ c0,1|01〉+ c1,0|10〉+ c1,1|11〉 (2.34)

with complex coefficients ci,j which have to fulfill, due to normalization of |ψ〉1,2,
the constraint |c0,0|2 + |c0,1|2 + |c1,0|2 + |c1,1|2 = 1. Analogously, for N qubits, the
basis states are

|00...0〉 = |0〉⊗N = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |0〉N , (2.35)

|00...1〉 = |0〉1 ⊗ |0〉2 ⊗ ...⊗ |1〉N , (2.36)
...

|11...1〉 = |1〉⊗N = |1〉1 ⊗ |1〉2 ⊗ ...⊗ |1〉N , (2.37)

and correspondingly a general N -qubit pure state is given by

|ψ〉1,2,...,N =
∑

i1,i2,...,iN
∈{0,1}

ci1,i2,...,iN |i1i2...iN〉 (2.38)

with ci1,i2,...,iN ∈ C and
∑

i1,i2,...,iN
|ci1,i2,...,iN |2 = 1. A mixed N -qubit state % is,

analogously to the single-qubit case, described by an incoherent sum of pairwise
orthogonal pure states |ψ1〉, ..., |ψ2N 〉,

% =
2N∑
i=1

pi |ψi 〉〈ψi | (2.39)

with pi ≥ 0 and
2N∑
i=1

pi = 1. Please note, that % can also be expressed in terms of

another set of pure states forming a basis. As in the single-qubit case, it is often
favorable to express a mixed multiqubit state in the Pauli basis

% =
1

2N

∑
j1,j2,...,jN
∈{0,x,y,z}

Tj1,j2,...,jNσj1 ⊗ σj2 ⊗ ...⊗ σjN (2.40)

where Tj1,j2,...,jN is called correlation tensor and is a generalization of the Bloch
vector from Eq. 2.9. The entries of Tj1,j2,...,jN are called correlations again and can
be inferred from % as

Tj1,j2,...,jN = Tr[%σj1 ⊗ σj2 ⊗ ...⊗ σjN ]. (2.41)
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2. Fundamentals of quantum information theory

Entanglement

For two and more qubits, as a consequence of the superposition principle, there
exist states which cannot be expressed as a simple tensor product of individual
subsystems [82]

|ψ〉1,2 6= |φ〉1 ⊗ |ζ〉2 (2.42)

and, correspondingly, for mixed states

% 6=
∑
i

pi(%1)i ⊗ (%2)i. (2.43)

Such states are called nonseparable or entangled, an expression which was coined
by Schrödinger [5]. There are four two-qubit states which are specific with respect
to several properties. These states, called Bell states, are defined as

|φ+〉 =
1√
2

(|00〉+ |11〉), (2.44)

|φ−〉 =
1√
2

(|00〉 − |11〉), (2.45)

|ψ+〉 =
1√
2

(|01〉+ |10〉), (2.46)

|ψ−〉 =
1√
2

(|01〉 − |10〉), (2.47)

and play an important role in quantum information theory [17, 18, 20]. They are,
for example, maximally entangled with respect to several entanglement measures
such as the negativity or the concurrence. They also maximally violate the CHSH-
inequality (for details see section 2.2.3). In the course of this work, the Bell states
Eq. 2.44-2.47 are of high importance as they are in the focus of publications P3.1
and P3.2 where a scheme to prove entanglement from possibly few measurement
results is developed.

2.2.2. Classification of multiqubit states

Separability

For more than two qubits, there are various different levels of separability. The
state may be fully separable or, e.g., only separable with respect to certain sub-
groups of particles or not separable at all. According to [85, 98], an N -quit state
% is called k-separable if a decomposition of the form

% =
∑
i

pi ⊗kn=1 (%Sn)i (2.48)

exists where ⊗kn=1(%Sn)i denotes the tensor product of k density matrices for a
chosen partition {S1, ..., Sk} into k disjoint non-empty subsets with k ≤ N . The
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2.2. Multiqubit states and entanglement

various different levels of separability define an hierarchical ordering of quantum
states. For k = 1, the states are called genuinely N -partite entangled where
% 6=

∑
i

pi ⊗kn=1 (%Sn)i for any k > 1. Next, for k = 2, come the biseparable

states which can be factored in two subsystems. Finally, at the lowest level of the
hierarchy, there are the fully separable or classical states. Please note that, based
on this ordering of quantum states, one cannot make a statement about which
of two states with the same separability is more entangled. In order to quantify
entanglement, entanglement measures have been introduced (see section 2.2.4).

Stochastic local operation and classical communication

A sole distinction between entangled and non-entangled states turned out to be
not sufficient to properly handle entanglement. Therefore, a finer classification
of entanglement was required. For this purpose, the following approach turned
out to be most fruitful. Consider a multiqubit state |ψ〉 of which each particle is
distributed to one party. Now, the task for all the recipients is to transform the
state |ψ〉 into a target state |φ〉 and back again. For both transformations the
recipients have to use the same set of operations. If this task can be achieved, the
states |ψ〉 and |φ〉 belong to the same equivalence class with respect to the chosen
set of operations.

Obviously, the classification depends on the set of operations that are allowed.
As entanglement cannot be created by local manipulation, one usually restricts
the set of operations to local ones only. Depending on the different kinds of local
transformations one can distinguish between several different cases.

• Local unitary (LU) operations, i.e., operations that can be expressed as
(U1 ⊗ ... ⊗ UN |ψ〉) −→ |ψ̃〉, with U †i Ui = UiU

†
i = 1 for i = 1, ..., N are

the most simple transformations that can be conceived. However, as they
only correspond to rotations of the local coordinate systems, they are rather
unsuitable to classify quantum states.

• Another, less restricted set of operations, is defined by the so-called local
operations and classical communication (LOCC) [83, 99]. There, local oper-
ations, like measurements are allowed and, additionally, a classical channel
between the different parties is established by which they can exchange in-
formation about, e.g., the result of a local measurement before another local
measurement is performed. LOCC was conceived in the context of entan-
glement measures (section 2.2.4) with the aim to identify states with the
same amount of entanglement [99]. However, also LOCC turned out to be
too restrictive and to result in a classification of states that is still too fine.

• An even broader class of operations, stochastic LOCC (SLOCC), turned out
to deliver the most appropriate classification of quantum states. Two states
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2. Fundamentals of quantum information theory

Figure 2.2.: The classification according to SLOCC operations of three qubits
yields the fully-entangled GHZ and W classes, the biseparable states and the fully
separable states [83].

are defined as equivalent with respect to SLOCC if the probability to convert
one state into another and back is non-zero.

The application of SLOCC to the classification of pure thee-qubit states was first
treated by Dür, Vidal and Cirac [83]. They discovered six different SLOCC classes,
the fully separable states (denoted by A-B-C in Fig. 2.2), three different types
of bipartite states (AB-C, A-BC and B-AC) and genuinely tripartite entangled
states (ABC). Astonishingly, they found that the state space separates into two
inequivalent classes of genuinely tripartite entangled states, the GHZ-class and
the W-class. They are both named after their most well-known representatives,
namely, the Greenberger-Horne-Zeilinger (GHZ) state and the W state which are
defined as

|GHZ3〉 =
1√
2

(|000〉+ |111〉) (2.49)

|W3〉 =
1√
3

(|001〉+ |010〉+ |100〉). (2.50)

In detail, this means that no member of the GHZ-class can be converted by
means of SLOCC into a state belonging to the W-class and vice versa. Even if a
shared quantum resource of bi- or tripartite entangled states is at disposal, a local
transformation between the two classes is not possible [100]. The classification
via SLOCC for three-qubit states was extended to mixed states by Aćın et al.
in [101].
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2.2. Multiqubit states and entanglement

For multiple qubits, a classification of entanglement by means of SLOCC turned
out to be far more complex. In [102] for example, Verstraete et al., describe nine
representative groups of four-qubit pure states that are equivalent under SLOCC
with each group parametrized by up to four independent complex parameters. An
alternative ansatz to classify four-qubit quantum states was proposed by Lamata
and coworkers [103] which allows to inductively construct SLOCC classes for any
number of qubits. With this ansatz, the six SLOCC classes for three qubits are re-
covered [104], but, for four qubits one yields, in contrast to the scheme introduced
by Verstraete et al., only eight SLOCC classes. For further schemes how to classify
multiqubit states, the interested reader may also want to consider [105] or [106].

Operator eigenstates

Apart from the classification schemes presented so far, another way to structure
entangled states is according to characteristic properties. In the following, two
groups of states shall be discussed that are eigenstates of certain operators and,
at the same time, are highly relevant in quantum information and for this the-
sis. First, graph states [107, 108] will be considered, including GHZ and cluster
states which are the most prominent examples for this group of states. Then,
Dicke states [78, 79] will be introduced as they play a key role in the experiments
described in this work. Of course, there are far more groups of states than can
be discussed within the scope of this thesis and the interested reader is therefore
referred to the respective literature, like e.g, [109–112] for multiqubit/qudit sin-
glet states, [113–115] for bound entangled states or [116–118] for matrix product
states.

A graph state |g〉, as the name already suggests, is defined by a mathemati-
cal graph, where each vertex V of the graph g(V,E) represents a qubit and the
edges E represent Ising-type nearest neighbor interactions [107, 108, 119]. Equiv-
alently, a graph state can also be specified by a set of operators {Si} with common
eigenvector |g〉 and corresponding eigenvalue 1, i.e.,

Si|g〉 = |g〉 ∀i. (2.51)

The set of operators {Si} is called stabilizer and its elements Si are named stabiliz-
ing operators [107, 119]. Please note that different graph states can be equivalent
with respect to the aforementioned LU transformations or graph transformation
rules as described in [107]. Both for the two- and three-qubit case, this ansatz
delivers a single graph state class, with |φ+〉 and |GHZ3〉 as representative states.
Accordingly, the N -partite GHZ states are given by

|GHZN〉 =
1√
2

(|0〉⊗N + |1〉⊗N) (2.52)

with starlike graphs as shown in Fig. 2.3. Graph states have been extensively
investigated as they allow for a wide range of applications in quantum informa-
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2. Fundamentals of quantum information theory

Figure 2.3.: Several prominent graph states together with the corresponding
graphs.

tion science, like quantum enhanced metrology [19], dense-coding [120], secret-
sharing [121] or one way quantum computation [39, 40, 122].

The second group of operator eigenstates discussed in this thesis are Dicke states
which have first been studied by R. H. Dicke in the context of light emission from
clouds of atoms [78]. There, it has been observed that atoms in a highly correlated
state, a so-called Dicke state, emit light more strongly in comparison to atoms
which are independent with respect to each other. Formally, Dicke states are
eigenstates of the square of the total spin operator J2

N and, at the same time, of
the spin operator component in the z-direction JN,z

J2
N |D

(k)
N 〉 = j(j + 1)|D(k)

N 〉 (2.53)

JN,z|D(k)
N 〉 = m|D(k)

N 〉 (2.54)

with j ∈ {0, 1, ..., N/2}, m ∈ {−j,−j + 1, ..., j − 1, j} and k = m+ j for spin 1/2
particles such as qubits. The operators J2

N and JN,i are defined as

J2
N = J2

N,x + J2
N,y + J2

N,z and (2.55)

JN,i =
1

2

∑
σ
(k)
i (2.56)

with σ
(3)
i = 1 ⊗ 1 ⊗ σi ⊗ ... ⊗ 1 and i ∈ {x, y, z}. Most commonly, Dicke states

with maximal J2
N are considered, see Fig. 2.4. Theses states are invariant under

permutation of particles and can be used as a basis of the symmetric subspace
(for more details see section 4). The most relevant examples of symmetric Dicke

states are the W-states |WN〉 (j = N/2,m = −N/2 + 1) and the states |D(N/2)
N 〉

(j = N/2,m = 0). For more details about Dicke states, the reader is referred to
the special literature, like, e.g., [79, 123–127] for a theoretical treatment of Dicke
states and [32, 58, 128–131] for their experimental realization.
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2.2. Multiqubit states and entanglement

Figure 2.4.: The four-qubit symmetric Dicke states |D(k)
4 〉 .

2.2.3. Entanglement detection

Although the formal definition of entanglement looks simple [82], testing whether
a given quantum state is entangled can be fairly complicated. However, for per-
forming experiments, it is of utmost importance to have simple tools at hand that
allow to decide whether a prepared state is entangled or not. In the following, a
short overview of some of the most relevant entanglement criteria will be given.
For a more detailed discussion of entanglement criteria, the reader is referred to
the excellent review articles [84, 85, 132–134].

Bell inequalities

In the development of quantum information theory, Bell inequalities were the first
criterion to detect entanglement [6], although the main motivation to formulate
a Bell inequality was not to develop an efficient tool for entanglement detection.
The high relevance of Bell inequalities comes mostly from the possibility to ex-
perimentally test the EPR paradox [4]. More precisely, a Bell inequality allows
one to decide whether a local hidden variable (LHV) theory is consistent with
quantum mechanics or whether such a theory can be refuted. In this context,
LHV theories represent an entire class of models which rely on two assumptions.
The first one, locality, phrases that observations on two space-like separated sys-
tems are independent from each other. The second assumption, realism, expresses
that if measurement outcomes can be predicted with certainty, then there must
be an underlying set of variables which determine the outcomes. From all these
(hypothetical) models, predictions for the statistics of measurement outcomes can
be deduced which are bounded by inequalities, the aforementioned Bell inequali-
ties. These inequalities can then be tested in experiments. They are violated by
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many entangled states whereas any separable state does not lead to a violation.
Hence, Bell inequalities are a unique tool to investigate the discrepant predictions
of quantum mechanics and LHV theories. Please note that not all entangled states
necessarily lead to the violation of a certain Bell inequality [82, 135]. Neverthe-
less, Bell inequalities are still widely used as an entanglement criterion, although
they are not optimal with respect to entanglement detection [136]. The most well-
know Bell inequality in this context is probably the Clauser-Horne-Shimony-Holt
inequality [68]. For an extensive review of Bell inequalities see [137–141].

Positive partial transpose

A popular and widely used criterion to detect entanglement between two qubits is
based on the partial transpose of the density matrix [142]. In order to determine
the partial transpose of a two-qubit density matrix %, parameterizing the entries
of % with binary numbers is most favorable

% =
∑

i,j∈{0,1}

∑
k,l∈{0,1}

%ij,kl|i〉〈j| ⊗ |k〉〈l|. (2.57)

The partial transpose of % with respect to the first qubit, %T1 , is then defined as

%T1 =
∑

i,j∈{0,1}

∑
k,l∈{0,1}

%ji,kl|i〉〈j| ⊗ |k〉〈l| (2.58)

with a corresponding definition for %T2 . A state is denoted to have a positive
partial transpose (PPT), or just to be PPT, if it does not possess any negative
eigenvalues after partial transposition. If however, %T1 � 0 or %T2 � 0, i.e., partial
transposition leads to negative eigenvalues, then the state is entangled. In [143] it
was shown that the partial transposition is a positive but not a completely positive
map and that this property is crucial to use the PPT criterion for entanglement
detection. Please note that the PPT criterion is sufficient and necessary only for
2⊗2 and 2⊗3 systems. The main drawback of the PPT criterion is probably that
it requires complete information about a quantum state which has to be obtained
via quantum state tomography. As will be discussed in detail in chapter 4, the
experimental effort of quantum state tomography scales exponentially with the
number of qubits and is thus unfeasible for larger numbers of qubits.

Correlation criteria

As explained in subsection 2.2.1, there is a one-to-one mapping between a quantum
state and its correlation tensor, i.e., a quantum state is uniquely defined by its
correlations. As the correlations are directly accessible by measurements, it is
desirable to find entanglement criteria which are based, at best, on a subset of
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correlations. Using a special scalar product defined for correlation tensors T %1

and T %2 of two quantum states %1 and %2

(T %1 , T %2) =
∑

i1,...,iN∈{x,y,z}

T %1i1,...,iNT
%2
i1,...,iN

, (2.59)

Badzia̧g et al. [51] deduced a simple inequality which can be used for entanglement
detection. The inequality reads

Tmax := max
Tprod

(T prod, T %) < (T %, T %) (2.60)

where T prod represents the correlation tensor of any product state. Eq. 2.60 can
only be fulfilled if % is entangled. It was further shown that Tmax ≤ 1 [51] which
is a very positive result for experiments. More precisely, this means that if the
task is to prove that an experimentally prepared state is entangled, one keeps on
measuring different correlations and stops as soon as the threshold is surpassed.
The criterion can be used to formulate an efficient scheme to detect entanglement
called decision tree, for details see chapter 3.1 and [52, 53]. The criterion can be
refined to detect genuine N -partite entanglement as discussed in [65, 67].

Entanglement witnesses

Another widely used procedure to detect entanglement is the application of en-
tanglement witnesses [143, 144]. They can be used to exclude separability and
to even prove genuine multipartite entanglement. Linear witness are an experi-
mentally friendly and extremely powerful tool which does not, in contrast to the
PPT criterion, require state tomography. For certain classes of states, like, e.g.,
for Dicke states [61] or for certain graph states [60], there exist entanglement
witnesses which require only two or three measurement settings, independent of
the number of qubits. The main idea behind entanglement witnesses is to utilize
the fact, that the separable states form a convex subset within the state space, as
shown in Fig. 2.5. A witness is an operatorW which defines a hyperplane dividing
the state space into two half-spaces, one containing all separable states and the
other containing only genuinely multipartite entangled states, see Fig. 2.5. Hence,
in order to prove that a state is genuinely multipartite entangled, it is sufficient
to show that it lies in the corresponding half-space. Witness operators are con-
structed such that Tr[W%sep] > 0 for all separable states %sep [143]. If, however,
Tr[W%] < 0, then % is proven to be entangled. A simple and widely used type of
entanglement witnesses are the projector based witnesses,

W = α1⊗N− |χ 〉〈χ |
with α = max

|ψsep〉
|〈ψsep | χ 〉|2 (2.61)
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Figure 2.5.: Entanglement witnesses are hyperplanes in the state space. The
witnesses W1 and W2 have been constructed to detect the entanglement of the
pure state |χ〉. Both will detect the entanglement of the mixed state σ. The
witness W1 is finer than W2 as it detects all states that are detected by W2 and,
additionally, states that are not detected by W2.

which can be constructed for any given entangled state |χ〉. However, it has to
be noted that from Tr[W%] > 0 one cannot conclude that % is separable. There
might be a more sensitive witnesses W ′

which can detect entanglement of %, i.e.,
Tr[W ′

%] < 0. Witness W ′
is said to be finer than witness W if every state that

is detected to be entangled by W is also detected by W ′
but not vice versa. This

also allows to define optimality of a linear witness. A witness is optimal if no finer
witness exists.

Other criteria

There are far more approaches to detect entanglement than can be discussed
within the scope of this work. Therefore, a few more criteria, together with the
respective references, shall at least be named. The quantum Fisher information
is not only a measure to quantify the suitability of a certain quantum state for
metrological applications [19, 145, 146] (for an overview of the current status of
the field of quantum metrology see [147–152]). Furthermore, it can also be used
to derive bounds for entanglement detection [153–155]. Spin-squeezing is another
metrological concept [156, 157] that allows to deduce entanglement criteria, so
called spin squeezing inequalities, from collective angular momentum operators of
a spin system [61, 126, 158, 159]. The density matrix element criterion delivers
inequalities which depend on diagonal and off-diagonal elements of the density
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matrix. A violation of one of the various inequalities signals entanglement [160].
For further criteria, like, e.g., the range criterion, the matrix realignment crite-
rion, the reduction criterion, or the majorization criterion, please see the excellent
review articles [84, 85, 132–134].

2.2.4. Entanglement measures

Apart from a sole detection of entanglement, as discussed in the previous subsec-
tion, in many situations it is also of interest to quantify entanglement. Therefore,
in the following, a short summary of some important entanglement measures shall
be given, starting with a formal definition of the term entanglement measure. For
a more complete overview of entanglement measures, refer to the review arti-
cles [86, 87].

A quantity can be called an entanglement measure E(%) only if it fulfills certain
requirements as listed, e.g., in the overview article by Gühne and Tóth [84],

1. E(%sep) = 0 for all separable states %sep,

2. E(%) cannot be increased by LOCC operations ΛLOCC, i.e, E(ΛLOCC(%)) ≤
E(%) and,

3. E(%) does not change under local unitary operations (LU).

The first property does not require further explanation, as any value E(%sep) > 0
indicates entanglement. Also the second requirement is natural as it results from
the fact that entanglement cannot be created by the application of LOCC oper-
ations. The third requirement is also obvious, as LU operations only correspond
to a redefinition of the local measurement bases. Sometimes, further properties
are required which are not necessary but often advantageous, like,

4. convexity: E(
∑

k pk%k) ≤
∑

k pkE(%k) and

5. additivity: E(%⊗n) = nE(%) where %⊗n denotes n copies of %.

Please note that for mixed states, the quantification of entanglement can pose a
serious problem. In principle, every entanglement measure E(φ) defined for pure
states φ can be generalized for mixed states via the convex-roof extension [161]

E(%) = inf
pk,|φk〉

∑
k

pkE(|φk〉) (2.62)

with % =
∑

k pk | φk 〉〈φk |. However, an analytical solution to the optimization
over all possible decompositions of % in Eq. 2.62, can only be given for a few
measures. A numerical search over all decompositions will generally lead to an
upper bound, i.e., an overestimation of entanglement. Recently, a technique based
on semidefinite programming was proposed that provides a lower bound [162].
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In the following, the formal definition and the most important properties of
several widely used entanglement measures will be given. The discussion goes
mainly along the same line as in [88, 91].

Entanglement of formation

For pure states % = |ψ〉〈ψ|, the entanglement of formation [163] is defined as the
von Neumann entropy of the reduced state %1

EF = S(%1) = −Tr[%1 log2 %1] = −
∑
i

λ%1i log2 λ
%1
i (2.63)

where

%1 = Tr2[%]

=
∑

m∈{0,1}

∑
i,j∈{0,1}

∑
k,l∈{0,1}

%ij,kl|i〉〈j| ⊗ 〈m|k〉〈l|m〉 (2.64)

denotes partial trace over the second qubit and λ%1i are the eigenvalues of %1.
The definition of Eq. 2.63 is motivated by the observation that tracing out one
qubit of a Bell state (see section 2.2.1) leads to a maximally mixed state. In
contrast, a pure separable state remains pure when one qubit is traced out. Hence,
the entanglement of formation is a well suited measure as it quantifies the local
mixedness of a state.

For mixed states, the entanglement of formation can be calculated via the
convex-roof extension

EF (%) = inf
pk,|φk〉

∑
k

pkS((%1)k) (2.65)

which is the least probable von Neumann entropy of any ensemble of pure states
realizing %. Interestingly, as will be discussed below, for bipartite mixed states,
the entanglement of formation can be determined analytically via the concurrence.

Negativity

The negativity is closely related to the PPT criterion as it quantifies by how much
the PPT criterion is violated. Formally, it is defined as

N (%) = (‖%T1 − 1‖)/2 =
∑
λi<0

|λi| (2.66)

where ‖A‖ = Tr[
√
A†A] is the trace norm of A and λi are the eigenvalues of %T1 .

With the negativity determined, one can also calculate the logarithmic negativity
which is defined as [164]

EN (%) = log2 ‖%T1‖1 = log2(2N (%) + 1). (2.67)
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The negativity is convex but not additive, whereas, in contrast, the logarithmic
negativity is additive but not convex. Both quantities fulfill the first three re-
quirements of an entanglement measure and thus allow to quantify entanglement
of an experimentally prepared state, however, as partial transposition is required,
only at the price of full state tomography.

The negativity can also be generalized to the three-qubit case. The tripartite
negativity is given by the geometric mean of the negativities of all bipartitions [165,
166]

N3(%) = (N1,23(%)N2,13(%)N3,12(%))1/3 (2.68)

and allows to quantify the amount of W-type entanglement as it solely depends
on the residual bipartite entanglement.

Concurrence

Another widely used entanglement measure is the concurrence. For pure states
|ψ〉, it is formally defined as

C(|ψ〉) =
√

2(1− Tr[(%1)2]) = 〈ψ|Θ|ψ〉 (2.69)

where %1 denotes the reduced state after tracing out the second qubit (see sec-
tion 2.2.4) and where Θ is an operator generating the anti-unitary transformation
Θψ = (σy ⊗ σy)ψ∗ with the asterisk ∗ denoting complex conjugation [167]. From
a physical point of view, 〈ψ|Θ|ψ〉 can be interpreted as the overlap between ψ and
its universal spin-flipped counterpart ψ∗. The generalization of the concurrence
to mixed states is given in [168] as

C(%) = max(0, λ1 − λ2 − λ3 − λ4) (2.70)

with λi the eigenvalues of the matrix
√√

%(σy ⊗ σy)%∗(σy ⊗ σy)
√
% in decreasing

order. Interestingly, for pure two-qubit systems, the concurrence can be directly
measured when using two copies of the same two-qubit state [169–172]. In case
of mixed states, this approach allows to determine a lower bound on the concur-
rence [173, 174].

Despite of its very different origin, the concurrence is closely related to the
entanglement of formation which can be expressed as a function of the concurrence

EF (%) = h((1 +
√

1− (C(%))2)/2) (2.71)

with the binary entropy function given by h(x) = x log x − (1 − x) log(1 − x).
Please note that in the literature, the term (C(%))2 is also known as tangle τ(%).
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Geometric measure of entanglement

As already explained, the set of fully separable states forms a convex subset within
the state space. The geometric measure of entanglement EG(|χ〉) [175–177] quan-
tifies the minimal distance between an entangled state |χ〉 and the fully separable
states, see Fig. 2.6. Formally, it is given by

EG(|ψ〉) = 1− sup
|φ〉sep
|〈φsep|ψ〉|2. (2.72)

For mixed states, as usually observed in experiments, the geometric measure of
entanglement can be bounded from below, e.g., by the expectation value of a
linear witness [178–180].

Figure 2.6.: The geometric measure of entanglement EG(|χ〉) is defined as the
minimal distance between an entangled state |χ〉 and the set of separable states,
here shown by the dashed line. It is possible to give an estimate for the geometric
measure of entanglement via the expectation value of an entanglement witness.

Other measures

There are far more entanglement measures than can be discussed in this thesis.
Therefore, a few more entanglement measures shall at least be named. The ro-
bustness [181] quantifies by how much a state can be mixed with a separable
state such that the overall state is still entangled. The robustness plays a vi-
tal role in the noise tolerance of various entanglement detection criteria. The
3-tangle [182, 183] is another entanglement measure for pure three-qubit states
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which allows to quantify the amount of GHZ-type entanglement. Together with
the local entropy, it allows to distinguish between states belonging to the GHZ-
class of tripartite entangled states and those belonging to the W-class. For a
more elaborate treatment of entanglement, please refer to the excellent review
articles [84–87, 132–134, 184, 185].

2.3. Experimental realization of photonic multiqubit
states

In the following, a basic description of the process of SPDC will be given. Only
the most relevant aspects which are necessary to understand the experiments
described in chapters 3-5 will be discussed. For a more detailed treatment of
the subject, the reader is referred to the rich special literature on SPDC in gen-
eral [186–188] and [189–191] for pulsed sources. The subsequent discussion goes
along the same line as [91, 192].

2.3.1. Spontaneous parametric down conversion

Spontaneous parametric down conversion is a nonlinear process mediated by non-
inversion symmetric crystals where one pump photon converts into a pair of down
conversion photons, called signal and idler. In the following, a simple model
describing this process shall be given. In an anisotropic medium, an electric field
E induces a polarization P, whose components can be expressed by a power series
in terms of the electric field components [193],

Pi(E) = ε0

(∑
j

χ
(1)j
i Ej +

∑
j,k

χ
(2)j,k
i EjEk +

∑
j,k,l

χ
(3)j,k,l
i EjEkEl

)
, (2.73)

with i, j, k, l ∈ {x, y, z}, ε0 the dielectric constant and χ(m) the electric suscepti-
bility of order m. The size of of χ(m) decreases rapidly with larger m, χ(1) = 1,
χ(2) ≈ 10−10cm/V and χ(2) ≈ 10−17cm2/V2, and thus the coupling of the electric
field to the crystal is dominated by the first terms of the power series in Eq. 2.73.
For example, the term proportional to χ(2) gives rise to the well-known three-wave
mixing, the term proportional to χ(3) is responsible for four-wave mixing etc. From
now on, we will restrict our discussion to the process of SPDC which is described
by χ(2). Please note that in order to properly describe SPDC, a quantization of
the respective fields is necessary [188].

Analogously to classical mechanics, both energy and linear momentum have to
be conserved. Expressed in terms of the interacting waves, this yields

~ωp = ~ωs + ~ωi + ∆E and ~kp = ~ks + ~ki + ~∆k (2.74)
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with ∆E = 0 and ∆k = 0. The frequencies of the pump, signal and idler photon
are labeled by ωp, ωs and ωi. The absolute value of the wave vectors |kj| is given
by |kj| = ωjn(ωj)/c where n(ωj) denotes the refractive index at frequency ωj with
j ∈ {p, s, i} and c is the speed of light. Eq. 2.74 is also known under the term
phase-matching condition which reflects the property that only for ∆k = 0 con-
siderable emission takes place. The most natural way to achieve phase-matching
is to suitably choose kp, ~ωp and the direction of the optical axis of a birefrin-
gent crystal. Light that is polarized parallel to the optical axis of a birefringent
crystal is called extraordinary (abbreviated as e) and light that is polarized per-
pendicular to the optical axis is denoted ordinary (abbreviated as o). In detail, for
phase-matching one utilizes the fact that for ordinary light the refractive index no
is independent of the propagation direction, whereas for extraordinary light the
refractive index ne depends on the propagation direction. Hence, ne becomes a
function of the tilting angle Θ of the optical axis relative to kp, i.e. ne = ne(Θ).
Then, for a given wave vector of the pump beam kp and, e.g., ks and ki lying
in a plane parallel to the optical table as in the experiments performed in this
work, one can achieve ∆k = 0 for a suitable choice of θ. Depending on the bire-
fringent crystal, either of the refractive indices ne and no can be larger than the
other one. Crystals with ne > no are called positive and those with ne < no are
called negative. Generally, the dependence of the refractive index from the wave-
length is expressed by the so-called Sellmeier equation. The respective Sellmeier
coefficients can be found, e.g., in [194]. Now, one can distinguish between two
different types of phase-matching, namely, type I and type II. In both cases, the
pump photon is e-polarized whereas the down-conversion photons are o-polarized
for type I and e- and o-polarized for type II, respectively. Additionally, one dis-
tinguishes between collinear down-conversion where kp‖ks‖ki and noncollinear
down-conversion where all choices of kp,ks and ki are allowed that fulfill ∆k = 0.
In the course of this work, noncollinear type I down conversion at a pump wave-
length of 405 nm and collinear type II down-conversion at a pumpwavelength of
390 nm was used. In both cases, β-barium-borate (BBO) crystals were applied
and only the degenerate case, i.e., signal and idler photons are emitted at the
same wavelength, was considered.

As multiphoton states are in the focus of chapter 4 of this work, it is necessary
to extend the above model and to consider higher order terms in the process of
SPDC. Therefore, we will use the creation operator a† and, correspondingly, the
annihilation operator a which have the properties

a†|n〉 =
√
n+ 1|n+ 1〉 and a|n〉 =

√
n|n− 1〉 (2.75)

and where n = 〈a†a〉 is the photon number. Since all multiphoton experiments
described in this thesis are based on a collinear type II down-conversion source, we
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Figure 2.7.: In collinear type II down-conversion, the photons are emitted in
two cones that intersect at just one line. Spatial filtering of the down-conversion
photons is achieved by coupling into a single mode fiber

will restrict the following treatment to this particular case. There, the interaction
Hamiltonian is given by [49]

HInt,col = i~κcola†Ha
†
V + h.c. (2.76)

with κcol proportional to the second order susceptibility χ(2) and the absolute
value of the pump field |Ep|. In type II collinear down conversion, the photons
are emitted in two cones that have to be aligned by the aforementioned tilting
of the crystal such that they intersect at just one line, see Fig. 2.7. Then the
photons are collected by a single mode fiber which defines a spatial mode (spatial
filtering). The state vector of the down converted fields is given by

|ψ〉col = e−
i
~
∫
dtHI,colt|vac〉 (2.77)

where |vac〉 is the vacuum state. A Taylor expansion of Eq. 2.77 yields [91]

|ψ〉col =
1

cosh τcol

∞∑
n=0

tanhn τcol
n

(a†Ha
†
V )n|vac〉

=
1

cosh τcol

∞∑
n=0

tanhn τcol|nH , nV 〉a (2.78)

with τcol ∝ κcolt and the twin Fock state |nH , nV 〉a consisting of nH horizontally
polarized and nV vertically polarized photons in mode a.

As the focus of this work is on the generation and characterization of multi-
photon states, the dependence of the expected count rate from the pump power
Pp shall be discussed. As can be seen from Eq. 2.78, the probability to gener-
ate 2n down-conversion photons is |〈ψcol | nH , nV 〉a|2 and thus proportional to
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tanh2n τcol. Using the approximation tanh τcol ≈ τcol which is valid for τcol � 1
one obtains the count rate is proportional to

τ 2ncol ∝ |Ep|2n ∝ P n
p . (2.79)

Hence, the count rates for the emission of n photon pairs increase polynomially
with order n with the pump power. Nevertheless, due to the small nonlinearities of
crystals like BBO, the likelihood to generate n photon pairs is very low. Thus, one
has to concentrate the pump power in short pulses which leads to a significantly
increased creation probability per pulse.

Experimental implementation

As explained, in order to obtain reasonable count rates in multiphoton experi-
ments based on SPDC, ultrashort laser pulses and high pump power are required.
In the following, the photon source that was used for the experiments in publi-
cations P3.3, P4.1 and P4.2 and which fulfills both these requirements shall be
described. More precisely, it will be discussed how SPDC photons are generated
that are spatially, spectrally and temporarily indistinguishable, which is a prereq-
uisite to use them for quantum information processing. A schematic drawing of
the whole laser system including the SPDC source can be seen in Fig. 2.8. In a first
step, a continuous wave solid state laser at 1064 nm pumps a neodymium yttrium
vanadate (Nd:YVO4) laser where up-conversion to 532 nm by second harmonic
generation (SHG) takes place. The Nd:YVO4 is stabilized to lase at a constant
output power of 10 W and is used to pump a titanium:sapphire (Ti:Sa) oscillator.
The Ti:Sa oscillator delivers short pulses with a duration of approximately 130 fs
at a repetition rate of 80 MHz. The center wavelength is 780 nm and the total
output power approximately 2W1. In the next step, up-conversion to 390 nm in a
3 mm thick lithium-triborate (LBO) crystal is performed. The average power is
approximately 800 mW, but for multiphoton experiments with up to six photons
as performed in this work (see chapter 4), an even higher pump power is advan-
tageous. Therefore, the light is coupled into an ultraviolet (UV) enhancement
cavity [91, 195, 196] where a maximal UV pump power of up to 10 W can be
achieved. For long-term stability of the cavity, two of its mirrors are mounted
on piezo crystals, which allow for active stabilization using the Hänsch-Couillaud
locking scheme [197]. Inside the bow-tie enhancement cavity, the light is focused
on a 1 mm thick anti-reflection coated BBO crystal that is cut for collinear type II
down-conversion. One of the cavity mirrors has a dichroic coating with high
reflectivity for the pump photons at 390 nm and high transmission for the down-
conversion photons at 780 nm. It is known that due to the birefringence of the

1The three stages of the laser system are a TP80® power supply from Spectra Physics®, a
10 W Millenia®XS from Spectra Physics®, and a Tsunami® Ti:Sa oscillator from Spectra
Physics®. The anti-reflection coated 1 mm thick BBO inside the cavity was obtained from
Newlight Photonics®.
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Figure 2.8.: Schematic drawing of the SPDC source used throughout this work.
Its main components are a Ti:Sa oscillator and an UV enhancement cavity with
a BBO crystal inside.

BBO, there is a transversal walk-off between signal and idler photons [191, 198].
The effect is partly compensated by a HWP outside the cavity which rotates
horizontal to vertical polarization and vice versa and, subsequently, by sending
the photons through a second BBO crystal with only half the thickness of the
first one [50, 199]. Spatial filtering is achieved by coupling the down-conversion
photons into a single mode fiber [200] which guides the photons to the linear
optical setup where the actual experiment takes place. Additionally, since the
spectra of the signal and idler photons are not identical [201–203], spectral filter-
ing with an interference filter is performed2. Please note that spectral filtering also
increases the coherence length of the photons and thus washes out information
about their creation time. For a more detailed description of the photon source
utilized throughout this work, see [192, 195, 196].

2.3.2. Linear optical setups

In order to perform quantum information experiments with multiple photons one
needs, additionally to the above described SPDC photon source, a so-called linear
optical setup where the photons are further processed. In this context, the term
linear means that only passive optical elements like wave plates, BSs or phase
shifters are used. More precisely, this implies that photons may interfere with each
other but a direct photon-photon interaction is excluded. However, this limitation
does not lead to any restriction with respect to the experiments performed in the
course of this work. In order to observe a multiphoton state, the photons are split
up into certain well defined spatial modes by BSs. Due to the probabilistic nature
of the BSs, the probability to observe a single photon in every spatial mode is
below 1 and therefore a conditional detection scheme is applied. In detail, this
means that only events where a single photon was detected in every mode are

2The interference filter used throughout this work is a MaxLine® filter from Semrock® with
a center wavelength of 780 nm, a FWHM bandwidth of 3 nm, and a transmission of > 90%.
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considered. Generally, every multiphoton experiment requires, depending on the
state one wants to prepare, a different linear optical setup and, therefore, only the
basic building blocks shall be discussed here. For the specific setups used for this
thesis, refer to chapters 3 and 4 and the corresponding publications at the end of
these chapters.

Birefringent phase shifters

The simplest components of linear optical setups with only a single input and out-
put mode are birefringent phase shifters. They perform unitary transformations
like, e.g., a rotation of the polarization or adding a phase between two orthogonal
polarizations. In photonic setups, the polarization is commonly manipulated with
QWPs and HWPs. Such devices can be implemented with uniaxial birefringent
crystals like, e.g., quartz. Commonly, a wave plate consists of two crystals that
are cut parallel to their optical axis and then optically contacted (or cemented)
with their optical axis crossed. Depending on the different thickness of the two
crystals, any phase shift can be implemented exactly, i.e., the phase shift is, e.g.,
π/2 and not π/2 + 2nπ, n ∈ N. The main advantage of using two crystals in a
configuration with n = 0, also known as zero-order configuration, is its reduced
sensitivity with respect to shifts of the wavelength or temperature changes in
comparison to a wave plate consisting of a single crystal only. For |z+〉 and |z−〉
chosen as basis states and θ defined as the angle between the optical axis and
the |z+〉 direction, the corresponding transformations for a HWP and a QWP are
given by [204]

HWP(θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
= sin 2θσx + cos 2θσz (2.80)

QWP(θ) =

(
cos2 θ − i sin2 θ (1 + i) cos θ sin θ

(1 + i) cos θ sin θ −i cos2 θ + sin2 θ

)
=

1

2
((1− i)1 + 2(1 + i) cos θ sin θσx + (1 + i) cos 2θσz). (2.81)

In general, an arbitrary unitary transformation cannot be realized with a single
wave plate. However, a combination of three wave plates, two QWPs and one
HWP allows for arbitrary unitary transformations. In particular, such a trans-
formation is given by U(θ1, θ2, θ3) = QWP(θ1)HWP(θ2)QWP(θ3) with properly
chosen angles θ1, θ2, and θ3. Please note that in order to realize a certain unitary
transformation, the choice of angles θ1, θ2 and θ3 is not unique and, in many cases,
these angles can only be found numerically.

In some applications, like, e.g., the compensation of unwanted phase shifts as
induced by the Goos-Hänchen effect [205], it is necessary to shift a phase between
|z+〉 and |z−〉. This can be realized by rotating a birefringent crystal with its
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optical axis parallel to |z−〉 around |z−〉 and thus varying the thickness of the
crystal. In particular, the transformation can be expressed as

PS(φ) =

(
i cos φ

2
+ sin φ

2
0

0 i cos φ
2
− sin φ

2

)
= i cos

φ

2
1 + sin

φ

2
σz (2.82)

where φ designates the angle by how much the crystal is rotated. Experimentally,
yttrium-vanadate (YVO4) crystals are applied as phase shifter both as single crys-
tals [191, 206] and in pairs with the optical axis of the crystals crossed [131, 207],
analogously to the zero-order configuration common for wave plates.

Beam splitters

Beam splitters are four port devices with two input and two output ports and
are used to split up or overlap spatial modes. They are characterized by their
reflectivity RH (RV ) and transmittance TH (TV ) for the respective polarization.
For a lossless BS with real transmittance and reflectivity, RH + TH = 1 and
RV + TV = 1 holds. With the corresponding input and output modes labeled as
in Fig. 2.9a), the transformation of a BS can be expressed by means of creation
and annihilation operators

a†H −→ 1√
2

(
√
THc

†
H + i

√
RHd

†
H) (2.83)

a†V −→ 1√
2

(
√
TV c

†
V + i

√
RV d

†
V ) (2.84)

b†H −→ 1√
2

(
√
THd

†
H + i

√
RHc

†
H) (2.85)

b†V −→ 1√
2

(
√
TV d

†
V + i

√
RV c

†
V ). (2.86)

Note that a BS introduces a phase shift of eiπ/2 which is required to guarantee
unitarity [208].

Projection measurements in arbitrary bases

In order to analyze quantum states, e.g., by means of state tomography as will
be discussed in chapter 4, it is necessary to perform projection measurements on
various different basis states. However, experimentally, it is often only possible
to perform σz measurements, i.e, to project on |z+〉 and |z−〉. Therefore, the
natural question arises how a measurement in an arbitrary basis like σ(θ, φ) from
Eq. 2.3 can be performed. More precisely, a general procedure has to be found
such that one can project on the eigenvectors |ψ(θ, φ)〉 and |ψ(θ, φ)〉⊥ of σ(θ, φ).

31



2. Fundamentals of quantum information theory

Figure 2.9.: The most important building blocks of linear optical setups are
a) BSs and b) polarization analyses. A BS is defined by the transformations it
performs on its input modes. A combination of a polarizing BS (PBS), i.e., a BS
that transmits horizontally polarized light and reflects vertically polarized light,
and a HWP and QWP, as shown in b), can be used to separate photons with two
orthogonal eigenstates. Afterwards the photons are sent on APDs for detection.

The solution to this problem is to perform an appropriate unitary operation on
the state to be analyzed before the projection measurements. One possibility is to
first apply a HWP(θ1), then a QWP(θ2) and finally measure σz with a polarizing
BS, see Fig. 2.9b). The angles θ1 and θ2 have to be chosen such that the relations

QWP(θ2)HWP(θ1)|ψ(θ, φ)〉 = |z+〉 (2.87)

QWP(θ2)HWP(θ1)|ψ(θ, φ)〉⊥ = |z−〉 (2.88)

are fulfilled, or, equivalently,

σz = |z+〉〈z+| − |z−〉〈z−|
= (QWP(θ2)HWP(θ1))σ(θ, φ)(QWP(θ2)HWP(θ1))

†. (2.89)

In many cases the angles θ1 and θ2 can only be determined numerically. However,
for the most common basis settings, an analytic solution can be given as shown
in Tab. 2.1.

Data acquisition

At every output of the polarization analysis, the photons are coupled into mul-
timode fibers that are connected to actively quenched avalanche photo diodes3

(APD) which have a detection efficiency of 55% − 65% at 780 nm. The pho-
ton counting modules are connected to a coincidence logic based on a field pro-
grammable gate array (FPGA)4 [91], which allows for conditional detection. The
pulse rate of the laser is measured with a photo diode and fed into the external

3Throughout this work, photon counting modules SPCM-AQ4C from Perkin Elmer® were
used.

4The FPGA was a VirtexTM-4 XC4VLX25-FF668-10 produced by Xilinx®.
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2.3. Experimental realization of photonic multiqubit states

measurement angle θ1 of HWP angle θ2 of QWP
setting

σx 22.5◦ 0
σy 0 45◦

σz 0 0

Table 2.1.: In many experimental realizations, only measurements in the σz basis
can be directly carried out. Therefore, in order to perform measurements in other
bases, like σx or σy, one first has to apply a unitary transformation. One possible
implementation is a combination of a HWP and QWP at appropriate angles θ1
and θ2 in addition to a subsequent measurement in the σz basis.

clock of the FPGA. Consequently, the FPGA has a maximal detection rate of
up to 81 MHz. The FPGA is capable of processing the detection signals of 12
photon counters which allows to perform multiphoton experiments with up to six
photons. In order to carry out measurements in arbitrary bases, the HWP and
QWP of every polarization analysis can be rotated with stepper motors5.

5All rotation stages are DRTM 40-D25-0SM440-(K) manufactured by OWIS®.
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3. Entanglement detection by
correlation measurements

In every experiment with entangled quantum states, it is crucial to first prove that
the prepared states are actually entangled by means of suitable entanglement cri-
teria (see section 2.2.3). In general, one can distinguish between entanglement
criteria that are state independent but often require complete knowledge of the
density matrix and criteria that are state dependent like, e.g., entanglement wit-
nesses and require only few measurements. Obviously, one would like to have
entanglement criteria at hand that are, at the same time, as general as possible
but require only partial knowledge of the state.

In this chapter, such entanglement criteria will be presented. They are based
on correlation functions which are directly accessible in experiments and which
do not require to determine the complete density matrix. The chapter is divided
into two parts. In the first part, a simple entanglement criterion proposed by
Badzia̧g et al. [51] will be presented which is utilized to develop two schemes to
detect entanglement at minimal experimental effort. The first scheme is based on
Schmidt decomposition and requires at maximum three correlation measurements
to prove entanglement of pure two-qubit states. The second scheme is based on
the principle of correlation complementarity and allows to detect entanglement
in an N -qubit state with an exponential speedup in comparison to random cor-
relation measurements [53]. The description of these schemes stresses especially
aspects that could not be discussed in publications P3.1 and P3.2.

As almost all entanglement criteria based on correlations rely on N -partite cor-
relation functions [51, 60, 64–71], one might expect that the existence of N -partite
correlations is a prerequisite for genuine N -partite entanglement. However, this
assumption turns out to be wrong, as first shown by Kaszlikowski et al. [74]. In
the second part of this chapter, a general construction principle for N -partite
entangled states without N -partite correlations is presented. Interestingly, such
states can even violate Bell inequalities which means, in consequence, that there
is no local realistic model describing their properties as shown in publication P3.3.
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3. Entanglement detection by correlation measurements

3.1. Optimized state-independent entanglement
detection

In the following section, it will be discussed how correlations can be used as an
efficient tool to detect entanglement. Therefore, at first, it is necessary to explain
how correlations are measured in practice. In section 2.2.1, it was explained that
every quantum state % can be expressed by its correlations Ti1,i2,...,iN which can
formally be determined as

Ti1,i2,...,iN = Tr[%σi1 ⊗ σi2 ⊗ ...⊗ σiN ] (3.1)

with i1, i2, ..., iN ∈ {0, x, y, z}. Experimentally, correlations are inferred from the
expectation values of projection measurements. Therefore, the Pauli matrices in
Eq. 3.1 are expressed in their eigenbases, i.e.,

σ0 = |x+ 〉〈x+ | + |x− 〉〈x− |
= |y+ 〉〈 y+ | + |y− 〉〈 y− |
= |z+ 〉〈 z+ | + |z− 〉〈 z− | (3.2)

σx = |x+ 〉〈x+ | − |x− 〉〈x− | (3.3)

σy = |y+ 〉〈 y+ | − |y− 〉〈 y− | (3.4)

σz = |z+ 〉〈 z+ | − |z− 〉〈 z− | . (3.5)

For example, the correlation Tz,z of a two-qubit state, can then be inferred from
the following projection measurements

Tz,z = Tr[%(σz ⊗ σz)]
= Tr

[
%(|z+ 〉〈 z+ | − |z− 〉〈 z− |)⊗ (|z+ 〉〈 z+ | − |z− 〉〈 z− |)

]
= Tr

[
% |z+ 〉〈 z+ | ⊗ |z+ 〉〈 z+ |

]
− Tr

[
% |z+ 〉〈 z+ | ⊗ |z− 〉〈 z− |

]
− Tr

[
% |z− 〉〈 z− | ⊗ |z+ 〉〈 z+ |

]
+ Tr

[
% |z− 〉〈 z− | ⊗ |z− 〉〈 z− |

]
. (3.6)

All other correlations can be determined correspondingly.

3.1.1. Experimentally friendly entanglement criterion

The entanglement criterion used throughout this chapter was originally proposed
by Badzia̧g et al. [51] and originates from the following geometrical observation.
Consider two real unit vectors ~s and ~e together with their scalar product: If the
relation ~s · ~e < ~e · ~e holds, then the two vectors cannot be identical, i.e., ~s 6= ~e.
In a few steps, this simple geometrical fact will be transformed into a practical
entanglement criterion [51]. For this purpose, a scalar product (·, ·) for correlation
tensors has to be introduced

(T %A , T %B) =
∑

i1,...,iN
∈{0,x,y,z}

T %Ai1,...,iNT
%B
i1,...,iN

(3.7)
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where T %A and T %B are the correlation tensors of two states %A and %B. As
explained in chapter 2, a state %sep is fully separable if it can be written as a
convex sum of the form

%sep =
∑
i

pi(%1)i ⊗ ...⊗ (%N)i (3.8)

with pi > 0 and
∑
i

pi = 1. For such states also the correlation tensor T %sep becomes

separable

T %sep =
∑
i

piT
prod
i with T prod

i = T
(1)
i · T

(2)
i · ... · T

(N)
i (3.9)

and where the T
(k)
i (k = 1, ..., N) describe single-qubit correlation tensors. Com-

bining the geometrical observation mentioned above with Eq. 3.7 and Eq. 3.9, one
obtains the following entanglement criterion:

If a state % with correlation tensor T % is fully separable, then there must be a
pure product state associated with the correlation tensor T prod such that the in-
equality (T %, T prod) ≥ (T %, T %) holds.

The validity of this inequality can easily be proven by assuming that the con-
trary is true, i.e., (T %, T prod) < (T %, T %). This would imply, due to the separability
of T %, that

(T %, T %) =
∑
i

pi(T
%, T prod

i ) <
∑
i

pi(T
%, T %) = (T %, T %) (3.10)

which is a contradiction. Hence, if the inequality

max
Tprod

(T %, T prod) < (T %, T %) (3.11)

is true, % must be entangled. If one now restricts the indices i1, ..., iN in Eq. 3.7
to {x, y, z}, i.e.,

(T %A , T %B) =
∑

i1,...,iN
∈{x,y,z}

T %Ai1,...,iNT
%B
i1,...,iN

, (3.12)

the maximal attainable value of the left-hand side of Eq. 3.11 is given by [51]

Tmax = max
~m1⊗...⊗~mN

(T %, ~m1 ⊗ ...⊗ ~mN) (3.13)

where the ~mk = (T
(k)
x , T

(k)
y , T

(k)
z ) are unit vectors and can be associated with a

pure state of the kth party. More precisely, Tmax corresponds to the expectation
value of a correlation measurement, where σ(k) = T

(k)
x σx+T

(k)
y σy+T

(k)
z σz is chosen

as the local measurement basis for the kth qubit. Since the absolute value of a
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3. Entanglement detection by correlation measurements

correlation can be 1 at maximum, this finally results in the desired entanglement
criterion: A quantum state % is entangled if∑

i1,...,iN
∈{x,y,z}

(T %i1,...,iN )2 > 1 (3.14)

holds. From the experimental point of view, this is a remarkably positive result
because it means that one can start measuring correlations according to Eq. 3.14
and, as soon as the threshold of Eq. 3.14 is surpassed, entanglement is detected
and one can stop measuring. The challenge now is to find strategies that allow to
break the threshold with as little experimental effort as possible.

3.1.2. Experimental Schmidt decomposition

The first strategy to surpass the limit of 1 in Eq. 3.14 is tailored to pure or close
to pure two-qubit states and is based on a redefinition of the local measurement
directions. Every pure two-qubit state can be expressed in a particular form [62,
209]

|ψS〉 = cos θ|a〉|b〉+ sin θ|a⊥〉|b⊥〉 θ ∈ [0, π/4] (3.15)

called Schmidt decomposition with local bases |a〉/|a⊥〉 and |b〉/|b⊥〉. The local
bases are denoted as Schmidt bases and allow both parties to define their re-
spective local measurements. For the first party, from now on called Alice, one
obtains

σx′ = |a⊥〉〈a|+ |a〉〈a⊥|
σy′ = i|a⊥〉〈a| − i|a〉〈a⊥|
σz′ = |a〉〈a| − |a⊥〉〈a⊥| (3.16)

with corresponding definitions of σx′′ , σy′′ and σz′′ for the second party called
Bob. The main advantage of the Schmidt decomposition with respect to fast
entanglement detection is that it leads to a “concentration” of the correlations.
More precisely, it results in a diagonalization of the correlation tensor which can
be interpreted as a 4 × 4 matrix in the two-qubit case, see Fig. 3.1. Then, the
entanglement criterion Eq. 3.14 allows to detect entanglement of all entangled pure
two-qubit states (i.e. θ 6= 0) from measuring Tz′,z′′ and Ty′,y′′ since T 2

z′,z′′+T 2
y′,y′′ =

1+T 2
y′,y′′ > 1. However, generally, the computational basis does not coincide with

the Schmidt basis and, therefore, a simple procedure to determine the Schmidt
basis is required. In order to find such a procedure, in a first step, the basis vectors
of the respective Schmidt bases are expressed in terms of the computational basis

|a〉 = cos ξA|0〉+ eiϕA sin ξA|1〉
|a⊥〉 = sin ξA|0〉 − eiϕA cos ξA|1〉
|b〉 = cos ξB|0〉+ eiϕB sin ξB|1〉
|b⊥〉 = eiδ(cos ξB|0〉 − eiϕB cos ξB|1〉). (3.17)
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3.1. Optimized state-independent entanglement detection

Figure 3.1.: When expressing a pure two-qubit state in the Schmidt basis, en-
tanglement can be detected from measuring the correlations Tz′,z′′ and Ty′,y′′ . The
local Bloch vectors of Alice (Tx′,0, Ty′0, Tz′,0) and Bob (T0,x′ , T0,y′ , T0,z′) are repre-
sented by the blue shaded boxes.

For states that are not maximally entangled, the coefficients ξA and ϕA (ξB and
ϕB correspondingly) can directly be determined from local measurements

~α :=
(Tx,0, Ty,0, Tz,0)√
T 2
x,0 + T 2

y,0 + T 2
z,0

= (sin 2ξA cosϕA, sin 2ξA sinϕA, cos 2ξA) (3.18)

as can be proven by direct calculation. From Fig. 3.1, it can be seen that in the
Schmidt basis only the local Bloch vector elements Tz′,0 and T0,z′′ are non-zero.
The easiest way for Alice to achieve this is to redefine her z direction according to

σz −→ σz′ = ~α · ~σ = αxσx + αyσy + αzσz (3.19)

where αx, αy, and αz are the components of ~α. Then, she redefines the x and y
direction by choosing two directions which are orthogonal with respect to ~α and
with respect to each other. One possible choice for example is

σx −→ σx′ =
−αxαxσx − αyαzσy + (1− α2

z)αz√
1− α2

z

σy −→ σy′ =
αyσx − αxσy√

1− α2
z

. (3.20)

If Bob redefines his local basis correspondingly, the Schmidt basis is established up
to a phase δ [52, 53] which cannot be determined from local measurements alone
and would require one correlation measurement involving both parties. However,
from the experimental point of view, this does not really pose a restriction. As
can be seen from Fig. 3.2, entanglement can still be detected since T 2

z′,z′′+T 2
y′,y′′ =

1 + (sin 2θ cos δ)2 > 1 for δ 6= π/2 and δ 6= 3π/2. In the case Ty′,y′′ = 0, it is
sufficient to measure Tx′,y′′ or Ty′,x′′ to surpass the limit.

For maximally entangled states |ψmax-ent〉, this scheme has to be adopted since
maximally entangled states have vanishing local Bloch vectors. As maximally

39



3. Entanglement detection by correlation measurements

Figure 3.2.: When only local measurement are performed by Alice and Bob,
their local Schmidt bases can only be determined up to a relative phase δ. The
local Bloch vectors of Alice and Bob are represented by the blue shaded boxes.

entangled states admit infinity many Bloch decompositions [67], one of the two
parties, like, e.g. Bob, can therefore freely chose a local coordinate system. Let us
assume that he decides to stick with his basis definition. Then Bob implies a filter
operation of the form F = |0〉〈0| + ε|1〉〈1| (0 < ε < 1) which, if it is successful1,
results in a state that is not maximally entangled

(1⊗ F )|ψmax-ent〉 =
1√

1 + ε2
(|a〉|0〉+ ε|a⊥〉|1〉) (3.21)

and thus leads to an emerging local Bloch vector with Alice. Hence, Alice can re-
define her local measurement directions according to Eq. 3.19 and Eq. 3.20. After
Bob removes the filter, entanglement can again be detected by measuring Tz′,z′′
and Ty′,y′′ . Please note that the filter operation can also be seen as a test which al-
lows to distinguish between maximally entangled states and the maximally mixed
state because for the maximally mixed state, the local Bloch vectors would not
emerge after filtering.

In summary, the presented scheme allows to detect entanglement of all pure en-
tangled states with six local measurements, if necessary, filtering by Bob together
with Alice measuring her local Bloch vector a second time, and, at most, three
correlation measurements. For more details concerning the performance and an
experimental implementation of the scheme, see P3.1 and P3.2.

3.1.3. Decision tree

The second strategy to break the threshold of Eq. 3.14 is based on the principle
of correlation complementarity [60, 63]. The term correlation complementarity
denotes the fact that for a set of dichotomic, mutually anticommuting operators
{σ1, σ2, ..., σN} the trade-off relation

T 2
σ1

+ T 2
σ2

+ ...+ T 2
σN
≤ 1 (3.22)

1Since Bob has to inform Alice whether the filtering operation was successful or not, this
measurement is not local.
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3.1. Optimized state-independent entanglement detection

holds where Tσk (k = 1, ..., N) is the expectation value of σk. Consequently, this
means that as soon as one of the expectation values is extremal, i.e., Tσj = ±1,
then all Tσk with k 6= j have to vanish. As only non-zero correlations contribute to
the criterion of Eq. 3.14, the vanishing correlations do not have to be determined.
Hence, correlation complementarity can be used to design a measurement scheme
that reduces the experimental effort considerable.

In the two-qubit case, such a scheme can be given in a compact form, called de-
cision tree. Alice and Bob chose independently from each other three orthogonal
directions and agree to measure correlations along these directions. For simplicity,
the measurement directions are abbreviated as x, y, z for both Alice and Bob. The

Figure 3.3.: The decision tree for fast entanglement detection of two qubits.
Alice and Bob chose their local measurement directions independently from each
other and agree to perform correlation measurements along these directions, i.e.,
no shared reference frame is required. The tree starts with a measurement of Tz,z
and for each following step one proceeds along the continuous arrow if the absolute
value of the correlation measurement is > 0.4. The scheme succeeds as soon as∑

i,j∈{x,y,z} T
2
i,j > 1. Every maximally entangled pure state with its Schmidt bases

aligned along x,y, or z is detected as entangled within the blue shaded area.

sequence of the correlation measurements is given by the decision tree in Fig. 3.3
and the results of the corresponding measurements. It starts with a measure-
ment of Tz,z and continues along the continuous arrow if |Tz,z| > 0.4 and along
the dashed one otherwise. At every following step, one measures the respective
correlation and proceeds along the continuous or the dashed arrow depending on
whether the absolute value of the result is above or below 0.4. The scheme ends
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3. Entanglement detection by correlation measurements

as soon as entanglement is detected, i.e., as soon as
∑

i,j∈{x,y,z} T
2
i,j > 1. The op-

timal value for the decision parameter was determined by numerical simulations
showing that the best choice is 0.4.

In order to evaluate the performance of the decision tree, it has to be compared
against randomly chosen correlation measurements. As random sampling, in con-

Figure 3.4.: Efficiency of the two-qubit decision for randomly mixed states ac-
cording to the Haar measure. The efficiency of the tree in comparison with random
measurements increases both with a) the purity of the state as well as with b) the
entanglement as quantified by the negativity.

trast to the decision tree, does not take into account correlation complementarity,
one expects a better performance for the tree. That this is actually the case can
be seen in Fig. 3.4a) where the number of states detected by the decision tree is
compared against random sampling for different purities. As expected, all pure
entangled states are detected by both the tree and random sampling, however, the
tree succeeds faster. The advantage of the tree is more pronounced for pure states.
A similar behavior is observed for the negativity as shown in Fig. 3.4b). All states
with a negativity > 0.2 are detected as entangled and the tree succeeds faster
than random measurements. For more details on the performance of the decision
tree and how it can be generalized to more than two qubits, see publication P3.2.

3.2. No correlation states

In this part, a particular class of states will be discussed which has vanishing
N -partite correlations but still exhibits N -partite entanglement. The first member
state of this class was discussed by Kaszlikowski et al. [74]. Here, the result of
Kaszlikowski will be generalized and a constructive scheme that allows to construct
such particular states will be given. Therefore, at first the concept of antistates
has to be introduced, and second, the entanglement criterion of Eq. 3.11 has to
be adopted such that genuine N -partite entanglement for vanishing N -partite
correlations can be detected.
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3.2.1. States and antistates

For every pure state |ψ〉 with an odd number of qubits, there exists an antistate
|ψ〉, such that, by evenly mixing |ψ〉 and |ψ〉

%ncψ =
1

2
|ψ 〉〈ψ | +1

2
|ψ 〉〈ψ | (3.23)

all N -partite correlations of %ncψ vanish. In detail, the antistate has reversed cor-
relations with respect to |ψ〉 for every odd number of parties whereas all other
correlations are unchanged. In order to find the antistate, let us first consider |ψ〉
expressed in the computational basis

|ψ〉 =
1∑

k1,...,kN=0

αk1,...,kN |k1, ..., kN〉 (3.24)

with normalized coefficients αk1,...,kN ∈ C. Mathematically, |ψ〉 can be obtained
by applying local universal-not gates [210] GUNOT = (σzσxK) with K denoting
complex conjugation in the computational basis. Direct calculation shows that
GUNOTσxG

†
UNOT = −σx, GUNOTσyG

†
UNOT = −σy and GUNOTσzG

†
UNOT = −σz and

thus only correlations for an odd number of observers are inverted. Application
of GUNOT to all the subsystems yields

|ψ〉 =
1∑

k1,...,kN=0

(−1)k1+...+kNα∗1−k1,...,1−kN |k1, ..., kN〉 (3.25)

where the asterisk∗ stands for complex conjugation. Please note that although
GUNOT is an antiunitary operation, i.e., G†UNOT = −GUNOT, the antistate |ψ〉
is always a well-defined quantum mechanical state. This construction principle
can easily be generalized to mixed states by defining % = G⊗NUNOT%(G⊗NUNOT)† which
transforms every pure state in the decomposition of % into its antistate. For states
with all αk1,...,kN ∈ R, complex conjugation is unnecessary and no-correlation states
can be obtained by local operations alone.

One might now wonder if a similar construction principle exists also for states
with an even number of qubits. Interestingly, the answer turns out to be negative
as there is a counterexample where it can be shown that an antistate cannot
exist. Let us consider the N -qubit GHZ state |GHZN〉 = 1/

√
2(|0〉⊗N + |1〉⊗N)

with 2N−1 nonvanishing full correlations in the xy plane, non-zero Tz,...,z, and
2N−1 − 1 nonvanishing correlations between a smaller number of subsystems. All
these correlations have absolute value 1. Let us now assume that the GHZ state
has an antistate |GHZN〉 with inverted correlations between all N parties (with
no constraints applied on correlations for a smaller number of parties). Then, the
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fidelity between the GHZ state and its antistate, expressed by the corresponding

correlation tensors TGHZN
i1,...,iN

and TGHZN
i1,...,iN

F = |〈GHZN | GHZN 〉|2 =
1

2N

∑
i1,...,iN
∈{0,x,y,z}

TGHZN
i1,...,iN

TGHZN
i1,...,iN

< 0 (3.26)

is negative because more than half of the correlations have opposite sign. Hence,
for GHZ states with an even number of qubits, there are no antistates. Thus
a general construction principle to generate antistates with an even number of
qubits cannot exist.

3.2.2. Family of genuine entangled no correlation states

In this section, a whole family of entangled three-qubit states with vanishing
tripartite correlations will be presented. As a starting point, let us consider the
three-qubit pure state

|φ(α, β)〉 = sin β cosα|001〉+ sin β sinα|010〉+ cos β|100〉 (3.27)

with α, β ∈ (0, π/2). Note that |φ(α, β)〉 (with any local unitaries applied thereon)
defines a whole subspace of tripartite entangled states within the three-qubit
Hilbert space. Mixing |φ〉 with its antistate

|φ(α, β)〉 = sin β cosα|110〉+ sin β sinα|101〉+ cos β|011〉 (3.28)

defines a family of no-correlation states

%ncφ (α, β) = 0.5 |φ(α, β) 〉〈φ(α, β) | +0.5 |φ(α, β) 〉〈φ(α, β) | . (3.29)

In the following, it will be shown that, despite of vanishing tripartite correla-
tions, all member states of the family %ncφ (α, β) are genuinely tripartite entangled.
Therefore, the entanglement criterion of Eq. 3.11 is adopted to

max
Tbi-sep

(T %, T bi-sep) < (T %, T %) (3.30)

where optimization is performed over all biseparable pure states %bi-sep. If inequal-
ity 3.30 holds, then % cannot be biseparable, i.e., it must be genuinely tripartite
entangled. Please note that here the scalar product for correlations tensors as de-
fined in Eq. 3.7 is used. As can be shown by direct calculation, the right-hand side
of Eq. 3.30 is 4 for all member states %ncφ (α, β) of the family [54]. Hence, in order
to decide for which values of α and β, the state %ncφ (α, β) is genuinely tripartite
entangled, the left-hand side of Eq. 3.30 has to be determined by performing an
optimization over all biseparable states. Since the optimization process is rather
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Figure 3.5.: Contour plot of the left-hand side of the entanglement criterion
of Eq. 3.30 for states of the family %ncφ (α, β). If the value is below 4, the state
is genuinely tripartite entangled. As can be seen, all states of the family with
α, β 6= 0 and α, β 6= π/2 are entangled.

cumbersome, only the result is shown in Fig. 3.5 (for details please refer to the
appendix of publication P3.3). As can be seen, the left-hand side of Eq. 3.30 is
below 4 for all values of α, β 6= 0 and α, β 6= π/2 (which were excluded in the
definition of |φ〉 anyway). Hence, the entire family of states %ncφ as defined in
Eq. 3.29 is genuinely tripartite entangled although, by definition, it has vanishing
tripartite correlations.

As an example state of the family %ncφ , a mixture of the tree-qubit W state

(obtained by setting α = π/3 and β = cos−1(1/
√

3)) with its antistate was
considered, i.e.,

%ncW = 0.5 |W 〉〈W | +0.5 |W 〉〈W | . (3.31)

Experimentally, such a state can be prepared by means of a four-photon symmetric
Dicke state |D(2)

4 〉 . As described by Wieczorek et al. [127], symmetric Dicke
states can be used as a resource to prepare other entangled states by appropriate
projection measurements. The W state for example can be obtained from a |D(2)

4 〉
state by projection of one qubit on |1〉. Correspondingly, the state W can be
obtained from projection on |0〉. The target state %ncW can then be generated by
evenly mixing the states W and W which is in practice realized by tracing out
the respective qubit. For details on the experimental implementation including a
description of the utilized optical setup, see publication P3.3.

At this point one might ask if a vanishing correlation does also mean that
one cannot infer another party’s measurement result from one’s own result. In
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3. Entanglement detection by correlation measurements

Figure 3.6.: Observed detection frequencies of the states |W 〉exp (red) and |W 〉exp
(blue) and %nc,expW (red and blue) when measuring in the σ⊗3z basis. The gray bars
represent the theoretically expected values. From the detection frequencies, one
can infer the correlation value Tz,z,z for the respective states. Although Tz,z,z
vanishes for the state %nc,expW , from one’s own, measurement result, one can still
make predictions about the other parties outcomes with better success probability
than for pure guessing due to nonvanishing two-party correlations, like, e.g., Tz,z,0.

order to answer this question, let us consider Fig. 3.6 which displays the relative
frequencies that were measured in order to determine the correlation Tz,z,z =
〈σz ⊗ σz ⊗ σz〉 of the experimentally prepared states |W〉, |W〉, and %ncW. For
details see publication P3.3. Please note that the computational basis |0〉 and |1〉
used so far was encoded in the polarization degree of freedom of single photons
as |0〉 −→ |H〉 and |1〉 −→ |V〉 where H stands for horizontal and V for vertical
polarization. Commonly, horizontal polarization is associated with a parity of +1
and for vertical polarization one has a parity of −1.

At first, one observes that the experimentally determined values of Tz,z,z for
|W〉 and |W〉 are close to the theoretically expected values of −1 and 1 and that
by mixing the two states, Tz,z,z becomes zero. Also the experimentally determined
bipartite correlations T0,z,z, Tz,0,z, and Tz,z,0 are in good agreement with their the-
oretical values of −1/3. With these correlations, one can make predictions based
on the parity of the measurement results of one or two parties. Let us therefore
consider the W state that is shared between three parties. Since the value of
Tz,z,z is −1, it follows that if the first two parties measure the same polarization,
the third party has to measure vertical polarization. In case the first two par-
ties measure orthogonal polarization, the third party has to measure horizontal
polarization. Similarly, from the bipartite correlations one can conclude that two
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3.2. No correlation states

parties will measure the same polarization with probability 1/3 and orthogonal
polarization wit probability 2/3. Hence, for the state |W〉 and correspondingly
for |W〉, from the parity of the measurement results of one or two parties, one can
make predictions about the third party’s outcome with better success probability
than pure guessing.

Interestingly, similar statements can also be made for the state %ncW. The ex-
perimental value of Tz,z,z is close to the theoretical value of 0. The bipartite
correlations T0,z,z, Tz,0,z, and Tz,z,0 are also in good agreement with their expected
values of −1/3. In contrast to the states |W〉 and |W〉, here, due to the van-
ishing correlation Tz,z,z, it is not possible to infer the third party’s measurement
result from the product of the parities of the first two parties. However, from the
bipartite correlations one can still infer that two parties will measure the same
polarization with probability 1/3 and orthogonal polarization wit probability 2/3.
In summary, although the correlation Tz,z,z vanishes for the state %ncW, one can,
based on the bipartite correlations T0,z,z, Tz,0,z, and Tz,z,0, still make predictions
with a success probability higher than for pure guessing.

As a closing remark to this section, it seems appropriate to shortly comment
on the term correlation. In response to the paper by Kaszlikowski et al. [74], a
vivid discussion on a proper definition of classical and quantum correlations set in.
Bennet et al. [75], for example, proposed a set of postulates that every measure
of genuine multipartite correlations should fulfill:

Postulate 1 : If an N -partite state does not have genuine N -partite correla-
tions and on adds a party in a product state, then the resulting N+1-partite
state does not have genuine N -partite correlations.

Postulate 2 : If an N -partite state does not have genuine N -partite corre-
lations, then local operations and unanimous postselection (which mathe-
matically corresponds to the operation Λ1 ⊗ Λ2 ⊗ ... ⊗ ΛN , where N is the
number of parties and each Λi is a trace nonincreasing operation acting on
the ith party’s subsystem) cannot generate genuine N -partite correlations.

Postulate 3 : If an N -partite state does not have genuine N -partite corre-
lations, then if one party splits his subsystem into two parts, keeping one
part for himself and using the other to create a new N + 1-st subsystem,
then the resulting N + 1-partite state does not have genuine N + 1-partite
correlations.

According to these postulates, the correlation function as defined in Eq. 2.41
cannot be called a measure of genuine N -partite correlations as can be directly
shown. Let us therefore consider the N -qubit state |00...0〉 which has a vanishing
Tx,x,...,x correlation, i.e., Tx,x,...,x = Tr[| 00...0 〉〈 00...0 | σx ⊗ σx ⊗ ... ⊗ σx] = 0.
However, by applying the local unitary transformation U = HWP(22.5◦)⊗N on
the state one obtains Tx,x,...,x = Tr[U | 00...0 〉〈 00...0 | U †σx ⊗ σx ⊗ ... ⊗ σx] = 1
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3. Entanglement detection by correlation measurements

which is a violation of postulate 2. Hence, Tx,x,...,x and correspondingly all other
correlations as defined in Eq. 2.41 cannot be a measure of genuine N -partite
correlation according to the above postulates2. Interestingly, Bennet et al. could
not find a measure satisfying all their postulates.

In another approach, Giorgi et al. [76] used an information-theoretic definition of
multipartite correlations. According to their definition, genuine classical tripartite
correlations of 0.813 bit and tripartite genuine quantum tripartite correlations of
0.439 bit are assigned to the state %ncW. However, also the measure by Giorgi et
al. does not fulfill all postulates by Bennet et al. At the time of writing, it is
still an open question whether a rigorous and easy to calculate measure of genuine
correlations which is based on plausible postulates can be given.

3.3. Publications

2Please note that correlations according to Eq. 2.41 cannot be a measure at all as they can
increase under local unitary operations.
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We introduce an experimental procedure for the detection of quantum entanglement of an unknown

quantum state with a small number of measurements. The method requires neither a priori knowledge of

the state nor a shared reference frame between the observers and can thus be regarded as a perfectly state-

independent entanglement witness. The scheme starts with local measurements, possibly supplemented

with suitable filtering, which essentially establishes the Schmidt decomposition for pure states.

Alternatively we develop a decision tree that reveals entanglement within few steps. These methods

are illustrated and verified experimentally for various entangled states of two and three qubits.

DOI: 10.1103/PhysRevLett.108.240501 PACS numbers: 03.67.Mn, 03.65.Ta, 03.67.Bg, 42.50.Ex

Introduction.—Entanglement is the distinguishing fea-
ture of quantum mechanics and it is the most important
resource for quantum information processing [1,2]. For
any experiment it is thus of utmost importance to easily
reveal entanglement, ideally with as little effort as
possible. Common methods suffer from disadvantages.
On the one hand, employing the Peres–Horodecki cri-
terion [3,4] or evaluating entanglement measures, one
can identify entanglement in arbitrary states; however,
it requires full state tomography. On the other hand,
various entanglement witnesses [4–10] can be deter-
mined with much fewer measurements, but they give
conclusive answers only if the state under investigation
is close to the witness state; i.e., they require a priori
knowledge.

Recently, it has been shown that the existence of entan-
glement can be inferred from analyzing correlations among
the measurement results on the subsystems of a quantum
state. The properly weighted sum of correlations will over-
come characteristic thresholds only if the state is entangled
[11]. Here we further develop this approach to obtain a
simple and practical method to detect entanglement of all
pure states and some mixed states by measuring only a
small number of correlations. Since the method is adaptive,
it does not require a priori knowledge of the state nor a
shared reference frame between the possibly remote ob-
servers, and thus it greatly simplifies the practical applica-
tion. We describe two schemes. The first one essentially
can be seen as a direct implementation of Schmidt decom-
position, which identifies the maximal correlation directly.
For bipartite pure systems, this approach can be divided
conceptually into two stages: (i) calibration that establishes
the experimental Schmidt decomposition [12,13] of a pure
state by local measurements and suitable filtering and
(ii) two correlation measurements to verify the entangle-
ment criterion. The second scheme shows how to use a

decision tree to obtain a rapid violation of the threshold,
thereby identifying entanglement.
Entanglement criterion.—For a two-qubit quantum state

�, Alice and Bob observe correlations between their local
Pauli measurements �k and �l, respectively. They are
defined as the expectation values of the product of the
two measurements, Tkl ¼ Tr½�ð�k � �lÞ�, with the so-
called correlation tensor elements Tkl 2 ½1;�1�. The local
values Tk0 (T0l), with �0 being the identity operator, form
the local Bloch vector of Alice (Bob). Using these mea-
surements, a sufficient condition for entanglement can
be formulated as [11,14]:

X
k;l¼x;y;z

T2
kl > 1 ) � is entangled: (1)

For pure states this is also a necessary condition, while for
mixed states care has to be taken. For mixed states, the
likelihood of detecting the entanglement decreases with
purity [15]. An extension of (1) can generally identify
entanglement of an arbitrary mixed state, however, then
losing the state independence [11,16]. Note two important
facts. First, Eq. (1) can be seen as a state-independent
entanglement witness, derived without any specific family
of entangled states in mind. Second, to test whether the
state is entangled, it is sufficient to break the threshold;
i.e., it is neither required to measure all correlations nor to
compute the density matrix [17]. Rather, it is now the goal
to find strategies that minimize the number of correlation
measurements. We show how this can be done by a
particularly designed decision tree, or by identifying a
Schmidt decomposition from local results and filtering
when necessary.
Schmidt decomposition.—Consider pure two-qubit

states. Any such state has a Schmidt decomposition
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jc Si ¼ cos�jaijbi þ sin�ja?ijb?i; � 2
�
0;
�

4

�
; (2)

where the coefficients are real and the local bases fjai,
ja?ig and fjbi, jb?ig are called the Schmidt bases. Once the
bases are known, Alice constructs her local measurements
�z0 ¼ jaihaj � ja?iha?j and �y0 ¼ ija?ihaj � ijaiha?j,
and so does Bob in analogy. They can now detect entan-
glement with only two correlation measurements because
T2
z0z0 þ T2

y0y0 ¼ 1þ sin22� > 1 for all pure entangled

states. Note, the laboratories are not required to share a
common reference frame.

In order to extract the Schmidt bases from experimental
data, one starts with local measurements, determining the

local Bloch vectors ~�ð ~�Þ of Alice (Bob). (Those vectors

are related to the correlation tensor coefficients via �i ¼
Ti0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
x0 þ T2

y0 þ T2
z0

q
.) We consider two cases. First, sup-

pose that a pure state has nonvanishing local Bloch vectors.
Their directions define the Schmidt bases of Alice and Bob
up to a global phase�. Writing these bases in the computa-
tional basis

jai ¼ cos�Aj0i þ ei’A sin�Aj1i;
ja?i ¼ sin�Aj0i � ei’A cos�Aj1i;
jbi ¼ cos�Bj0i þ ei’B sin�Bj1i;

jb?i ¼ ei�ðsin�Bj0i � ei’B cos�Bj1iÞ; (3)

we see that the required coefficients can be inferred di-
rectly from the local Bloch vectors, ~� ¼ ðsin2�A cos’A;
sin2�A sin’A; cos2�AÞ on Alice’s side, and similarly for
Bob. The global phase of jb?i shows up as the relative

phase in the decomposition (2); i.e., jc Si ¼ cos�jaijbi þ
sin�ei�ja?ij~b?i (with jb?i ¼ ei�j~b?i). It can be deter-

mined, for example, from the Tyy correlation as cos� ¼
Tyy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

x0 � T2
y0 � T2

z0

q
. If Bob would use the basis

fjbi; j~b?ig to build his observables �z00 and �y00 , the corre-

sponding correlations Ty0y00 ¼ sin2� cos�would vanish for

cos� ¼ 0 and the two measurements Tz0z00 and Ty0y00 would

not suffice to detect entanglement. In such a case, however,
the other two correlations, Tx0y00 and Ty0x00 , are nonzero, and

can be used to reveal entanglement. Therefore, the deter-
mination of � in the calibration is not essential if one
accepts possibly one more correlation measurement.

Second, in the case of vanishing local Bloch vectors, the
pure state under consideration jc mi is maximally en-
tangled and admits infinitely many Schmidt decomposi-
tions. In order to truly prove entanglement, Bob can thus
freely choose some basis, say computational basis, for
which the state will now be of the form jc mi ¼ 1ffiffi

2
p �

ðjaij0i þ ja?ij1iÞ. The basis of Alice can be found after
filtering by Bob in his Schmidt basis: F ¼ j0ih0j þ "j1ih1j.
(For an actual implementation, see the experimental

section.) When Bob informs Alice that his detector behind
the filter clicked, the initial state becomes

ð1 � FÞjc mi ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2

p ðjaij0i þ "ja?ij1iÞ: (4)

Note that, due to filtering, a nonvanishing local Bloch
vector emerges for Alice. Thus, the respective Schmidt
basis can be found with the method described above and
used for the evaluation of T2

z0z þ T2
y0y.

Decision tree.—Our second algorithm for entanglement
detection does not even require calibration and also applies
directly to mixed states. Alice and Bob choose three or-
thogonal local directions x, y, and z independently from
each other and agree to only measure correlations along
these directions. In Fig. 1 we show exemplarily which
correlations should be measured in order to detect entan-
glement in a small number of steps. Starting with a mea-
surement of Tzz, one continues along the solid (or dotted)
arrow if the correlation is higher (or lower) than some
threshold value (e.g., 1=2 in Fig. 1). The tree is based on
the principle of correlation complementarity [19–22]: in
quantum mechanics there exist trade-offs for the knowl-
edge of dichotomic observables with corresponding anti-
commuting operators. For this reason, if the correlation
jTzzj is big, correlations jTzxj, jTzyj, jTxzj, and jTyzj have to
be small, because their corresponding operators anticom-
mute with the operator �z � �z. Therefore, the next
significant correlations have to lie in the xy plane of the
correlation tensor, and thus the tree continues with a
measurement of the Tyy correlation. This concept can be

FIG. 1 (color online). The decision tree for efficient two-qubit
entanglement detection. No shared reference frame is required
between Alice and Bob; i.e., they choose their local x, y, z
directions randomly and independently, which effectively gives
rise to a basis fxA; yA; zAg for Alice and fxB; yB; zBg for Bob
(not detailed in the figure or the main text). The scheme starts
with measuring Tzz and follows at each step along the dashed
arrow if the modulus of correlation is less than 1

2 and otherwise

along the continuous arrow. The algorithm succeeds as soon asP
T2
ij > 1. The measurements in the blue shaded area suffice to

detect all maximally entangled pure states with Schmidt-base
vectors along x,y, or z.

PRL 108, 240501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

240501-2

3. Entanglement detection by correlation measurements

50



generalized to multiqubit states. A decision tree for three
qubits is given in the Supplemental Material [15]. The
number of detected states grows with the number of steps
through the decision tree. Since condition (1) is similar to
the purity of a state, the scheme succeeds faster the more
pure a state is (see Supplemental Material [15] for detailed
analysis). Varying the threshold value does not lead to any
significant changes in the statistic of detected states.

Finally, we connect both methods discussed here for the
analysis of multiqubit states. A numerical simulation for
pure states reveals that the correlation measurement along
local Bloch vectors gives correlations close to the maximal
correlations in more than 80% of cases. Therefore, these
local directions give an excellent starting point for the
decision tree.

Experiment.—For the demonstration of these new sim-
ple analysis methods we first use two photon-polarization
entangled states. In the following, we will thus replace the
computational basis states by horizontal (j0i ! jHi) and
vertical (j1i ! jVi) linear polarization, respectively. The
photon source (Fig. 2) is based on the process of sponta-
neous parametric down-conversion (SPDC), using a pair of
crossed type I cut�-barium-borate (BBO) crystals pumped
by a cw laser diode at a wavelength of 	pump ¼ 402 nm,

with linear polarization of 45�. It emits pairs of horizon-
tally and vertically polarized photons that superpose to the
state j�i ¼ 1ffiffi

2
p ðjHijHi þ ei
jVijViÞ [23]. The spectral

bandwidth of the photons is reduced to 5 nm using inter-
ference filters, and two spatial emission modes are selected
by coupling the photon pairs into two separate single-mode
fibers.

For the purpose of preparing any pure two-qubit state,
the polarization of each photon can be rotated individually
by a set of quarter- (QWP) and half-wave plates (HWP) in
each mode. By tilting an yttrium vanadate crystal (YVO4)
in front of the BBOs, the relative phase 
 among the
photon pairs can be set. Additionally, the state can be
made asymmetric by removing a portion of vertically
polarized light in one spatial mode with a Brewster plate

(BP). In the last step of the experiment, the polarization
of each photon is analyzed with additional quarter- and
half-wave plates and projection on jHi and jVi using a
polarizing beam splitter (PBS). The local filtering of a
maximally entangled state can be accomplished by placing
a Brewster plate in front of the analysis wave plates. This
Brewster plate reflects with a certain probability vertically
polarized photons and, together with detection of a photon
behind the Brewster plate, implements the filtering opera-
tion (4). Finally, the photons are detected by fiber-coupled
single-photon detectors connected to a coincidence logic.
Experimental Schmidt decomposition.—Let us consider

the state shown in Fig. 3(a). The protocol starts with Alice
and Bob locally measuring the polarization of the photons,
enabling them to individually determine the local Bloch
vectors. For high efficiencies, which are possible in experi-
ments with atoms or ions, the local measurements can
indeed be done independently [24]. If nonvanishing local
Bloch vectors can be identified, one can proceed to the next

FIG. 2 (color online). Scheme of the experimental setup. The
state j�i ¼ 1ffiffi

2
p ðjHijHi þ ei
jVijViÞ is created by type I SPDC

process. An yttrium vanadate crystal (YVO4) is used to manipu-
late the phase 
 of the prepared state. For preparation and
analysis of the state, half- (HWP) and quarter-wave plates
(QWP) are employed. Brewster plates (BP) can be introduced
to make the state asymmetric and to perform the filter operation,
respectively.
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FIG. 3 (color online). Demonstration of Schmidt decomposi-
tion of a maximally entangled state prepared in unknown bases.
The correlation tensor and corresponding density matrix are
depicted for (a) the unknown state, (b) the state after applying
local filtering, and (c) the state analyzed in the Schmidt bases. It
is important to note that only the blue shaded elements of the
correlation tensors will be measured, as this suffices to prove
entanglement. The full correlation tensors and the corresponding
states are only shown for completeness and didactic reasons.
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step. For the example here, the local expectation values are
close to zero and filtering has to be applied. By using a
Brewster plate in front of Bob’s analysis wave plate, local
Bloch vectors emerge as long as the filtering operation is
successful [Fig. 3(b)] [25]. In this case, we obtain T0l ¼
ð0:000; 0:040; 0:334Þ and Tk0 ¼ ð0:188;�0:034; 0:336Þ.

In the next step, Alice and Bob use their local Bloch
vectors to realign their analyzers to the new local Schmidt

bases fjai, ja?ig and fjbi, j~b?ig, respectively. This process
diagonalizes the correlation tensor, as depicted in Fig. 3(c).
Therefore, it is only necessary to measure Tz0z00 ¼ 0:922�
0:015 and Ty0y00 ¼ �0:864� 0:015 to prove entanglement,

since T2
z0z00 þT2

y0y00 ¼1:597�0:038>1. Hence, 2�3 local

measurements are needed in the first step of the algorithm,
three combined measurements are needed for filtering if
necessary, and finally only two correlation measurements
have to be performed for entanglement detection.

Application of the decision tree.—In order to demonstrate
the application of the decision tree, we will apply it to three
states. For the first state 1ffiffi

2
p ðjHijHiþjVijViÞ, whose corre-

lation tensor is depicted in Fig. 4(a), the decision tree (Fig. 1)
starts with the measurement of the correlation Tzz ¼
0:980� 0:015 and continues with Tyy¼�0:949�0:015.

These two measurements already prove entanglement
since T2

zz þ T2
yy ¼ 1:869� 0:041> 1. For a second state,

1ffiffi
2

p ðjRijRiþijLijLiÞ, we obtain a correlation of Tzz ¼
�0:056� 0:015, close to zero [Fig. 4(b)]. Consequently,
the next steps according to our algorithm (Fig. 1) are to
determine the correlation Tyy ¼ 0:978� 0:015, followed

by Txz ¼ �0:959� 0:015, with their squares adding up to

a value of 1:879� 0:041> 1 and hence proving entangle-
ment. As a last example, we consider the initial state of
Fig. 3. According to our decision tree, we need to measure
Tzz ¼ 0:768� 0:015, Tyy ¼ 0:018� 0:015, and Tyx ¼
�0:922� 0:015, thus giving a value of 1:440� 0:036> 1
and proving entanglement with only three steps.
Many qubits.—For the demonstration of multiqubit en-

tanglement detection,we use two three-photon, polarization-
entangled states: theW state [26] and theG state [27] (Fig. 5).
In order to observe these states, a collinear type II SPDC
source is used togetherwith a linear setup to prepare the four-

photon Dicke state Dð2Þ
4 [28,29]. Once the first photon is

measured to be vertically polarized, the other three photons
are projected into the W state. Similarly, the three-photon
G state is obtained if the first photon is measured to beþ45�
polarized.
The protocol for entanglement detection starts with

observers locally measuring the polarization of the photons,
enabling them to individually determine the local
Bloch vectors. For the G state we obtain Ti00¼
ð0:636;�0:008;�0:015Þ, T0j0¼ð0:623;�0:092;0:010Þ, and
T00k¼ð0:636;0:070;0:022Þ. The local Bloch vectors suggest
that the correlation Txxx is big. Therefore, the decision tree
starts with the measurement of Txxx ¼ 0:904� 0:025 and
continues with Txzz ¼ �0:578� 0:025 (see Fig. 2 in the
Supplemental Material [15]). These two measurements al-
ready prove entanglement because T2

xxx þ T2
xzz ¼ 1:152�

0:038> 1. For the W state, the local Bloch vectors Ti00 ¼
ð0:016;�0:070; 0:318Þ, T0j0 ¼ ð�0:010;�0:073; 0:308Þ,
and T00k ¼ ð�0:011;�0:0547; 0:319Þ suggest that now the
correlation Tzzz is big. Indeed, we observe Tzzz ¼ �0:882�
0:025. The decision tree is the same as above but with local
axes renamed as follows: x ! z ! y ! x. Therefore, the
second measurement has to be Tzyy. With Tzyy ¼ 0:571�
0:025, we again prove entanglement as T2

xxx þ T2
zyy ¼

1:104� 0:037> 1.
Conclusions.—We discussed and experimentally imple-

mented two methods for fast entanglement detection for
states about which we have no a priori knowledge. They
are well suited for quantum communication schemes as the
parties do not have to share a common reference frame,
making the scheme insensitive to a rotation of the qubits
during their transmission to the distant laboratories.
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FIG. 4 (color online). Correlation tensors and density matrices
of the experimental realization of two different states. The imagi-
nary parts of the density matrices are negligible and therefore
skipped. Using the decision tree, only the blue shaded correlations
have to be measured for detecting entanglement. The errors of the
correlations are <0:015 for (a) and <0:023 for (b).

FIG. 5 (color online). Density matrices of the experimental
realization of the G andW state. The corresponding fidelities are
equal to 92.23% and 89.84%.
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The two methods use a particularly simple and practical
entanglement identifier [11]. One of them can be seen as
experimental Schmidt decomposition and the other estab-
lishes a sequence of correlation measurements, leading to
entanglement detection in a small number of steps.
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In this Supplementary Information we discuss the efficiency of the method based on the decision
tree for pure and mixed states of two qubits and present an algorithm that constructs the tree for
many qubits.

DECISION TREE

This section is devoted to study the efficiency of the
decision tree algorithm described in the main text. Some
results in this section are analytical and some are numer-
ical. In all our numerical investigations (unless explicitly
stated otherwise) we used the decision tree of the main
text (for two qubits) and in cases when going through the
whole tree did not reveal entanglement we augmented it
with additional measurements of those correlations which
were not performed until that moment. The order of the
additional measurements also results from the correlation
complementarity (anti-commutation relations) [1]. With
every remaining measurement we associate the “priority”
parameter

Pij =
∑
k 6=i

Pij(Tkj) +
∑
l 6=j

Pij(Til), (1)

that depends on the measured correlation tensor elements
of the decision tree in the following way

Pij(Tmn) =
{ T 2

mn if Tmn was performed before,
0 else.

(2)

According to the correlation complementarity there is a
bigger chance that this correlation is significant if the
value of the corresponding parameter is small. Therefore,
the correlations Tij with lower values of Pij are measured
first.

Let us consider the following example. The measured
correlations of the decision tree are as follows: Tzz = 0.7,
Txx = 0.1, and Tyy = 0.4. Therefore, Pxy = Pyx =
T 2
xx + T 2

yy = 0.17 , Pxz = Pzx = T 2
xx + T 2

zz = 0.5, and
Pzy = Pzy = T 2

zz + T 2
yy = 0.65. Accordingly the order of

the remaining measurements is as follows: first measure
xy, then yx, next xz, zx, yz and zy.

Two qubits

Werner states

As an illustration of how the decision tree works for a
well-known class of mixed states we first consider Werner
states. It turns out that not all entangled states of the
family can be detected.

Consider a family of states

ρ = p
∣∣ψ−〉 〈ψ−∣∣+ (1− p)1

4
11, (3)

where |ψ−〉 = 1√
4
(|01〉 − |10〉) is the Bell singlet state,

1
411 describes the completely mixed state of white noise,
and p is a probability. Its correlation tensor, written in
the same coordinate system for Alice and Bob, is diago-
nal with entries Txx = Tyy = Tzz = −p, arising from the
contribution of the entangled state. The states (3) are en-
tangled if and only if p > 1

3 , whereas the decision tree re-
veals that these states are entangled for p > 1√

3
≈ 0.577.

This is because only three elements contribute to the cri-
terion. Note that the value of the decision parameter
is irrelevant here. Furthermore, a random choice of lo-
cal coordinate directions does not help. Although more
steps would be involved in the decision tree the sum of
squared correlations is invariant under local unitary op-
erations and therefore only for p > 1√

3
entanglement is

detected for the Werner state.

Entangled state mixed with colored noise

An exemplary class of density operators for which the
decision tree detects all entangled states is provided by:

γ = p
∣∣ψ−〉 〈ψ−∣∣+ (1− p) |01〉 〈01| , (4)

where entanglement is mixed with colored noise |01〉
bringing anti-correlations along local z axes. This state
has the following non-vanishing elements of its correla-
tion tensor Txx = Tyy = −p and Tzz = −1. Therefore,
the decision tree allows detection of entanglement for this
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class of states in two steps. Note that the state is entan-
gled already for an infinitesimal admixture of the Bell
singlet state as can be shown for a random choice of lo-
cal coordinate systems.

Random mixed states

Fig. 1 shows how the efficiency of the algorithm grows
with the purity of tested states. The efficiency is mea-
sured by the fraction of detected entangled states ob-
tained from extensive Monte Carlo sampling in the two
qubit state space. For nine steps the algorithm detects
all the pure states. This is expected because Eq. (1) of
the main text is a necessary and sufficient condition for
the detection of entanglement of pure states.

FIG. 1: Efficiency of the decision tree for two qubit random
mixed states.

Many qubits

Algorithm for generation of the tree

The principle behind the decision tree is the correlation
complementarity [1]. Correlation complementarity states
that for a set of dichotomic anti-commuting operators
{α1, . . . , αk} the following trade-off relation is satisfied
by all physical states:

T 2
α1

+ . . . T 2
αk
≤ 1, (5)

where Tα1 is the average value of observable α1 and so
on. Therefore, if one of the average values is maximal,
±1, the other anti-commuting observables have vanishing
averages. This motivates taking only sets of commuting
operators as different branches of the decision tree.

Decision tree for three qubits

This tree is an example of the application of the al-
gorithm presented in the previous section. Fig. 2 shows
only one branch of the whole tree.

A numerical simulation reveals that the correlation
measurement along local Bloch vectors gives correlations
close to the maximal correlations of a pure multi-qubit
state in more than 80% of the cases. Therefore, these
local directions give an excellent starting point of the de-
cision tree.

Exemplarily, the branch begins with Txxx assuming
that this correlation is big. If the local Bloch vectors
indicate correlation along a different directions it is ad-
vantageous to correspondingly change the elements of the
decision tree (see main text).

FIG. 2: One branch of the decision tree for three qubits.

[1] P. Kurzyński, T. Paterek, R. Ramanathan, W. Laskowski,
and D. Kaszlikowski, Phys. Rev. Lett. 106, 180402 (2011)
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Experimental procedures are presented for the rapid detection of entanglement of unknown arbitrary quantum
states. The methods are based on the entanglement criterion using accessible correlations and the principle of
correlation complementarity. Our first scheme essentially establishes the Schmidt decomposition for pure states,
with few measurements only and without the need for shared reference frames. The second scheme employs a
decision tree to speed up entanglement detection. We analyze the performance of the methods using numerical
simulations and verify them experimentally for various states of two, three, and four qubits.

DOI: 10.1103/PhysRevA.88.022327 PACS number(s): 03.67.Mn

I. INTRODUCTION

Entanglement is one of the most fundamental features
of quantum physics and is considered to be the key re-
source for quantum information processing [1–3]. In order
to detect entanglement, highly efficient witness operators
are widely used nowadays [4–10]. However, these operators
give conclusive answers only for states close to the target
state. To detect entanglement of arbitrary states, positive,
but not completely positive, maps [1,4] are the most uni-
versal entanglement identifiers. However, they are laborious
to use as they require full state tomography. Therefore,
more efficient schemes to detect entanglement are most
desired.

It has been recently shown that the presence of entangle-
ment in a quantum state is fully characterized by suitable
combinations of experimentally accessible correlations and
expectation values of local measurements [11]. This enables
a simple and practical method to reveal entanglement of all
pure states and some mixed states by measuring only few
correlations [12]. Since the method is adaptive, it does not
require a priori knowledge of the state nor a shared reference
frame between the possibly remote observers, and thus greatly
simplifies the practical application.

Here we extend these results and analyze in detail the
possible performance of two schemes for entanglement
detection. The first one can be seen as an experimental
implementation of Schmidt decomposition, which identifies
the maximal correlations through local measurements only.
The second scheme shows how to deduce a strategy (decision
tree) to find the maximal correlations of an unknown state
and obtain a rapid violation of the threshold, identifying
entanglement even for an arbitrary number of qubits. The
physical principle behind both of our schemes is correlation
complementarity [13]. It makes use of trade-offs between
correlations present in quantum states. Once a measured
correlation is big, other related correlations have to be small,
and it is advantageous to move to measurements of the remain-
ing correlations. This simplifies the entanglement detection
scheme as a lower number of correlation measurements is
required.

II. ENTANGLEMENT CRITERION

A quantum state is entangled if the sum of squared measured
correlations exceeds a certain bound [11]. This identifier thus
neither requires the measurement of all correlations in a
quantum state nor the reconstruction of the density matrix.
Rather, it is now the goal to find strategies that minimize the
number of correlation measurements. We show how this can
be done in different ways described in the subsequent sections.
The first method is to identify a Schmidt decomposition
from local results and filtering when necessary; the second
is a particularly designed decision tree based on correlation
complementarity.

Any N -qubit density matrix can be expressed as

ρ = 1

2N

3∑
μ1,...,μN=0

Tμ1,...,μN
σμ1 ⊗ · · · ⊗ σμN

, (1)

where σμn
∈ {σ0,σx,σy,σz} is the respective local Pauli op-

erator of the nth party (σ0 being the identity matrix) and
the real coefficients Tμ1,...,μN

∈ [−1,1] are the components of
the correlation tensor T̂ . They are given by the expectation
values of the products of local Pauli observables, Tμ1,...,μN

=
Tr[ρ(σμ1 ⊗ · · · ⊗ σμN

)], and can be determined by local
measurements performed on each qubit.

For N -qubit states, pure or mixed, the following sufficient
condition for entanglement holds [11]:

3∑
i1,...,iN =1

T 2
i1,...,iN

> 1 ⇒ ρ is entangled. (2)

Note that to prove that a state is entangled, it is sufficient
to break the threshold, i.e., in general it is not necessary to
measure all correlations. Using fundamental properties of the
correlation tensor, we design schemes to minimize the number
of required correlation measurements.

III. SCHMIDT DECOMPOSITION

Any pure state of two qubits admits a Schmidt decomposi-
tion [14,15],

|ψS〉 = cos θ |a〉|b〉 + sin θ |a⊥〉|b⊥〉, θ ∈ [
0, π

4

]
, (3)
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where the local bases {|a〉,|a⊥〉} and {|b〉,|b⊥〉} are called the
Schmidt bases of Alice and Bob, respectively.

This is an elementary description of bipartite pure quantum
states, where the existence of a second term in the decom-
position directly indicates entanglement. In addition, in the
Schmidt bases, the correlation tensor of a two-qubit state takes
a particularly simple form and shows maximal correlations in
the state. Therefore, finding the Schmidt bases can be regarded
as a redefinition of the measuring operators relative to the state
and thus leads to rapid entanglement detection, in at most three
subsequent measurements of correlations.

Once the bases are known, Alice constructs her local
measurements, σz′ = |a〉〈a| − |a⊥〉〈a⊥| and σy ′ = i|a⊥〉〈a| −
i|a〉〈a⊥|, and so does Bob. They can now detect entanglement
by using the simple criterion (2) with only two correlation
measurements because T 2

z′z′ + T 2
y ′y ′ = 1 + sin2 2θ > 1 for all

pure entangled states. Note that since the bases of Alice and
Bob are determined on the fly, the laboratories are not required
to share a common reference frame.

In the next sections, we present how to find the Schmidt
bases (up to a global phase) from the experimental results
gathered on individual qubits. We split the discussion into
the two cases of nonvanishing and vanishing Bloch vectors,
i.e., local averages (Tx0,Ty0,Tz0), describing the states of the
individual qubits.

This systematic procedure to verify entanglement in a pure
two-qubit state is represented in Fig. 1, with the sections
describing the particular steps.

A. From nonvanishing Bloch vectors to Schmidt bases

Consider first the case of nonzero Bloch vectors. The
Schmidt bases of Alice and Bob are related to the standard
bases as follows:

|a〉 = cos ξA|0〉 + eiϕA sin ξA|1〉,
|a⊥〉 = sin ξA|0〉 − eiϕA cos ξA|1〉,

(4)
|b〉 = cos ξB |0〉 + eiϕB sin ξB |1〉,

|b⊥〉 = eiδ(sin ξB |0〉 − eiϕB cos ξB |1〉).
The global phase of |b⊥〉 is relevant and required for the
characterization of an arbitrary pure state, as can be seen
from parameter counting. An arbitrary pure two-qubit state
is parametrized by six real numbers (four complex amplitudes
minus normalization condition and an irrelevant global phase).
By plugging Eqs. (4) into the Schmidt decomposition (3), we
indeed find the six relevant real parameters.

Any two-qubit state written in the standard bases of Alice
and Bob can be brought into the Schmidt basis of Alice by the
transformation

U (ξA,ϕA) = |0〉〈a| + |1〉〈a⊥|
= cos ξA|0〉〈0| + e−iϕA sin ξA|0〉〈1|

+ sin ξA|1〉〈0| − e−iϕA cos ξA|1〉〈1|. (5)

The coefficients ξA and ϕA of this transformation can be read
from a nonvanishing normalized Bloch vector,

	α ≡
	T A

| 	T A| = (sin 2ξA cos ϕA, sin 2ξA sin ϕA, cos 2ξA). (6)

FIG. 1. The systematic way to experimentally verify entangle-
ment of an arbitrary pure two-qubit state without any a priori
knowledge and in the absence of a common reference frame. The
steps of this diagram are described in detail in the main text.

Finally, the coefficients of the Schmidt basis in the stan-
dard basis are functions of components of vector 	α =
(Tx0,Ty0,Tz0)/

√
T 2

x0 + T 2
y0 + T 2

z0 built out of experimentally
accessible, local expectation values of Pauli measurements:

cos ξA =
√

1 + αz

2
, sin ξA =

√
1 − αz

2
,

(7)
cos ϕA = αx√

1 − α2
z

, sin ϕA = αy√
1 − α2

z

.

If Tz0 = ±1, the standard basis is the Schmidt basis. Note that
instead of transforming the state, we can as well transform the
measurement operators σn′ = U †σnU . The new operators are
given by

σx ′ = −αxαzσx − αyαzσy + (
1 − α2

z

)
σz√

1 − α2
z

,

(8)
σy ′ = αyσx + αxσy√

1 − α2
z

, σz′ = αxσx + αyσy + αzσz,

and the Schmidt basis is the z′ basis, i.e., σz′ = |a〉〈a| −
|a⊥〉〈a⊥|.

The equivalent analysis has to be done for the Schmidt
basis of Bob. In summary, the Schmidt bases are defined by
the direction of the Bloch vectors of the reduced states, up to a

022327-2
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global phase. The global phase of |b⊥〉 shows up as a relative
phase in the Schmidt decomposition. As it is not obtainable
by local measurements, it influences entanglement detection
using operators (8).

B. Entanglement detection

Let us denote the basis established by local measurements
of Bob by {|b̃〉,|b̃⊥〉}, i.e., |b〉 = |b̃〉 and |b⊥〉 = eiδ|b̃⊥〉. Using
the locally determined bases, the Schmidt decomposition takes
the form

|ψS〉 = cos θ |a〉|b̃〉 + eiδ sin θ |a⊥〉|b̃⊥〉. (9)

The correlations that Alice and Bob observe in the measure-
ments related to locally determined bases are Tz′z′ = 1 and
Tx ′x ′ = sin 2θ cos δ, Ty ′y ′ = − sin 2θ cos δ, Tx ′y ′ = sin 2θ sin δ,
Ty ′x ′ = sin 2θ sin δ. Note that the correlation Ty ′y ′ would vanish
for cos δ = 0 and the two measurements Tz′z′ and Ty ′y ′ are no
longer sufficient (they were sufficient if the full knowledge
about the Schmidt bases had been available). In such a
case, however, the other two correlations, Tx ′y ′ and Ty ′x ′ ,
are nonzero and can be used to reveal entanglement. If the
first two measurements are not sufficient to overcome the
entanglement threshold of (2), then the third measurement of
Tx ′y ′ correlations will definitely allow exceeding the threshold
for every pure entangled state.

C. Vanishing Bloch vectors: Filtering

If the two-qubit state is maximally entangled, i.e., in the
Schmidt decomposition |κ〉 = 1√

2
(|a〉|b〉 + |a⊥〉|b⊥〉), then the

Bloch vector is of zero length, | 	T A| = 0, and the whole system
admits infinitely many Schmidt decompositions. For every
unitary operation of Alice, U , there exists an operation of
Bob, U ′, such that the state is unchanged,

U ⊗ U ′|κ〉 = |κ〉. (10)

Therefore, any basis of, say, Alice can serve as the Schmidt
basis as soon as we accordingly update the basis of Bob. Our
strategy to reveal the corresponding basis of Bob is to filter
in the chosen Schmidt basis of Alice. It is best to explain it
with an example. Assume Alice chooses the standard basis
as her Schmidt basis. Due to the mentioned invariance of the
maximally entangled state, there exists a Schmidt basis of Bob
such that

|κ〉 = 1√
2

(|0〉|b′〉 + |1〉|b′
⊥〉). (11)

The basis of Bob can be found by the filtering of Alice,
F = ε|0〉〈0| + |1〉〈1| with ε ∈ [0,1). We implemented this
operation experimentally and provide the details later. In short,
we use devices which are transparent to the |1〉 state, but
probabilistically “reflect” the |0〉 state. If we imagine that a
perfect detector is observing a port of this device where the
reflected particle travels, and we see no detection, the filter
operation is performed on the initial state. If Alice applies the
filtering on her qubit and informs Bob that the filtering was
successful, the initial state becomes

(F ⊗ 1)|κ〉 → 1√
1 + ε2

(ε|0〉|b′〉 + |1〉|b′
⊥〉). (12)

The result of filtering is that for Bob, a Bloch vector emerges
and we can again use the method described above to find his
Schmidt basis.

D. Performance

Summing up all required steps, we see that to experimen-
tally verify entanglement of any pure two-qubit state without
any further a priori knowledge requires at least 2 × 3 local
measurements to determine the Schmidt bases and, sometimes,
filtering requiring three local measurements more. Finally, two
more (or three if δ = π/2) correlation measurements allow one
to verify the entanglement criterion.

IV. DECISION TREE

Our second algorithm for entanglement detection does not
even require any initial measurements and directly applies also
to mixed states. We will split the presentation into bipartite
and multipartite cases. The decision tree provides an adaptive
method to infer the next measurement setting from previous
results.

A. Two qubits

Alice and Bob choose three orthogonal local directions
x, y, and z independently from each other and agree to only
measure correlations along these directions. In Fig. 2, we show
exemplarily which correlations should be measured in order
to detect entanglement in a small number of steps. Starting
with a measurement of Tzz, one continues along the solid
(dotted) arrow, if the correlation is higher (lower) than some
threshold value t . We performed detailed numerical analysis on
how the efficiency of entanglement detection depends on the
threshold value. The efficiency is quantified by the percentage
of entangled states detected at various steps of the decision

No.

FIG. 2. (Color online) Decision strategies to detect entanglement.
Start with a measurement of the correlation Tzz and proceed with the
correlation along the solid (dotted) arrow if the measured correlation
is higher (lower) than the chosen threshold value; here of t = 0.4. Due
to correlation complementarity, there is a good chance of detecting
entanglement in a small number of steps. The measurements in the
blue shaded area suffice to detect all maximally entangled pure states
with Schmidt-basis vectors x, y, or z.
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tree. It turns out that the efficiency does not depend much
on the threshold value and the best results are obtained for
t = 0.4. We therefore set this threshold value in all of our
simulations.

The construction of the tree is based on the principle of
correlation complementarity [13,16–18]: in quantum mechan-
ics, there exist trade-offs for the knowledge of dichotomic
observables with corresponding anticommuting operators. For
this reason, if the correlation |Tzz| is big, then correlations
|Tzx |,|Tzy |,|Txz|, and |Tyz| have to be small because their
corresponding operators anticommute with the operator σz ⊗
σz. Therefore, the next significant correlations have to lie in
the xy plane of the correlation tensor and the next step in the
tree is to measure the Tyy correlation.

In cases in which going through the whole tree did
not reveal entanglement, we augmented it with additional
measurements of correlations that were not established until
that moment. The order of the additional measurements
also results from the correlation complementarity. With
every remaining measurement, we associate the “priority”
parameter

Pij =
∑
k 
=i

Pij (Tkj ) +
∑
l 
=j

Pij (Til), (13)

which depends on the measurements of the decision tree in the
following way:

Pij (Tmn) =
{

T 2
mn if Tmn was performed before,

0 otherwise.
(14)

According to the correlation complementarity, if the value of
the corresponding parameter is small, there is a bigger chance
that this correlation is significant. Therefore, the correlations
Tij with lower values of Pij are measured first.

Let us illustrate this with the following example. The
measured correlations of the decision tree are as follows: Tzz =
0.7, Tyy = 0.6, and Txx = 0.1. Therefore, Pxy = Pyx = T 2

xx +
T 2

yy = 0.37, Pxz = Pzx = T 2
xx + T 2

zz = 0.5, and Pyz = Pzy =
T 2

zz + T 2
yy = 0.85. Accordingly, the order of the remaining

measurements is as follows: first measure xy, then yx, and
next xz,zx,yz, and zy.

B. Many qubits

Correlation complementarity, which holds also in the mul-
tipartite case, states that for a set {α1, . . . ,αk} of dichotomic
mutually anticommuting multiparty operators, the following
trade-off relation is satisfied by all physical states:

T 2
α1

+ · · · + T 2
αk

� 1, (15)

where Tα1 is the expectation value of observable α1, and so
on. Therefore, if one of the expectation values is maximal,
say Tα1 = ±1, then the other anticommuting observables
have vanishing expectation values and do not have to be
measured. In this way, we exclude exponentially many, in
number of qubits, potential measurements because that many
operators anticommute with α1, and we apply correlation
complementarity pairwise to α1 and one of the anticommuting
operators. This motivates taking only sets of commuting
operators along the branches of the decision tree that should
be followed if the measured correlations are big.

We are thus led to propose the following algorithm
generating one branch of the decision tree in which the first
measurement, called X ⊗ X ⊗ · · · ⊗ X, is assumed to have a
big expectation value.

(i) Generate all N -partite Pauli operators that commute with
X ⊗ X ⊗ · · · ⊗ X.

Such operators have an even number of local Pauli operators
different than X. Accordingly, their number is given by∑� N

2 �
j=1 22j ( N

2j ) = 1
2 (3N − 1) − Odd(N ), where Odd(N ) = 1 if

N is odd, and 0 otherwise. For example, in the three-qubit
case, the set of operators commuting with XXX consists of
12 operators: XZZ, ZZX, ZXZ, XYY , YYX, YXY , XYZ,
XZY , YXZ, YZX, ZXY , and ZYX.

(ii) Group them in strings of mutually commuting operators
that contain as many elements as possible.

We verified for N up to eight qubits (and conjecture, in
general) that the length of the string of mutually commuting
operators is L = 2N−1 + Even(N ), where Even(N ) = 1 if N is
even, and 0 otherwise. In our three-qubit example, we have the
following strings: {XXX, YXZ, XZZ, YZX}, {XXX, YYX,
XYZ, YXZ}. {XXX, XZY , YZX, YXY }, {XXX, XZZ,
ZXZ, ZZX}, {XXX, XYZ, ZXZ, ZYX}, {XXX, YXY ,
YYX, XYY }, {XXX, XYY , ZXY , ZYX}, and {XXX, ZZX,
XZY , ZXY }. We denote the number of such strings by M .

(iii) Arrange the operators within the strings and sort the
strings such that they are ordered with the same operator in the
first position, then, if possible, second, third, etc.

In this way, we produce a set of strings {S1,S2, . . . ,SM}
such that in the first position of every string, we have
Sj,1 = X ⊗ X ⊗ · · · ⊗ X; in the second position, the number
of different operators is smaller or equal to the number of
different operators in the third position, etc. After applying
that operation in the three-qubit example, we obtain {XXX,
XZZ, ZXZ, ZZX}, {XXX, XZZ, YXZ, YZX}, {XXX,
XZY , YZX, YXY }, {XXX, XZY , ZZX, ZXY }, {XXX,
XYZ, YXZ, YYX}, {XXX, XYZ, ZXZ, ZYX}, {XXX,
XYY , YXY , YYX}, and {XXX, XYY , ZXY , ZYX}.

(iv) Connect the operators of the string S1 with continuous
arrows,

S1,1 −→ S1,2 −→ · · · −→ S1,L. (16)

(v) For all other strings Sj , with j = 2, . . . ,M , check on
which position string Sj differs from Sj−1. Let us denote this
position by d. At these positions, strings are connected with
another type of arrow, yielding the tree as

Sj−1,d ��� Sj,d −→ Sj,d+1 −→ · · · −→ Sj,L. (17)

By using the strings of operators from step (iii) and
choosing some threshold as to whether to follow one or
the other string, we can now build up a decision tree, as
shown in Fig. 3. Its essential feature is that an operator with
big expectation value is followed only by the measurements
of commuting operators, irrespectively of their expectation
values.
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ijk

No.

FIG. 3. (Color online) One branch of the decision tree for three
qubits, starting with a measurement of the correlation Txxx assumed
to be big. The best efficiency is obtained for the threshold t = 0.5.

C. Bloch correlations

Finally, it would be useful to establish a measurement
suitable as a starting point of the decision tree, i.e., such that
the measured correlations have a good chance of being big. A
natural candidate is to connect both methods discussed here
and check whether the correlation measured along the Bloch
vectors of every observer (we denote it as Bloch correlations)
gives values close to the maximal correlation in a pure state. We
verified this numerically and found that the Bloch correlations
are larger than 3

4 of maximal correlations in a pure state in
100% of two-qubit states and 69% of three-qubit states, but
only in 27% of four-qubit states and 3% of five-qubit states.
Therefore, the Bloch correlations give a very good starting
point of the decision tree only for two and three qubits. We
leave it as an open question whether a simple and reliable
method exists that identifies the maximal correlations of a
pure multiqubit state.

D. Performance

Let us analyze the results on the entanglement detection ef-
ficiency for different classes of two-qubit states. As explained
in Sec. III B, at maximum, three correlation measurements are
sufficient to detect entanglement once the local Schmidt bases
of Alice and Bob are known. Here, in contrast, we study how
many correlation measurements are needed when the decision
tree is applied to an unknown entangled state.

The dependence of the efficiency of the algorithm on the
number of steps involved can be seen in Fig. 4. The efficiency
is defined by the fraction of detected entangled states with
respect to all randomly generated entangled states. For nine
steps, the algorithm detects all pure entangled states. This is
expected because Eq. (2) is a necessary and sufficient condition
for entanglement in the case of pure states. In the case of mixed
states, Fig. 4 shows how the efficiency of the algorithm scales
with the purity of the tested state. Since condition (2) is similar
to the purity of a state, obviously, the scheme succeeds the
faster a state becomes more pure.

Figure 4 also shows that the efficiency of the decision
tree grows with the amount of entanglement in a state as

No.

No.

FIG. 4. (Color online) Efficiency of the decision tree for two-
qubit random mixed states. The states were uniformly sampled
according to the Haar measure. The efficiency increases with the
purity of the state (top panel) as well as with the amount of
entanglement in a tested state (bottom panel). Note that all pure
entangled states are detected after nine steps, as well as all the states
with negativity of more than 0.2 independently of their purity. Solid
lines show the results when using the decision tree; dotted lines show
the results when using random choices for the measurements.

characterized by the negativity [19]. It turns out that the tree
detects all the states that have negativity of more than 1

5 .
We also compared the efficiency of the decision tree

algorithm to entanglement detection based on a random order
of measurements. In the first step of this protocol, Alice and
Bob randomly choose one of nine measurements that also enter
the decision tree. In the second step, they randomly measure
one of the eight remaining measurements, and so on. At each
step, condition (2) is checked for entanglement detection. Of
course, the two methods converge for higher number of mea-
surements. For a small number of measurements, the decision
tree detects entanglement roughly one step faster than the
random-measurement method. The advantage of the decision
tree with respect to a random choice of the correlations is more
pronounced for a higher number of qubits (see Sec. IV D3).

Condition (2) alone, i.e., without considering specific, state-
dependent metrics (see [11]), cannot detect all mixed entangled
states. As an illustration of how the decision tree works for
mixed states, we first consider Werner states. It turns out that
not all entangled states of this family can be detected, whereas
the following example shows a family of mixed states for
which all of the states are detected.

1. Werner states

Consider the family of states

ρ = p|ψ−〉〈ψ−| + (1 − p) 1
41, (18)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the Bell singlet state, 1

41
describes the completely mixed state (white noise), and p is
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a probability [20]. Its correlation tensor, written in the same
coordinate system for Alice and Bob, is diagonal with entries
Txx = Tyy = Tzz = −p, arising from the contribution of the
entangled state. The states (18) are entangled if and only if
p > 1

3 , whereas the decision tree reveals the entanglement
only for p > 1√

3
≈ 0.577.

2. Entanglement mixed with colored noise

An exemplary class of density operators for which the
decision tree detects all entangled states is provided by

γ = p|ψ−〉〈ψ−| + (1 − p)|01〉〈01|, (19)

i.e., the maximally entangled state is mixed with colored noise
|01〉 bringing anticorrelations along the local z axes. For this
case, quite common for type-II parametric down-conversion
sources, we obtain the following nonvanishing elements of its
correlation tensor: Txx = Tyy = −p and Tzz = −1. Therefore,
the decision tree allows detection of entanglement in this class
of states in two steps. Note that the state is entangled already
for an infinitesimal admixture of the Bell singlet state. We also
verified numerically that for a hundred random choices of local
coordinate systems, the decision tree detects entanglement
even for p > 10−3.

3. Three and more qubits

Similarly to the two-qubit case, we also studied the
efficiency of the three-qubit decision tree of Fig. 3, as well as
similar trees for higher number of qubits. The results for three
qubits are presented in Fig. 5 and reveal that the decision tree
is roughly two steps ahead of the protocol with a random order
of measurements for small number of steps. In general, the
number of steps the decision tree is ahead of the protocol with
a random order of measurements grows exponentially with the
number of qubits (see Fig. 6). The intuition behind this is that
once big correlations are measured using the decision tree, a
set of measurements exponential in size is excluded, whereas
these measurements would still be randomly sampled in the
other protocol.

No.

FIG. 5. (Color online) Efficiency of one branch of the decision
tree for three-qubit random pure states. The states were uniformly
sampled according to the Haar measure.

No.

N
o.

FIG. 6. (Color online) Efficiency of one branch of the decision
tree for many qubits compared with a random choice of measure-
ments. The plot shows the gain in the number of measurements
provided by the decision tree. Pure states were uniformly sampled ac-
cording to the Haar measure and the percentage of detected entangled
states was calculated for different number of steps (measurements)
in the tree as well as for the random order of measurements that start
with X ⊗ · · · ⊗ X for a fair comparison. We then compare the number
of measurements for which the percentage of detected entangled
states using the decision tree is the same as using the randomized
measurements and plot here the maximal difference between them.
The improvement provided by the tree grows exponentially with the
number of qubits.

V. EXPERIMENTS

The entanglement detection schemes introduced above are
experimentally evaluated by analyzing a variety of multiqubit
entangled states. These states were created by spontaneous
parametric down conversion (SPDC). Here, for the preparation
of two-qubit entangled states, a type-I source with two crossed
optically contacted β-barium-borate (BBO) crystals of 1 mm
thickness is used; see Fig. 7 [21]. The computational basis
|0〉 and |1〉 as introduced before is encoded in the polarization
state |H 〉 and |V 〉, respectively. A continuous-wave laser diode
(Nichia Corporation) at 402 nm is used to pump the BBO
crystals with approximately 60 mW. The polarization of the

Alice

Bob

BBO

AnalysisPreparation

SM

PBSSM

QWP HWP

PBS

BP C
oi

nc
id

en
ce

 C
ou

nt
er

F

F

YVO4

φ

BP

FIG. 7. (Color online) Scheme of the experimental type-I SPDC
source used to prepare the state 1√

2
(|HH 〉 + eiφ |V V 〉). The phase φ

can be set by an yttrium-vanadate crystal (YVO4). Spectral filtering
is performed by means of interference filters (F) and spatial filtering
by single mode fibers (SM). Half- (HWP) and quarter-wave plates
(QWP) are used for state preparation and analysis. Brewster plates
(BP) enable the performance of the filter operation and the preparation
of asymmetric states.
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pump light is oriented at 45◦, allowing one to equally pump
both crystals and to emit HH and V V polarized photon pairs
with the same probability. However, a delay longer than the
pump photon coherence length is acquired between the photon
pairs generated in the first or second crystal over the length
of the crystals, reducing their temporal indistinguishability.
Therefore, an yttrium-vanadate (YVO4) crystal of 200 μm
thickness is introduced in front of the BBOs to precompensate
for the delay and to set the phase φ between HH and
V V . Using this configuration, entangled states of the form
|�〉 = 1√

2
(|H 〉|H 〉 + eiφ|V 〉|V 〉) are generated [22].

In order to reduce the spectral bandwidth of the photon
pairs, interference filters centered at 805 nm with a bandwidth
of 7 nm are used. Spatial filtering is accomplished by coupling
the photons at corresponding points of their emission cones
into a pair of single-mode fibers. Polarization controllers allow
for the compensation of the polarization rotation of the fibers.
Then, the photons are transmitted through a set of quarter-
(QWP) and half-wave plates (HWP), allowing an arbitrary
transformation of the polarization state in each path. A set
of Brewster plates with a loss rate up to ≈60% for V and
high transmission for H polarized light can be introduced in
front of the wave plates to enable preparation of states. For
the analysis, both Alice and Bob are provided with HWP and
QWP as well as a filter (another Brewster plate) for Bob.
Photons are then projected onto |H 〉 and |V 〉 implemented by
a polarizing beam splitter (PBS) and respective detectors. Note
that local filtering can also be accomplished by a polarizer. The
output modes of the analyzing PBS are coupled into multimode
fibers connected to avalanche photon detectors (SPCM-AQ4C,
Perkin-Elmer module) with a photon detection efficiency of
≈50%. A coincidence logic is applied to extract the respective
coincidence count rates within a time accuracy of <10 ns.
The observed coincidence rate is approximately 200 s−1 and
a measurement time of 10 s per basis setting allows one to
register about 2000 events.

A. Schmidt decomposition

In order to perform the measurement in the Schmidt basis,
we first have to determine basis vectors from the Bloch
vectors observed by Alice and Bob. Let us consider the
state depicted in Fig. 8(a). The table to the left shows the
correlation tensor elements Tij with the Bloch vectors of Alice
(Bob) in the leftmost column (top row). For the application
of the Schmidt decomposition method, Alice and Bob
measure first their respective Bloch vectors (measurements
actually to be performed are indicated by the blue shaded
fields). Since they are close to 0, 	TA = (0.002,0.043,0.017)
and 	TB = (0.109,−0.029,0.029), the next step of the
algorithm is to apply local filtering, as described by the
scheme of Fig. 1. The filtered state shown in Fig. 8(b) has
nonvanishing Bloch vectors, 	TA = (0.338,−0.186,−0.136)
and 	TB = (−0.074,0.147,0.299), which can be used to find the
corresponding Schmidt basis of the shared two-qubit state.1

1It should be noted that the Bloch vectors are determined from
coincidence measurements. This is due to the low detection efficiency
of correlated photons.

−0.906

−0.015 −0.002 −0.035

0.024 −0.946 −0.170 −0.195

−0.017 0.126 −0.237

0.042 0.153 −0.9190.250

Y´

Z´

X´

X´ Y´ Z´

Schmidt decomposition(c)

1

1 B
A

Re( )

0.522

−0.074 0.147 0.299

0.338 0.518 0.220 0.646

−0.186 0.393 −0.577

−0.136 0.587 −0.310−0.603

Y
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X

X Y Z
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1

1 B
A

Re( )
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FIG. 8. (Color online) Schmidt decomposition of a maximally en-
tangled unknown state. The correlation tensor and the density matrix
are determined (a) before and (b) after applying local filtering. (c) Af-
ter removing the filter, the state can be measured in its Schmidt basis.

If the phase φ is not determined by an additional correlation
measurement, there are infinitely many such bases. As shown
in Sec. III A, one possible choice is to redefine the local basis
of Alice and Bob according to Eq. (8). Measuring along σi ′

corresponds to a projection on its eigenstates |↓〉i ′ and |↑〉i ′ .
The task now is to find the angles for the wave plates of Alice
and Bob, θ i ′

A/φi ′
A and θ i ′

B/φi ′
B , respectively. Since the PBS of

the polarization analysis shown in Fig. 9 always projects on
|H 〉 and |V 〉, the angles are calculated under the condition that
|↓〉i ′ (|↑〉i ′ ) is rotated, up to a global phase τ , to |H 〉 (|V 〉), e.g.,

FIG. 9. (Color online) If Alice wants to measure in the basis
σi′ = |↓〉i′ 〈↓|i′ − |↑〉i′ 〈↑|i′ (i = x,y,x), then the HWP and the QWP
of the polarization analysis have to be aligned such that |↓〉i′ and |↑〉i′

are detected at different outputs of the PBS. The same holds for Bob.
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TABLE I. Wave-plate settings for Alice and Bob to measure the
maximally entangled state shown in Fig. 8(a) in the Schmidt basis
and the complementary directions.

Alice Bob
λ

2
λ

4
λ

2
λ

4

σx′ 22.6◦ 25.8◦ σx′ 6.6◦ 4.6◦

σy′ −15.8◦ 13.3◦ σy′ 7.2◦ −30.6◦

σz′ −9.9◦ −12.8◦ σz′ 34.7◦ 13.5◦

for Alice

UQWP
(
θ i ′
A

)
UHWP

(
φi ′

A

)|↓〉i ′ = eiτ1 |H 〉, (20)

UQWP
(
θ i ′
A

)
UHWP

(
φi ′

A

)|↑〉i ′ = eiτ2 |V 〉, (21)

where U labels the unitary operation of the corresponding
wave plate. The angles θ i ′

A/φi ′
A and θ i ′

B /φi ′
B can be found by

(numerically) solving the equation∣∣〈H |UQWP
(
θ i ′
A

)
UHWP

(
φi ′

A

)|↓〉i ′
∣∣2 = 1, (22)

and similarly for Bob. Using this scheme, we find the angles
for Alice’s and Bob’s wave plates, such that their qubits are
measured in the primed bases, presented in Table I.

After removing the filter, Alice and Bob can now measure
in their new bases and reveal entanglement by measuring
Tz′z′ , followed by Ty ′y ′ , and possibly Ty ′x ′ . Here, the two
measurements suffice to reveal entanglement as T 2

z′z′ + T 2
y ′y ′ =

1.665 ± 0.05 > 1.
In full analogy to the previous example, it is also possible

to apply the Schmidt decomposition scheme to a nonmax-
imally entangled state, e.g., as presented in Fig. 10(a). For
using the Schmidt decomposition strategy, first both parties
agree on measuring their respective Bloch vectors, 	TA =

−0.852
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−0.025 −0.311 −0.145
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Re( )
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FIG. 10. (Color online) Schmidt decomposition of a nonmaxi-
mally entangled state. (a) The correlation tensor and density matrix
are displayed for an unknown asymmetric state. (b) The state has
nonzero Bloch vectors enabling one to determine the corresponding
Schmidt basis for which the measured correlations are maximal.

TABLE II. Wave-plate settings for Alice and Bob to measure the
asymmetric state shown in Fig. 10(a) in the Schmidt basis and the
complementary directions.

Alice Bob
λ

2
λ

4
λ

2
λ

4

σx′ 0.7◦ 0.8◦ σx′ 21.9◦ 9.4◦

σy′ −13.5◦ 17.9◦ σy′ 40.0◦ −55.0◦

σz′ −35.2◦ −27.0◦ σz′ 42.0◦ 3.3◦

(0.072,−0.026,−0.213) and 	TB = (−0.201,0.279,0.012). As
they already can be distinguished from noise, Alice and
Bob can find the Schmidt bases without applying the filter
operation. The angle settings of the wave plates for analyzing
in the Schmidt bases are again calculated using (22) and are
shown in Table II. Again, the state is proved to be entangled
after only two correlation measurements since T 2

z′z′ + T 2
y ′y ′ =

1.624 ± 0.047 > 1; see Fig 10(b).

B. Decision tree

1. Two qubits

Let us first consider the two states analyzed above using
Schmidt decomposition. For the first state (Fig. 8), we
see that a direct application of the decision tree shown in
Fig. 2 would require four correlation measurements to reveal
entanglement, namely, T 2

zz + T 2
yy + T 2

xz + T 2
zx = (−0.350)2 +

0.6402 + 0.5992 + 0.6152 = 1.33 ± 0.03 > 1. Similarly, the
analysis of the second state (Fig. 10) would re-
quire four correlation measurements to determine en-
tanglement, namely, T 2

zz + T 2
yy + T 2

xx + T 2
xz = (−0.312)2 +

0.5822 + 0.5792 + 0.6222 = 1.158 ± 0.030 > 1. This shows
that quite a few more correlation measurements are needed
when using the decision tree. Yet, it saves measuring the Bloch
vectors and filtering operations. To illustrate the entanglement
detection scheme, we further apply it to a selection of
maximally entangled states (Fig. 11) and to nonmaximally
entangled states (Fig. 12).

For didactical reasons, the full correlation tensors are
depicted, in both cases. In order to reveal entanglement,
the decision tree requires the measurement of a number of
correlations much smaller than needed to reconstruct the full
density matrix. Following the lines as described in Sec. IV,
only correlation measurements shaded red are required to
detect entanglement. As an example, let us consider the state

1√
2
(|RR〉 + |LL〉) [Fig. 11(g)], for which a measurement of

the two correlations Tzz = 0.905 and Tyy = 0.977 suffices to
reveal entanglement since T 2

zz + T 2
yy = 1.773 ± 0.039 > 1. In

contrast, for the state 1√
2
(|RP 〉 + i|LM〉) [Fig. 11(e)], the

algorithm only stops after six steps, as the measurements
of Tzz = −0.089, Tyy = −0.091, Txx = 0.099, Tzx = −0.194,
Txz = 0.941, and Tyx = 0.961 are required to beat the thresh-
old, i.e., 1.872 ± 0.058 > 1. A similar reasoning is applied to
reveal entanglement of other two-qubit states.

The entanglement detection scheme is further applied to
a selection of nonmaximally entangled states (Fig. 12). As
an example, let us consider the state 0.83|LH 〉 + 0.56i|RV 〉
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FIG. 11. (Color online) Application of the decision tree on a selection of maximally entangled states, allowing one to determine the
entanglement of the state by measuring the correlations marked in red. As an alternative, local filtering is applied in order to extract the
correlations with maximal value (blue correlations).

[Fig. 12(c)], for which our method reveals entanglement after
four steps, as the measurements of Tzz = 0.007, Tyy = 0.069,
Txx = −0.801, and Tyz = −0.968 give a value of 1.583 ±
0.067 > 1. Similarly, as expected, for a separable state such
as |HH 〉 [Fig. 12(f)], our entanglement criterion delivers a
value of

∑3
k,l=1 T 2

kl = 0.964 ± 0.062 < 1 for measuring all
correlations, not revealing entanglement clearly. These states,
of course, can be analyzed also using Schmidt decomposition.

For maximally entangled states, the Bloch vectors after local
filtering are also shown (blue color; see Fig. 11), while for
nonmaximally entangled states (Fig. 12), no local filtering is
required since the Bloch vectors are already nonvanishing. In
all cases, only one entry of the respective Bloch vectors is
large compared to the others. Therefore, no realignment of
the analyzers is necessary. Due to Schmidt decomposition, the
decision tree should start with a correlation measurement along
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FIG. 12. (Color online) Application of the decision tree on a selection of nonmaximally entangled states, allowing one to determine the
entanglement of the state by measuring the correlations marked in red. Due to the asymmetry of the states, local filtering is unnecessary, and
the information on the Bloch vectors can be used to detect entanglement with a maximal number of three correlation measurements (blue
correlations). (f) For a product state, the full set of correlations does not reveal entanglement, as it should be.

a direction in which we see a big local expectation value. In
such a case, it is sufficient to cyclically relabel the required
measurements as defined for the original decision tree.
Following this method, it is possible to detect entanglement
with a maximum number of three steps. The first correlation to
be measured is determined by the Bloch vectors after applying
local filtering.

2. Many qubits

For the demonstration of multiqubit entanglement detec-
tion, we use a family of three-photon polarization entangled
Gdańsk (G) states [23] and the four-qubit Dicke state. The G
states are defined by

|G(α)〉 = cos(α)|W 〉 + sin(α)|W 〉, (23)

where |W 〉 = 1√
3
(|HHV 〉 + |HV H 〉 + |V HH 〉), and in or-

der to obtain |W 〉, one exchanges H and V . The four-qubit
Dicke state with two “excitations” reads

∣∣D(2)
4

〉 = 1√
6

(|HHV V 〉 + |HV HV 〉 + |V HHV 〉
+|HV V H 〉 + |V HV H 〉 + |V V HH 〉). (24)

Generalized three-qubit G state. In order to observe these
states, a collinear type-II SPDC source together with a linear

setup to prepare the four-photon Dicke state D
(2)
4 is used

[24,25]. The three-photon state is obtained if the
first photon is measured to be cos(α)|H 〉 + sin(α)|V 〉
polarized.

The protocol for entanglement detection starts with ob-
servers locally measuring the polarization of their respective
photons, enabling them to individually determine the Bloch
vectors.

(i) For the G(π/4) state, we obtain Ti00 = (0.636,

−0.008,−0.015), T0j0 = (0.623,−0.092,0.010), and T00k =
(0.636,0.070,0.022). The Bloch vectors suggest that the
correlation Txxx is big. Therefore, the decision tree starts with
the measurement of Txxx = 0.904 ± 0.025 and continues with
Txzz = −0.578 ± 0.025 (see Fig. 3). These two measurements
already prove entanglement because T 2

xxx + T 2
xzz = 1.152 ±

0.038 > 1.
(ii) For the W state, G(π/2), the Bloch vectors are Ti00 =

(0.016,−0.070,0.318), T0j0 = (−0.010,−0.073,0.308), and
T00k = (−0.011,−0.0547,0.319), which suggests that now the
correlation Tzzz is big. Indeed, we observe Tzzz = −0.882 ±
0.025. The decision tree is the same as above, but with local
axes renamed as follows: x → z → y → x. Therefore, the
second measurement has to be Tzyy . With Tzyy = 0.571 ±
0.025, we again prove entanglement as T 2

xxx + T 2
zyy = 1.104 ±

0.037 > 1.
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Four-qubit Dicke state. Here, we have vanishing
Bloch vectors, Ti000 = (−0.020,−0.016,0.007), T0j00 =
(−0.011,−0.029,0.014), T00k0 = (−0.018,−0.020,−0.004),
and T000l = (−0.009,−0.022,0.008). We construct a
set of mutually commuting operators, which form the
first branch of the four-qubit decision tree starting with
Tzzzz{zzzz → zzxx → zxzx → zxxz → xzxz → xxzz →
xzzx → xxxx → yyyy}. After measuring the correlations,
Tzzzz = 0.848 ± 0.025, Tzzxx = −0.533 ± 0.025, Tzxzx =
−0.552 ± 0.025, our algorithm succeeds since T 2

zzzz +
T 2

zzxx + T 2
zxzx = 1.3082 ± 0.041 > 1.

VI. CONCLUSIONS

The entanglement of arbitrary multiqubit states can be
efficiently detected based on two methods described here.
Both methods employ a criterion based on the sum of squared
correlations. Combining this with an adaptive determination
of the correlations to be measured allows one to succeed
much faster than standard tomographic schemes. The first
one, particularly designed for two-qubit states, determines
the Schmidt decomposition from local measurements only,

where at most three correlation measurements are sufficient
for entanglement detection. The second one employs a
decision tree to speed up the analysis. Its design is based on
correlation complementarity and prevents one from measuring
less informative correlations. The performance of the scheme
is numerically analyzed for arbitrary pure states and, in the
two-qubit case, for mixed states. The schemes succeed, on
average, at least one step earlier as compared with random
sampling on two-qubit states, with an exponentially increasing
speedup for a higher number of qubits. Our results encourage
the application of these schemes in state-of-the-art experiments
with quantum states of increasing complexity.
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Nonclassical correlations between measurement results make entanglement the essence of quantum
physics and the main resource for quantum information applications. Surprisingly, there are n-particle
states which do not exhibit n-partite correlations at all but still are genuinely n-partite entangled. We
introduce a general construction principle for such states, implement them in a multiphoton experiment and
analyze their properties in detail. Remarkably, even without multipartite correlations, these states do violate
Bell inequalities showing that there is no classical, i.e., local realistic model describing their properties.

DOI: 10.1103/PhysRevLett.114.180501 PACS numbers: 03.67.Mn, 03.65.Ud, 42.50.Dv

Correlations between measurement results are the most
prominent feature of entanglement. They made Einstein,
Podolski, and Rosen [1] question the completeness of
quantum mechanics and are nowadays the main ingredient
for the many applications of quantum information like
entanglement based quantum key distribution [2] or
quantum teleportation [3].
Correlations enable us, e.g., when observing two max-

imally entangled qubits, to use a measurement result
observed on the first system to infer exactly the measure-
ment result on the second system. In this scenario, the two
particle correlations are formally given by the expectation
value of the product of the measurement results obtained by
the two observers. Note, the single particle correlation, i.e.,
the expectation value of the results for one or the other
particle are zero in this case. Consequently, we cannot
predict anything about the individual results. When study-
ing the entanglement between n particles, a natural exten-
sion is to consider n-partite correlations, i.e., the
expectation value of the product of n measurement results.
Such correlation functions are frequently used in classical
statistics and signal analysis [4], moreover, in quantum
information, almost all standard tools for analyzing multi-
partite systems like multiparty entanglement witnesses
[5,6] and Bell inequalities [7,8] are based on the n-partite
correlation functions.
Recently, Kaszlikowski et al. [9] pointed at a particular

quantum state with vanishing multiparty correlations
which, however, is genuinely multipartite entangled.
This discovery, of course, prompted vivid discussions on
a viable definition of classical and quantum correlations
[10,11]. Still, the question remains what makes up such
states with no full n-partite correlations and how non-
classical they can be, i.e., whether they are not only
entangled but whether they also violate a Bell inequality.

Here, we generalize, highlight, and experimentally test
such remarkable quantum states. We introduce a simple
principle how to construct states without n-partite cor-
relations for odd n and show that there are infinitely many
such states which are genuinely n-partite entangled. We
implement three and five qubit no-correlation states in a
multiphoton experiment and demonstrate that these states
do not exhibit n-partite correlations. Yet, due to the
existence of correlations between a smaller number of
particles, we observe genuine n-partite entanglement.
Using our recently developed method to design n-partite
Bell inequalities from lower order correlation functions
only [12,13], we show that these states, despite not having
full correlations, can violate Bell inequalities.
Correlations.—The quantum mechanical correlation

function Tj1…jn is defined as the expectation value of the
product of the results of n observers

Tj1…jn ¼ hr1…rni ¼ Trðρσj1 ⊗ … ⊗ σjnÞ; ð1Þ

where rk is the outcome of the local measurement of the kth
observer, parametrized by the Pauli operator σjk with
jk ∈ fx; y; zg. Evidently, besides the n-partite correlations,
for an n-partite state, one can also define l < n fold
correlations Tμ1…μn ¼ Trðρσμ1 ⊗ … ⊗ σμnÞ with μi ∈
f0; x; y; zg and jfμi ¼ 0gj ¼ n − l. Nonvanishing l-fold
correlations indicate that we can infer (with higher proba-
bility of success than pure guessing) an lth measurement
result from the product of the other ðl − 1Þ results [see
Supplemental Material [14]]. Only in the two particle
scenario can we directly use the result from one measure-
ment to infer the other result. For an n-qubit no-correlation
state, the vanishing n-partite correlations do not imply
vanishing correlations between a smaller number of observ-
ers, thus not necessarily destroying predictability. We will
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see also in the experimentally implemented example that the
various individual results still enable some possibility for
inference, which is then largely due to bipartite correlations.
Constructing no-correlation states.—For any state jψi

with an odd number n of qubits, we can construct an
“antistate” jψ̄i, i.e., the state whose n-partite correlations
are inverted with respect to the initial one. By evenly
mixing these states

ρncψ ¼ 1

2
jψihψ j þ 1

2
jψ̄ihψ̄ j; ð2Þ

we obtain a state ρncψ without n-partite correlations.
The antistate jψ̄i of a state jψi described in the computa-

tional basis by

jψi ¼
X1

k1;…;kn¼0

αk1;…;kn jk1…kni; ð3Þ

with normalized coefficients αk1;…;kn ∈ C, is given by

jψ̄i≡ X1
k1;…;kn¼0

ð−1Þk1þ���þknα�1−k1;…;1−kn jk1…kni; ð4Þ

where the asterisk denotes complex conjugation. This state
has inverted correlations with respect to those in jψi for
every odd number of observers, whereas all the correlation
function values for an even number of observers remain
unchanged.
jψ̄i is mathematically obtained from jψi by applying

local universal-not gates [24]. These gates introduce a
minus sign to all local Pauli operators. Therefore, for odd n,
the correlations of jψ̄i have opposite sign to those of jψi.
Representing the universal-not gate by N ¼ σzσxK,
where K is the complex conjugation operating in the com-
putational basis, i.e., Kðαj0i þ βj1iÞ ¼ α�j0i þ β�j1i,
indeed, we obtain NσxN† ¼ −σx, NσyN† ¼ −σy, and
NσzN† ¼ −σz. Applying N to all the n subsystems, we
find the anticipated result N ⊗ � � � ⊗ Njψi ¼ jψ̄i.
Although N is antiunitary, jψ̄i is always a proper

physical state and can be obtained by some global trans-
formation of jψi. In general, N can be approximated [25],
but if all the coefficients αk1…kn are real, complex con-
jugation can be omitted and no-correlation states can be
generated by local operations.
This construction principle can be generalized to mixed

states using ρ̄ ¼ N⊗nρðN⊗nÞ†, which changes every pure
state in the spectral form to the respective antistate. Evenly
mixing ρ and ρ̄ therefore produces a state with no l-party
correlations for all odd l.
One may then wonder whether the principle of Eq. (2)

can also be applied to construct a no-correlation state for
every state with an even number of qubits. The answer is
negative as shown by the following counterexample.
Consider the Greenberger-Horne-Zeilinger state of an even
number of qubits jψi ¼ ð1= ffiffiffi

2
p Þðj0…0i þ j1…1iÞ. It has

nonvanishing Tz…z, 2n−1 multipartite correlations in the xy
plane, and also, 2n−1 − 1 correlations between a smaller
number of subsystems, all equal to �1. However, for a state
with inverted correlations between all n parties (making no
assumptions about the correlations between smaller numbers
of observers), the fidelity relative to the GHZ state, given by
1
2n

P
3
μ1;…;μn¼0 T

GHZ
μ1…μnT

anti
μ1…μn , is negative because more than

half of the correlations are opposite. Hence, this state is
unphysical and there is no such “antistate”. In fact, so far we
were unable to find an antistate to any genuinely multiqubit
entangled state of even n.
Entanglement without correlations: infinite family.—

Consider a three-qubit system in the pure state

jϕi¼ sinβcosαj001iþsinβsinαj010iþcosβj100i; ð5Þ
where α; β ∈ ð0; π=2Þ (which includes the state jWi with
α ¼ π=3 and β ¼ cos−1ð1= ffiffiffi

3
p Þ). Together with any local

unitary transformation thereof, this defines a three dimen-
sional subspace of genuinely tripartite entangled states
within the eight dimensional space of three qubit states. To
show that all the respective no-correlation states ρncϕ are
genuinely entangled, we use a criterion similar to the one
in [6], i.e.,

max
Tbi-prod

ðT;Tbi-prodÞ< ðT;TexpÞ⇒ρexp is not biseparable; ð6Þ

where maximization is over all biproduct pure states and
ðU;VÞ≡P

3
μ;ν;η¼0UμνηVμνη denotes the inner product in

the vector space of correlation tensors. Condition
[Eq. (6)] can be interpreted as an entanglement
witness W ¼ α1 − ρncϕ , where α ¼ L=8 and L ¼
maxTbi-prodðT; TbiproductÞ is the left-hand side of Eq. (6). In
the ideal case of preparing ρexp perfectly, Texp ¼ T, the
right-hand side of our criterion equals four for all the states
of the family, and thus, the expectation value of the witness
is given by TrðWρncϕ Þ ¼ ðL − 4Þ=8.
A simple argument for ρncϕ being genuinely tripartite

entangled can be obtained from the observation that jϕi and
jϕ̄i span a two-dimensional subspace of the three qubit
Hilbert space [9]. As none of the states jΦi ¼ ajϕi þ bjϕ̄i
is a biproduct (for the proof see Supplemental Material
[14]), states in their convex hull do not intersect with the
subspace of biseparable states and thus all its states,
including ρncϕ are genuinely tripartite entangled. To evaluate
the entanglement in the experiment, we calculated L for all
states of Eq. (5). We obtain Ljϕi < 4 in general, with
LjWi ¼ 10=3. Similar techniques were used to analyze
five-qubit systems.
Quantum correlations without classical correlations?—

The cumulants and correlations were initially proposed
as a measure of genuinely multiparty nonclassicality in
Ref. [26]. Kaszlikowski et al. [9], however, showed that
such a quantification is not sufficient as the state ρncW has
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vanishing cumulants, yet contains genuinely multiparty
entanglement. They suggested that the vanishing cumulants
or standard correlation functions [Eq. (1)] indicate the lack
of genuine multiparty “classical” correlations. This initi-
ated a vivid discussion on a proper definition and measure
of genuine multipartite “classical” and quantum correla-
tions. Bennett et al. proposed a set of axioms for measures
of genuine multipartite correlations [11]. They showed that
the correlation function [Eq. (1)] does not fulfill all the
requirements, but also still strive for computable measures
that satisfy these axioms [15,27]. An information-theoretic
definition of multipartite correlations was given by Giorgi
et al. [15]. Their measure combines the entropy of all sizes
of subsystems. Applying their definitions to ρncW , we obtain
genuine classical tripartite correlations of 0.813 bit and
genuine quantum tripartite correlations of 0.439 bit result-
ing in total genuine tripartite correlations of 1.252 bit (see
Supplemental Material [14] for calculations for all ρncϕ ).
While this approach does assign classical correlations in the
context of Giorgi et al. [15] to ρncW , it does not fulfill all
requirements of [11] either.
Experiment.—The three photon state jWi can be

observed either using a multiphoton interferometer setup
[28] or by suitably projecting the fourth photon of a
4-photon symmetric Dicke state [29]. The latter scheme
has the advantage that it also offers the option to prepare the
states jW̄i and ρncW . The states jWi and jW̄i are particular
representatives of the symmetric Dicke states, which are
defined as

jDðeÞ
n i ¼

�
n
e

�
−1=2X

i

PiðjH⊗ðn−eÞi ⊗ jV⊗eiÞ; ð7Þ

where jH=Vi denotes horizontal (vertical) polarization and
Pi all distinct permutations, and with the three photon
states jWi ¼ jDð1Þ

3 i and jW̄i ¼ jDð2Þ
3 i. We observed four-

and six-photon Dicke states using a pulsed collinear type II
spontaneous parametric down conversion source together
with a linear optical setup (see Fig. 1) [30,31]. The jDðeÞ

n i
states were observed upon detection of one photon in each
of the four or six spatial modes, respectively. We charac-
terized the state jDð2Þ

4 i by means of quantum state tomog-
raphy, i.e., a polarization analysis in each mode, collecting
for each setting 26 minutes of data at a rate of 70 events per
minute. The fidelity of the experimental state jDð2Þ

4 iexp was
directly determined from the observed frequencies together
with Gaussian error propagation as 0.920� 0.005, which
due to the high number of detected events [16] is com-
patible with the value 0.917� 0.002 as obtained from a
maximum likelihood (ML) reconstruction and nonpara-
metric bootstrapping [14,20]. The high quality achieved
here allowed a precise study of the respective states. The
fidelities of the observed three qubit states with respect
to their target states are 0.939� 0.011 for jWiexp,
0.919� 0.010 for jW̄iexp, and 0.961� 0.003 for ρnc;expW .

Analogously, starting with a six-photon Dicke state jDð3Þ
6 i

[32], we could also analyze the properties of the five photon
state ρnc

Dð2Þ
5

. The five-qubit fidelity of ρnc;exp
Dð2Þ

5

is determined

via a ML reconstruction from fivefold coincidences to
be 0.911� 0.004 (for the detailed characterization see
Supplemental Material [14]).
For the experimental analysis of the states, we start by

determining Tzzz for the three states jWiexp, jW̄iexp, and
ρnc;expW . As the first two have complementary structure of
detection probabilities (with Tzzz ¼ −0.914� 0.034 and
Tzzz ¼ 0.904� 0.034, respectively), weighted mixing of
these states leads to ρnc;expW with Tzzz ¼ 0.022� 0.023, i.e.,
a correlation value compatible with 0 (see Supplemental
Material [14]). Figure 2 presents experimental data for all
possible tripartite correlations of the observed states.
Assuming a normal distribution centered at zero with a
standard deviation given by our experimental errors, the
observed correlations have a p value of 0.44 for the
Anderson-Darling test, which shows that indeed one can
adhere to the hypothesis of vanishing full correlations.
Similarly, the five qubit state ρnc;exp

Dð2Þ
5

exhibits strongly

suppressed, almost vanishing correlations. For details on
the five qubit state, please see Supplemental Material [14].
We want to emphasize that the vanishing tripartite

correlations of ρnc;expW are no artifact of measuring in the
Pauli bases. In fact, all states obtained via local unitary
transformations do not exhibit any n-partite correlations.
To illustrate this property, we considered correlation
measurements in non-standard bases. As an example, we
chose measurements in the zy plane σθ ¼ cos θσz þ sin θσy
with θ ∈ ½0; 2π� (σϕ ¼ cosϕσy þ sinϕσz with ϕ ∈ ½0; 2π�)
for the first (second) qubit resulting in the correlations
Tθj2j3 ¼ Trðρσθ ⊗ σj2 ⊗ σj3Þ (Tj1ϕj3). Indeed, as shown in

SM

IF

BS1

QWP

HWP PBS
PAj

APD

SPDC source

aPA

cPA

dPA

fPA

3BS

BS2

3S
bPA

ePA

BS4 BS5

FIG. 1 (color online). Schematic of the linear optical setup used
to observe symmetric Dicke states from which states with
vanishing 3- and 5-partite correlations can be obtained. The
photons are created by means of a cavity enhanced pulsed
collinear type II spontaneous parametric down conversion source
pumped at 390 nm [31]. Distributing the photons symmetrically
into six modes by five beam splitters (BS) enables the observation
of the state jDð3Þ

6 i. Removing beam splitters BS2 and BS4 reduces

the number of modes to four and thus the state jDð2Þ
4 i is obtained.

State analysis is enabled by sets of half wave (HWP) and quarter-
wave plates (QWP) together with polarizing beam splitters (PBS)
in each mode. The photons are measured by fiber-coupled single
photon counting modules connected to a coincidence logic [30].
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Fig. 3, Tθj2j3 (Tj1ϕj3) vanishes independently of the choice
of θ (ϕ). In contrast, the bipartite correlations Tθz0 (Tyϕ0)
between qubit 1 and 2 do not vanish at all and clearly
depend on θ (ϕ). By means of those even number
correlations, one is still able to infer the result of another
party from ones own result with probability 2=3 > 1=2. For
example, the values of Tzz0 ¼ −1=3 (Tz0z ¼ −1=3) indi-
cate that knowing, e.g., result “0” for the first qubit, we can
infer that the result will be “1” with p ¼ 2=3 on the second
(third) qubit, etc.

Although the three qubits are not tripartite correlated, the
bipartite correlations shown above give rise to genuine
tripartite entanglement. This can be tested for the exper-
imental states employing Eq. (6). We observe

ðT; Tnc;exp
W Þ ¼ 3.858� 0.079 > 3.333̄;

ðT; Tnc;exp

Dð2Þ
5

Þ ¼ 13.663� 0.340 > 12.8;

both above the respective biseparable bound of 10=3 ¼
3.333̄ (12.8) by more than 6.6 (2.4) standard deviations,
proving that in spite of vanishing full correlations the states
are genuinely tripartite (five-partite) entangled [14].
The observed five-photon state has one more remarkable

property [13]. For this state, every correlation between a
fixed number of observers, i.e., bipartite correlations,
tripartite correlations, etc. admits description with an
explicit local hidden-variable model [8]. However, some
of the models are different and thus cannot be combined in
a single one. Using linear programming to find joint
probability distributions reproducing quantum predictions
[12], we obtain an optimal Bell inequality using only two-
and four-partite correlations [13]. From the observed data,
we evaluate the Bell parameter to be B ¼ 6.358� 0.149
which violates the local realistic bound of 6 by 2.4 standard
deviations [33]. This violation confirms the nonclassicality
[14] of this no-correlation state and also offers its appli-
cability for quantum communication complexity tasks.
Contrary to previous schemes, here, the communication
problem can be solved in every instance already by only a
subset of the communicating parties [35].
Conclusions.—We introduced a systematic way to

define and to experimentally observe mixed multipartite
states with no n-partite correlations for odd n, as
measured by standard correlation functions. For the first
time, we experimentally observed a state which allowed the
violation of a Bell inequality without full correlations,
thereby proving both the nonclassicality of no-correlation
states as well as their applicability for quantum commu-
nication protocols. The remarkable properties of these
states prompt intriguing questions. For example, what
might be the dimensionality of these states or their
respective subspaces, or whether we can even extend the
subspace of states and antistates which give genuinely
entangled no-correlation states? Moreover, can no-
correlation states be used for quantum protocols beyond
communication complexity, and, of course, whether these
remarkable features can be cast into rigorous and easily
calculable measures of genuine correlations satisfying
natural postulates [11]?
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σz (σy) measurements were performed on both other qubits (green
curves) or one of them (red and black curves). The solid lines
show the theoretically expected curves.
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I. PHYSICAL MEANING OF CORRELATION FUNCTIONS

Correlations for two particles are often seen as a measure of predictability of local results when knowing the other
result. Yet, this simple statement has to be used carefully. A non-vanishing n-partite correlation function indicates
that we can make an educated guess of the nth result from the product of the other n − 1 results. The converse
statement does not hold and we provide an example of a state with vanishing correlation functions where the inference
is still possible.

Let us denote by rj = ±1 the result of the jth observer. We assume that n−1 parties cannot infer from the product
of their outcomes, r1 . . . rn−1, the result of the last observer, rn, i.e., the following conditional probabilities hold:

P (rn|r1 . . . rn−1) =
1

2
. (1)

We show that this implies that the corresponding correlation function, Tj1...jn , vanishes. The correlation function is
defined as expectation value of the product of all local outcomes

Tj1...jn = 〈r1 . . . rn〉 = P (r1 . . . rn = 1)− P (r1 . . . rn = −1). (2)

Using Bayes’ rule

P (r1 . . . rn = ±1) =
∑
r=±1

P (rn = ±r|r1 . . . rn−1 = r)P (r1 . . . rn−1 = r). (3)

According to assumption (1) we have P (rn = ±r|r1 . . . rn−1 = r) = 1
2 , giving P (r1 . . . rn = ±1) = 1

2 and Tj1...jn = 0.
As an example of a state with vanishing correlation functions yet allowing to make an educated guess of the result,

let us consider the two-qubit mixed state

1

2
|00〉 〈00|+ 1

4
|01〉 〈01|+ 1

4
|10〉 〈10| , (4)

where |0〉 and |1〉 are the eigenstates of the Pauli operator σz with eigenvalues +1 and −1, respectively. All correlation
functions Tkl, with k, l = x, y, z, of this state vanish. Yet, whenever Alice (Bob) observes outcome −1 in the σz
measurement, she (he) is sure the distant outcome is +1, i.e., P (r2 = +1|r1 = −1) = 1. Similar examples exist for
multiple qubits, but we note that the states ρncφ of the main text are an equal mixture of a state and its anti-state.
In this case, the vanishing n-party correlations lead to the impossibility of inferring the n-th result.

II. CRITERION FOR GENUINE MULTIPARTITE ENTANGLEMENT

To evaluate entanglement we use the following criterion (see main text) where, T exp = T , i.e., assuming the ideal
experiment producing the required state described by the correlation tensor T :

max
T bi−prod

(T, T bi−prod) < (T, T ). (5)

∗ tomasz.paterek@ntu.edu.sg

3. Entanglement detection by correlation measurements

72



2

The maximization is performed over all bi-product states keeping in mind also all possible bipartitions. The inner
product between two correlation tensors of three qubit states is defined as

(V,W ) ≡
3∑

µ,ν,η=0

VµνηWµνη. (6)

A. Tripartite entanglement

To keep the statement as general as possible, we prove that all states ρncφ = 1
2 |φ〉 〈φ|+

1
2

∣∣φ〉 〈φ∣∣ with

|φ〉 = sinβ cosα |001〉+ sinβ sinα |010〉+ cosβ |100〉 , (7)∣∣φ〉 = sinβ cosα |110〉+ sinβ sinα |101〉+ cosβ |011〉 , (8)

are genuinely tripartite entangled as soon as |φ〉 is genuinely tripartite entangled.
First, note that |φ〉 is a bi-product state if at least one amplitude vanishes, i.e., if either

1. β = 0 (full product state),

2. β = π
2 and α = 0 (full product state),

3. β = π
2 and α = π

2 (full product state),

4. β = π
2 and α ∈ (0, π2 ) (bi-product A|BC),

5. α = 0 and β ∈ (0, π2 ) (bi-product B|AC),

6. α = π
2 and β ∈ (0, π2 ) (bi-product C|AB).

The correlation tensor of the state ρncφ contains only bipartite correlations:

Txx0 = Tyy0 = sin(2β) sin(α),

Tx0x = Ty0y = sin(2β) cos(α),

T0xx = T0yy = sin2(β) sin(2α),

Tzz0 = cos(2α) sin2(β)− cos2(β),

Tz0z = − cos(2α) sin2(β)− cos2(β),

T0zz = cos(2β), (9)

and T000 = 1. Using these expressions, the right-hand side of the entanglement criterion is

R = (T, T ) = 4. (10)

To find the maximum of the left-hand side, we shall follow a few estimations. Consider first the bi-product state in
a fixed bipartition, say AB|C, i.e., of the form |χ〉AB ⊗ |c〉, where |χ〉AB = cos(θ) |00〉 + sin(θ) |11〉, when written in

the Schmidt basis. Let us denote the correlation tensor of |χ〉AB with P and its local Bloch vectors by ~a and ~b. We
therefore have:

L = 1 + Txx0(Pxx + Pyy) + Tzz0Pzz + Tx0x(axcx + aycy) + Tz0zazcz + T0xx(bxcx + bycy) + T0zzbzcz. (11)

By optimizing over the states of |c〉 we get the following upper bounds:

Tx0x(axcx + aycy) + Tz0zazcz ≤
√
T 2
x0x(a2x + a2y) + T 2

z0za
2
z, (12)

and

T0xx(bxcx + bycy) + T0zzbzcz ≤
√
T 2
0xx(b2x + b2y) + T 2

0zzb
2
z. (13)

The Schmidt decomposition implies for local Bloch vectors:

a2x + a2y + a2z = b2x + b2y + b2z = cos2(2θ), (14)
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and therefore

~a = cos(2θ)~n, ~b = cos(2θ)~m, (15)

where ~n and ~m are normalized vectors with directions along the local Bloch vectors. This gives the bound√
T 2
x0x(a2x + a2y) + T 2

z0za
2
z +

√
T 2
0xx(b2x + b2y) + T 2

0zzb
2
z

= cos(2θ)
(√

T 2
x0x(n2x + n2y) + T 2

z0zn
2
z +

√
T 2
0xx(m2

x +m2
y) + T 2

0zzm
2
z

)
≤ cos(2θ) (max(|Tx0x|, |Tz0z|) + max(|T0xx|, |T0zz|)) , (16)

where the maxima follow from convexity of squared components of a normalized vector.
Now let us focus on the terms depending on the correlations of |χ〉AB . In order to maximize (11), the Schmidt

basis of |χ〉AB has to be either x, y, or z as otherwise off-diagonal elements of P emerge leading to smaller values
entering (11). For the diagonal correlation tensor we have |Pxx| = sin(2θ), |Pyy| = sin(2θ), and Pzz = 1, and with
indices permuted. Therefore, there are three cases to be considered in order to optimize Txx0(Pxx + Pyy) + Tzz0Pzz:

(i) |Pxx| = 1 and |Pyy| = |Pzz| = sin(2θ) with their signs matching those of Txx0 and Tzz0 respectively,

(ii) |Pzz| = 1 and Pxx = Pyy = sin(2θ),

(iii) |Pzz| = 1 and Pxx = −Pyy = sin(2θ).

Each of these cases leads to an upper bound on L. For example, for the first case we find

L(i) = 1 + |Txx0|+ sin(2θ)(|Txx0|+ |Tzz0|) + cos(2θ)(max(|Tx0x|, |Tz0z|) + max(|T0xx|, |T0zz|))

≤ 1 + |Txx0|+
√

(|Txx0|+ |Tzz0|)2 + (max(|Tx0x|, |Tz0z|) + max(|T0xx|, |T0zz|))2, (17)

where in the last step we optimized over θ. The same procedure applied to the other two cases gives:

L(ii) ≤ 1 + |Tzz0|+
√

4T 2
xx0 + (max(|Tx0x|, |Tz0z|) + max(|T0xx|, |T0zz|))2, (18)

L(iii) ≤ 1 + |Tzz0|+ max(|Tx0x|, |Tz0z|) + max(|T0xx|, |T0zz|). (19)

If instead of the bipartition AB|C another one was chosen, the bounds obtained are given by those above with the
indices correspondingly permuted. Since there are three possible bipartitions, altogether we have nine bounds out of
which we should finally choose the maximum as the actual upper bound on the left-hand side.

Numerical derivation of bounds

A first approach is to numerically evaluate Eqs. (17)-(19). Fig. 1 shows that only for states |φ〉 that are bi-product
the left-hand side reaches L = 4.

For theW state we thus obtain maxL = 10/3 which is achieved by the bi-product state (cos θ |++〉−sin θ |−−〉)⊗|+〉,
where |±〉 = 1√

2
(|0〉 ± |1〉) and tan(2θ) = 3/4 in order to optimize case (i) which is the best for the W state. This

bound is used in the main text.

Analytic argument

The last step of the proof, showing that only bi-separable states can achieve the bound of 4 in our criterion, involved
numerical optimization (Fig. 1). One may complain that due to finite numerical precision there might be genuinely
tripartite entangled states for values of α or β close to 0 and π/2 that already achieve the bound of 4. Here, we give
a simple analytical argument showing that ρncφ is genuinely tripartite entangled if and only if |φ〉 is so.

We first follow the idea of Ref. [9] and note that a mixed state ρncφ can only be bi-separable if there are bi-product

pure states in its support. The support of ρncφ is spanned by |φ〉 and |φ〉, i.e., ρncφ does not have any overlap with the

orthogonal subspace 11 − |φ〉 〈φ| − |φ〉〈φ|. Accordingly any decomposition of ρncφ into pure states can only use pure
states of the form

|Φ〉 = a |φ〉+ b|φ〉. (20)
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FIG. 1. Contour plot showing the maximal value of the left-hand side of our entanglement criterion for the states ρncφ defined
above (7). Whenever the value is below 4, i.e., the right-hand side value as given in (10), the criterion detects genuine tripartite
entanglement. This shows that all the states ρncφ are genuinely tripartite entangled except for those arising from bi-product
states |φ〉, i.e., for α, β = 0 or π/2. Numerical optimizations over all bi-separable states yield the same plot.

We now give a simple argument that |Φ〉 is bi-product, and hence ρncφ is bi-separable, if and only if |φ〉 is bi-product.

In all other infinitely many cases, the no-correlation state is genuinely tripartite entangled. Assume that |Φ〉 is bi-
product in the partition AB|C. Accordingly, all its correlation tensor components factor across this partition. In
particular,

T0xx = W0xVx, T0yy = W0yVy, T0xy = W0xVy, T0yx = W0yVx (21)

where W is the correlation tensor of the state of AB and V is the correlation tensor corresponding to the state of C.
One directly verifies that for such a bi-product state we have

T0xxT0yy = T0xyT0yx. (22)

Evaluating condition (22) for the states |Φ〉 gives the following condition on the amplitudes of |φ〉:

sin2(2α) sin4(β) = 0, (23)

and indicates that at least one amplitude must be zero. Similar reasoning applies to other partitions and we conclude
that |Φ〉 is bi-product if and only if |φ〉 is bi-product.

Alternative entanglement criterion

Alternativly we can apply a witness of genuine tripartite entanglement based on angular momentum operators [17],

W3 = J2
x + J2

y , (24)

where e.g. Jx = 1
2 (σx ⊗ 11 ⊗ 11 + 11 ⊗ σx ⊗ 11 + 11 ⊗ 11 ⊗ σx). Maximization of this quantity over bi-separable states

gives [17]:

max
ρbi−sep

〈W3〉 = 2 +
√

5/2 ≈ 3.12. (25)

This criterion detects entanglement of the states |φ〉 and
∣∣φ〉, and, consequently, since it uses two-party correlations

only, also of the state ρncφ . However, entanglement is detected only for a range of roughly α ∈ [0.590, 1.31] and

β ∈ [0.333, 1.24].
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B. Five-partite entanglement

In order to obtain the five-partite bound given in the main text, i.e., maxT bi−prod(T, T bi−prod) = 12.8, we have
numerically optimized over all bi-product states keeping T as the correlation tensor of an equal mixture of Dicke

states |D(2)
5 〉 and |D(3)

5 〉, where

|D(e)
n 〉 =

1√(
n
e

) ∑
i

|Pi(1, . . . , 1, 0 . . . , 0)〉, (26)

with Pi denoting all distinct permutations of e ones and n− e zeros.
Below, we generalize the analytical argument given above to prove genuine multipartite entanglement of arbitrary

mixtures of Dicke and anti-Dicke states. The anti-Dicke state has exchanged roles of zeros and ones as compared
with the Dicke state, i.e., it has n − e ones (excitations). One easily verifies that the Dicke state of n qubits with e
excitations has the following bipartite correlations:

T0...0xx = T0...0yy =
2
(
n−2
e−1
)(

n
e

) =
2e(n− e)
n(n− 1)

,

T0...0xy = T0...0yx = 0. (27)

The correlations of an anti-Dicke state, with n− e excitations, are the same due to the symmetry e↔ n− e of these
correlations. Assume that n is odd so that (i) the Dicke and anti-Dicke states are orthogonal and (ii) the parity of the
number of excitations, i.e., whether there is an even or odd number of them, is opposite in the Dicke and anti-Dicke

states. For arbitrary superposition α|D(e)
n 〉+ β|D(n−e)

n 〉 the correlations read:

T0...0jk = |α|2TD0...0jk+ |β|2TD0...0jk+α∗β〈D(e)
n |11⊗ . . . 11⊗σj⊗σk|D(n−e)

n 〉+αβ∗〈D(n−e)
n |11⊗ . . . 11⊗σj⊗σk|D(e)

n 〉. (28)

Since applying σj ⊗σk with j, k = x, y to the Dicke states does not change the parity of their excitations, the last two

terms vanish, and for the first two terms we have TD0...0jk = TD0...0jk. Therefore, an arbitrary superposition of Dicke

and anti-Dicke states has the same correlations as in (27) and therefore none of such superposed states is bi-product.
Since the Dicke states are invariant under exchange of parties (and so are their superpositions), the same holds for
other partitions. Finally, the lack of bi-product states in a subspace spanned by Dicke and anti-Dicke states implies
that their mixtures are also genuinely multipartite entangled.

III. GENUINE TRIPARTITE CORRELATIONS

While the conventional full correlation function vanishes for ρncφ , this is not necessarily so for other types of
correlation functions introduced recently. For a comparison we analyze the correlation content of the states of our
family also according to the three measures given in Ref. [15], namely: (a) genuine tripartite correlations T (3)(ρncφ ),

(b) genuine tripartite classical correlations J (3)(ρncφ ), and (c) genuine tripartite quantum correlations D(3)(ρncφ ). The
results are presented and discussed in Fig. 2.
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FIG. 2. Correlation content [15] of the states ρncφ = 1
2
|φ〉 〈φ|+ 1

2

∣∣φ〉 〈φ∣∣ with the pure states given in Eq. (7). (a) Total genuine
tripartite correlations. The genuine tripartite correlations vanish only for mixtures of bi-product states. The highest value
(1.2516) is obtained for the state (|W 〉〈W | + |W 〉〈W |)/2. (b) Genuine tripartite classical correlations. The genuine classical
correlations also vanish only for mixtures of bi-product states. The highest value (1.0) is observed for fully separable states.
The local maximum (0.8127) is achieved by the state (|W 〉〈W | + |W 〉〈W |)/2. (c) Genuine tripartite quantum correlations.
The genuine quantum correlations vanish for mixtures of bi-product states and for fully separable states. The highest values
(0.6631) correspond to the mixture of the state

√
1/6|001〉 +

√
1/6|010〉 +

√
2/3|100〉 with its antistate (and permutations).

The state (|W 〉〈W |+ |W 〉〈W |)/2 achieves the local maximum (0.4389).

IV. EXPERIMENTAL THREE AND FIVE QUBIT STATES

The experimentally prepared states |W 〉exp,
∣∣W〉exp, ρnc,expW , and ρnc,exp

D
(2)
5

were characterized by means of quantum

state tomography. Their corresponding density matrices can be seen in Fig. 3 and Fig. 4. The fidelities of the
observed three qubit states with respect to their target states are 0.939±0.011 for |W 〉exp, 0.919±0.010 for

∣∣W〉exp, and
0.961±0.003 for ρnc,expW . Note that the value of the fidelity for the state ρnc,expW was obtained from a maximum likelihood
(ML) reconstruction together with non-parametric bootstrapping. This value thus might be slightly incorrect due to
the bias of the maximum likelihood data evaluation [16].

Fig. 4 shows the real part of the tomographically determined no-correlation state from which all further five qubit
results are deduced. The five-qubit fidelity of ρnc,exp

D
(2)
5

is determined via a ML reconstruction from five-fold coincidences

to be 0.911± 0.004.

To obtain a correlation function value, e.g., Tzzz = Tr(ρ σz ⊗ σz ⊗ σz), we analyze the three photons in the
respective set of bases (here all ẑ). Fig. 5 shows the relative frequencies for observing all the possible results for such
a polarization analysis. Clearly one recognizes the complementary structure of the the detection frequencies for the
states |W 〉exp and

∣∣W〉exp which results in approximately the same magnitude of the correlations, yet with different
sign. Mixing the two states, one thus obtains a vanishingly small correlation. Fig. [2] of the main text then shows the
full set of correlations.

For the analysis of the five qubit no correlation state, we see from an eigen decomposition that this state indeed

comprises of a mixture of two states (|Θ(2)〉exp and |Θ(3)〉exp), which are in very good agreement with |D(2)
5 〉 and

|D(3)
5 〉. Fig. 6 (a) and (b) show all symmetrized correlations for the five-qubit states |Θ(2)〉 and |Θ(3)〉 and ρnc,exp

D
(2)
5

with

good agreement with the ideal states. Also the respective fidelity of the eigenvectors of the experimentally determined
state are quite high (F|D(2)

5 〉
(|Θ(2)〉) = 0.978±0.012 and F|D(3)

5 〉
(|Θ(3)〉exp) = 0.979±0.012). Equally mixing the states
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|Θ(2)〉exp and |Θ(3)〉exp indeed would result in a state with vanishingly small correlations as seen in Fig. 6 (c). However,
due to asymmetry in the coupling of signal and idler states from the down conversion source [19] the correlations are

still present, albeit smaller by a factor of 10 compared with |D(2)
5 〉 and |D(3)

5 〉. In the main text we show that the very
same state is genuinely five-party entangled.

FIG. 3. Experimental three qubit states as obtained from the state |D(2)
4 〉exp. (a) The state |W 〉exp is obtained by projection

of the fourth qubit of |D(2)
4 〉exp on V . (b) The state

∣∣W〉exp is prepared by projecting the fourth qubit of |D(2)
4 〉exp on H.

(c) When the fourth qubit of |D(2)
4 〉exp is traced out, a mixture of |W 〉exp and

∣∣W〉exp is obtained, i.e., the state ρnc,expW .

The corresponding fidelities with respect to their target states are 0.939 ± 0.011 for |W 〉exp, 0.919 ± 0.010 for
∣∣W〉exp, and

0.961± 0.003 for ρnc,expW .

FIG. 4. Experimental state ρnc,exp
D

(2)
5

determined from five-fold coincidences together with permutational invariant tomogra-

phy [18]. The fidelity with respect to the target state is 0.911± 0.004.
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FIG. 5. (color online). Detection frequencies when observing the states |W 〉exp (red) and
∣∣W〉exp (blue) and ρnc,expW (red and

blue) in the σ⊗3
z basis. From these data Tzzz values can be calculated showing how the correlations of |W 〉exp and

∣∣W〉exp
average to approximately 0. For comparison, the theoretically expected values are shown in gray. The correlation value Tzzz of
the state ρnc,expW was determined as the weighted sum of the correlation values Tzzz of the states |W 〉exp and

∣∣W〉exp. The state

|W 〉exp was observed with a slightly lower probability (0.485) than the state
∣∣W〉exp (0.515) leading to a value of Tzzz = 0.022

for the state ρnc,expW . In contrast, in Fig. 2 of the main text the states |W 〉exp and
∣∣W〉exp were obtained from the state |D(2)

4 〉exp
by projection of the fourth qubit onto horizontal/vertical polarization, i.e., from measuring σz on the fourth qubit. There,

ρnc,expW was obtained by tracing out the fourth qubit and hence measurements of σx, σy, σz on the fourth qubit of |D(2)
4 〉exp

contribute, leading to approximately three times better statistics for the state ρnc,expW .
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FIG. 6. Experimental five-partite symmetric correlations for the two most prominent states (a) |Θ(2)〉exp and (b) |Θ(3)〉exp
in the eigen decomposition of the experimental density matrix ρnc,exp

D
(2)
5

shown in Fig. 4. The correlations of these states are

compared with the ones of the states (a) |D(2)
5 〉 and (b) |D(3)

5 〉, respectively, shown in gray. The agreement between the actual

and expected correlations is evident and also the fidelities of |Θ(2)〉exp and |Θ(3)〉exp with the respective target states are

high: F|D(2)
5 〉

(|Θ(2)〉exp) = 0.978 ± 0.012 and F|D(3)
5 〉

(|Θ(3)〉exp) = 0.979 ± 0.012. (c) When both states are evenly mixed, the

resultant state has practically vanishing correlations. (d) Since the collection efficiencies for signal and idler photons generated

via spontaneous parametric down-conversion differ slightly [19], the states |Θ(2)〉exp and |Θ(3)〉exp are observed with relative
weights of 0.54 and 0.46 leading to largely suppressed but not entirely vanishing full correlations. Hence, the experimentally
prepared state ρnc,exp

D
(2)
5

is a very good approximation to a no-correlation state. Please note that the correlations shown in (c)

and (d) are magnified by a factor of 10 compared with the scale of (a) and (b). The errors given in subfigures (a)-(c) were
obtained by non-parametric bootstrapping [20] whereas for (d) Gaussian error propagation was used.
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V. STATISTICAL ANALYSIS

A. Error analysis

In order to carry out n-qubit quantum state tomography, we measured in the eigenbases of all 3n combinations
of local Pauli settings si with s1 = x...xx, s2 = x...xy, ..., s3n = z...zz. In each setting si we performed projection
measurements on all the 2n eigenvectors of the corresponding operators. The single measurement results are enu-
merated by rj representing the binary numbers from 0 to 2n − 1 in increasing order, i.e., r1 = 0...00, r2 = 0...01, ...,
r2n = 1...11. The observed counts for the outcome rj when measuring si are labeled as csirj and the total number of

counts Nsi for setting si is given by Nsi =
2n∑
j=1

csirj . From these data the density matrix can be obtained as

ρ =

3n∑
i=1

2n∑
j=1

csirj
Nsi

Msi
rj (29)

where the elements of the generating set of operators Msi
rj are defined as Msi

rj = 1
2n

n⊗
k=1

(
11
3 + (−1)rj(k)σsi(k)

)
[21, 22],

where 11 denotes the 2 × 2 identity matrix and rj(k) is the k-th entry in the string rj . Then, the fidelity F|ψ〉 with
respect to a pure target state |ψ〉 can be calculated as

F|ψ〉 = 〈ψ| ρ |ψ〉 =
3n∑
i=1

2n∑
j=1

csirj
Nsi
〈ψ|Msi

rj |ψ〉 . (30)

For Poissonian measurement statistics, i.e., ∆csirj =
√
csirj , the error to the fidelity ∆F|ψ〉 =

√
∆2F|ψ〉 can be deduced

via Gaussian error propagation as ∆2F|ψ〉 =
3n∑
i=1

2n∑
j=1

( 1
Nsi
− 1

N2
si

)2 〈ψ|Msi
rj |ψ〉

2
csirj which is approximately

∆2F|ψ〉 =
3n∑
i=1

∆2F si|ψ〉 =
3n∑
i=1

2n∑
j=1

csirj
N2
si

〈ψ|Msi
rj |ψ〉

2
(31)

for large number of counts per setting as in our experiment. As an example, in table I we give the corresponding
values for csirj and |〈ψ|Msi

rj |ψ〉| for the 23 = 8 possible results of the zzz measurement of the three qubit |W 〉 state to

get an impression of the size of the 33 = 27 terms in Eq. (31).

TABLE I. The values of csirj and |〈ψ|Msi
rj |ψ〉| for the measurement of the setting zzz of the experimentally observed state |W 〉exp.

The first row shows all possible results rj associated with the eigenvectors on which projection measurements are performed,
labeled in binary representation. Please note that the observed counts csirj are not integers since the slightly differing relative
detection efficiencies of the single photon counters were included. From these data we obtain for si = zzz a contribution for
Eq. (31) of ∆2F zzz|W 〉 = 2.46e-05.

rj 000 001 001 011 100 101 110 111

zzz |〈ψ|Mzzz
rj |ψ〉| 1.48e-01 1.48e-01 1.48e-01 1.11e-01 1.48e-01 1.11e-01 1.11e-01 7.41e-02

counts czzzrj 14 309 250 8.71 283 8 7.07 0

Similarly, also the error of the 43 = 64 correlations of the given state are evaluated. For example, we obtain for
the correlation value Tzzz = −0.914 ± 0.034. The error for the maximum likelihood estimate was determined by
non-parametric bootstrapping, for details see [20].

B. Hypothesis testing

Vanishing correlations

After having calculated the experimental error of the zzz correlation, we find that the measurements of the remaining
26 full correlations have similar errors. We test our hypothesis of vanishing full correlations by comparing our measured
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correlation values with a normal distribution with mean µ = 0 and standard deviation σ = 0.0135, which corresponds
to the average experimental standard deviation. If our data are in agreement with this distribution, we can retain
the hypothesis of vanishing full correlations.

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

correlation

0.2

0.4

0.6

0.8

1.0

cumulative distribution

Reject H95%L

Data

Theory

FIG. 7. The cumulative distribution of the experimentally determined correlations is compared to the cumulative distribution
of the expected correlations (µ = 0, σ = 0.0135). The shaded blue region contains points that would be sampled from the
normal distribution with probability smaller than 5%. Since the empirical function lies in between the shaded regions, our
hypothesis of vanishing correlations can be retained with significance level of 0.05.

To test the hypothesis

H
(nc,3)
0 : all full correlations of the state ρnc,expW vanish,

according to the Kolmogorov-Smirnov method, the cumulative distribution of the 27 measured full correlations is
compared with the cumulative probability distribution of the assumed normal distribution, see Fig. 7, quantifying
the hypothesis of vanishing full correlations. We can directly see that the data do not enter the region of rejection
given by a significance level of 0.05. This clearly indicates that the hypothesis of normal distribution with mean
µ = 0 and σ = 0.135 cannot be rejected. While this test (Kolmogorov-Smirnov hypothesis test) is demonstrative, the
Anderson-Darling test is considered to be more powerful, i.e., to decrease the probability of errors of second kind.
Since the Anderson-Darling test gives a p-value of 0.44 far above a 0.05 significance level, we can retain the claim that
our measured data indeed correspond to vanishing full correlations, while their scatter can be fully explained by the
experimental error.

Testing for genuine multipartite entanglement

Furthermore, we also check our hypotheses of the main text that the tripartite and five-partite states are genuinely
multipartite entangled. For that purpose, we calculate the probability that a state without genuine multipartite
entanglement achieves values comparable to the measured value based on the assumption that the measurement
errors are normally distributed. Let us formulate for the tripartite state the null hypothesis

H
(3)
0 : state ρnc,expW is not genuinely tripartite entangled.

To show the genuine tripartite entanglement of that state, we want to reject the null hypothesis H
(3)
0 . In order

to estimate the error of first kind, i.e., the probability that H
(3)
0 is true, we calculate the probability that a state

without tripartite entanglement achieves the measured value of (T, Tnc,expW ) = 3.858. The calculation is based on the
assumption of a normal distributed result of the indicator with mean µ = 10

3 , i.e., the bi-separable bound, and with
standard deviation given by our experimental error of σ = 0.079. The probability of the error of first kind is then at
most

p = Pr
[
(T, Tnc,expW ) ≥ 3.858

∣∣∣H(3)
0

]
<

1√
2πσ

∫ ∞
3.858

dx exp

(
− (x− µ)

2

2σ2

)
= 1.55× 10−11 � 0.05. (32)

Since p is far below the significance level of 0.05, our experimentally implemented state ρncW is genuine tripartite
entangled.

3. Entanglement detection by correlation measurements
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Analogously, we test if the state ρnc,exp
D

(2)
5

is indeed genuinely five-partite entangled. For that purpose, we formulate

the null hypothesis

H
(5)
0 : state ρnc,exp

D
(2)
5

is not genuinely five-partite entangled.

In order to test the probability that a bi-separable state can achieve

(
T, Tnc,exp

D
(2)
5

)
= 13.663, we now use a normal

distribution centered around the bi-separable bound of µ = 12.8. The standard deviation is chosen according to the

experimental error of σ = 0.340, such that the probability for a false rejection of the null hypothesis H
(5)
0 is estimated

to be at most

p = Pr

[(
T, Tnc,exp

D
(2)
5

)
≥ 13.663

∣∣∣H(5)
0

]
<

1√
2πσ

∫ ∞
13.663

dx exp

(
− (x− µ)

2

2σ2

)
= 5.6× 10−3 � 0.05, (33)

clearly indicating the five-partite entanglement of our state with high significance.

Bell inequality

Finally, we test whether we can retain our claim that the five-partite state is non-classical due to its violation of
the Bell inequality. In order to show the violation, we formulate the null hypothesis

HB
0 : violation of the Bell inequality can be explained by LHV model (finite statistics loophole).

For the considered Bell inequality [13]

B = EP(11110) + EP(22220) + EP(12220) − EP(21110) − EP(11000) − EP(22000) ≤ 6 (34)

with P denoting the summation over all permutations, e.g. EP(11110) = E11110 +E11101 +E11011 +E10111 +E01111, we
calculate the probability that an LHV model can achieve the measured value of B = 6.358, which was estimated with
a standard deviation of ∆B = 0.149. Following Ref. [23] we assume that the LHV model gives the maximal allowed
expectation value of our Bell parameter, equal to µ = 6, and that the standard deviation of a normal distribution
about this mean value is equal to our experimental standard deviation ∆B. Therefore, the probability that the LHV
model gives values at least as high as observed is found to be

p = Pr
[
B ≥ 6.358

∣∣∣HB
0

]
<

1√
2πσ

∫ ∞
6.358

dx exp

(
− (x− µ)

2

2σ2

)
= 0.0083� 0.05. (35)

This small p-value clearly indicates that the null hypothesis HB
0 is to be rejected and thus the non-classicality of the

no-correlation state is confirmed.

C. Vanishing full correlations with arbitrary measurement directions

The measurements presented in the main text show not only vanishing full correlations for measurements in x, y, z
directions, but also for measurements of one qubit rotated in the yz-plane. Here, we show that full correlations have
to vanish for arbitrary measurement directions. Since the 2-norm of the correlation tensor is invariant under local
rotations, its entries vanish in all local coordinate systems if they do in one. Moreover, l-fold correlations in one set
of local coordinate system only depend on l-fold correlations of another set. As an example, we explicitly show this
for the case of three qubits.

T(θ1,φ1) (θ2,φ2) (θ3,φ3) = Tr(ρ σ(θ1,φ1) ⊗ σ(θ2,φ2) ⊗ σ(θ3,φ3)) (36)

with

σ(θi,φi) = sin(θi) cos(φi)σx + sin(θi) sin(φi)σy + cos(θi)σz. (37)
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Consequently,

T(θ1,φ1) (θ2,φ2) (θ3,φ3) = sin(θ1) cos(φ1) sin(θ2) cos(φ2) sin(θ3) cos(φ3)Txxx

+ sin(θ1) cos(φ1) sin(θ2) cos(φ2) sin(θ3) sin(φ3)Txxy

+ . . .

+ cos(θ1) cos(θ2) cos(θ3)Tzzz, (38)

which has to vanish since all full correlations along Pauli directions vanish.
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4. Quantum state tomography

The following chapter describes quantum state tomography, which has become one
of the standard tools for the full analysis of quantum systems [32, 129, 211–215].
It considers both theoretical and experimental aspects of the topic. As throughout
this thesis, here again, the focus lies entirely on qubits systems. For tomography of
higher dimensional systems please refer to [216, 217] and for tomographic analysis
in the continuous variable case, please see [218].

The chapter is structured as follows, in section 4.1 quantum state tomogra-
phy in its most general form is discussed where no further assumptions about
the structure of the state to be analyzed are made. The only constraint is that
for each of the 4N degrees of freedom of an N -qubit state, at least one measure-
ment has to be performed. Then, a commonly applied tomography scheme is
discussed, called Pauli tomography, where an overcomplete set of tomographic
data is recorded by performing 6N projection measurements. For both schemes,
the experimentally determined relative frequencies are interpreted as approxima-
tions to the unknown underlying probabilities and are utilized to reconstruct the
density matrix. However, this ansatz often fails to deliver a result that is physical.
In such cases, numerical optimization algorithms are applied which yield a phys-
ical result best representing the observed data. The most widely used of these
algorithms [211, 219] are discussed together with their numerical implementation.

In many situations, a complete analysis of a quantum state is not possible or
just not attempted due to its huge experimental effort. However, certain classes of
states possess an efficient representation with only few parameters and therefore
allow for tomographic analysis at largely reduced cost. For example, states that
can be represented as matrix product states of low bond dimension [117, 220] allow
for the application of highly efficient tomography schemes as discussed in [77, 221–
224]. The ansatz can even be generalized to continuous matrix product states
as presented in [225–227]. Compressed sensing is another strategy for efficient
tomography which benefits from the fact that in many experiments low rank
states, i.e., states with only few non-zero eigenvalues, are prepared [55, 228–232].
For states which are permutationally invariant (PI), like GHZ states or symmetric
Dicke states, PI tomography enables fully scalable tomographic analysis [56–58].
In general, any quantum state that can be expressed by means of a few parameter
model allows for efficient tomography [233]. An extensive overview of the current
state of the subject of quantum state reconstruction can be found in [234].
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4. Quantum state tomography

In section 4.2, two partial tomography schemes, namely compressed sensing
(CS) and PI tomography are presented in detail. Since many experimental states
are at the same time low rank states and feature permutational invariance, also
a combination of CS and PI tomography is considered. In publications P4.1 and
P4.2, these highly efficient tomography schemes are compared against full tomog-
raphy on the example of symmetric Dicke states with four and six photons. It
could be shown that all tomography schemes deliver compatible results within
their statistical errors. In this context, it is important that not only the mea-
surement scheme itself is scalable but also data post processing. Therefore, an
algorithm for the evaluation of permutationally invariant tomography is presented
that on the one hand exploits the symmetry of the state and on the other hand
resorts to methods from convex optimization, see publication P4.3.

Please note that all tomography schemes discussed in this work are static, i.e.,
a certain set of measurement operators is chosen in advance of the experiment.
No information that is obtained in the course of the experiment is used to update
the measurement operators for the remaining measurements. In contrast, in a
so called adaptive scheme, the first n measurement results determine what the
n + 1st measurement will be. The main advantage of an adaptive tomography
scheme is, that it converges faster towards the underlying unknown state. More
precisely, this means that with the same amount of experimental data, a higher
statistical significance can be achieved. However, this comes at the price of a
higher numerical effort which can be considerable. Adaptive tomography schemes
are treated both theoretically and experimentally in [235–242] for qubit systems.
For adaptive homodyne quantum tomography please see [243, 244].

4.1. Standard tomography

The goal of full quantum state tomography is to experimentally determine the
density matrix of an unknown quantum state % from a multitude of identical
copies of the state. In order to achieve this goal, the general ansatz is to find a
decomposition of % for a given set of measurement operators {Mi} such that % can
be expressed as a linear function of the expectation values of the measurement
operators {pi} with pi = 〈Mi〉. More precisely, a decomposition of % of the form

% =
∑
i

Yipi (4.1)

is required. In the following, a general procedure is presented that allows to
determine the generating set {Yi} on the example of two widely used tomogra-
phy schemes. The first scheme, projector-based complete tomography, requires
4N projection measurements which corresponds to the number of free real pa-
rameters of an N -qubit state. It is best suited for experimental setups where
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4.1. Standard tomography

one detector per spatial mode is used [50, 211]. With a small modification, this
scheme can be extended to uniquely determine % and infer the set {Yi} even if
more than 4N projection measurements are performed. Please note that in the
case of the minimum number of 4N projection measurements, the {Yi} form a
basis of the N -qubit Hilbert space C2N , i.e., a generating set with the smallest
number of elements. The second scheme, Pauli tomography, utilizes the results of
6N projection measurements where the projectors are given by the eigenvectors of
the tensor products of all possible combinations of Pauli matrices σx, σy and σz.
Pauli tomography is the method of choice for setups with two detectors per spatial
mode [89, 129, 207]. In all other cases, projector-based complete tomography is
to be preferred.

4.1.1. Projector-based complete tomography

Every N -qubit quantum state % can be represented by a Hermitian 2N×2N matrix
with 4N complex entries. Due to Hermiticity and normalization, the number of
real parameters that are required to uniquely characterize % reduces to 4N . Since
for each parameter one measurement has to be performed, at least 4N measure-
ments are necessary to determine %. In the most general form, the measurement
operators are a so-called positive operator valued measure (POVM) with all {Mi}
being positive-semidefinite Hermitian operators summing up to 1⊗N , i.e.,

〈φ|Mi|φ〉 ≥ 0 ∀φ and
∑
i

Mi = 1⊗N . (4.2)

An important difference between a basis of the Hilbert space H and a POVM is
that the number of elements of the POVM can be larger than the dimension of
H. Experimentally, it is often advantageous to perform projection measurements
because they are simpler to implement. One then speaks of a projector valued
measure (PVM) instead of a POVM.

In the following, it will be explained how a decomposition of % of the form
Eq. 4.1 can be inferred for PVMs with the minimal number of elements necessary
for quantum state tomography [211]. Therefore, let us rewrite Eq. 4.1 as

% =
∑

i1,...,iN
∈{0,1,2,3}

Yi1,...,iN 〈φi1 ⊗ ...⊗ φiN 〉 (4.3)

where the set {Yi1,...,iN} forms a basis of the Hilbert space and solely depends on
the projection measurements φi1 ⊗ ... ⊗ φiN . In order to obtain the elements of
{Yi1,...,iN}, it is best to first express % in the standard Pauli basis

% =
1

2N

∑
i1,...,iN
∈{0,x,y,z}

Ti1,...,iNσi1 ⊗ ...⊗ σiN (4.4)
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with correlations tensor Ti1,...,iN as introduced in section 2.2.1. For better read-
ability, the shorthand notations Γ0 = σ0 ⊗ σ0 ⊗ ... ⊗ σ0, Γ1 = σ0 ⊗ σ0 ⊗ ... ⊗ σx
etc., Ti1,...,iN −→ Tµ, Yi1,...,iN −→ Yλ, and φi1 ⊗ ...⊗ φiN −→ φλ are used. In this
notation, the expectation values pλ = 〈φλ〉 are then given by

pλ = Tr(%φλ) = Tr
( 1

2N

∑
µ

TµΓµφλ

)
=

1

2N

4N∑
µ=1

Tr(φλΓµ)Tµ. (4.5)

Introducing the matrix Bλ,µ = 1
2N

Tr(φλΓµ) allows to interpret Eq. 4.5 as a system
of linear equations

~p = B~T . (4.6)

Now ~T can be expressed as
~T = B−1~p (4.7)

or equivalently
Tµ = B−1µ,λpλ (4.8)

where B−1 is the inverse of B. Please note that for a tomographically complete
set of projectors, B−1 is mathematically always well-defined. Hence, the existence
of B−1 can therefore also be seen as a check whether the set of projectors {φλ} can
deliver a tomographically complete set of measurement data. Combining Eq. 4.8
and Eq. 4.4 delivers the desired result

% =
1

2N

∑
µ

TµΓµ =
1

2N

∑
µ,λ

B−1µ,λΓµpλ. (4.9)

From a comparison of Eq. 4.9 with Eq. 4.3, it can be seen that

Yλ =
1

2N

∑
µ

B−1µ,λΓµ. (4.10)

Due to finite measurement statistics, the probabilities pλ are experimentally not
accessible and can only be approximated. Thus, for experimental data, the prob-
abilities pλ in Eq. 4.9 are replaced with the respective frequencies fλ

% =
∑
λ

Yλfλ. (4.11)

A common choice for the local projectors are the eigenvectors with eigenvalue +1
of the Pauli matrices σx, σy and σz plus one additional projector for normalization.
One possible set of projectors is, e.g., φ0k = |x+〉〈x+|, φ1k = |y+〉〈y+|, φ2k =
|z+〉〈z+| and φ3k = |z−〉〈z−| with k = 1, ..., N . In order to correctly normalize
the state, it is necessary that a subset of the measurement projectors adds up to
identity. If one then measures all projectors of this subset for the same amount of
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4.1. Standard tomography

time tmeas and assumes that the number of copies generated by the experimental
apparatus is constant over time, one can infer how many copies N are generated
per time interval. Then the relative frequencies can be calculated as fλ = cλ

N
where cλ is the number of detection events when measuring the projector φλ for
time tmeas. Please note that the above procedure is not only applicable when
the number of projectors to be measured is 4N . It can easily be generalized to
situations with more than the required 4N projection measurements where a so
called overcomplete set of tomographic data is recorded. Then, the matrix B is
not a square matrix anymore and the inverse of B in Eq. 4.7 has to be replaced
by the Moore-Penrose pseudo-inverse [245].

4.1.2. Pauli tomography scheme

As explained in the previous section, complete information about a quantum state
can already be obtained from a minimal tomographic set. However, it is often
preferable to measure an overcomplete tomographic set which is advantageous for
a number of reasons. The first reason is that in many experiments [32, 129, 207],
the results of two orthogonal projectors per qubit can be obtained at almost no
additional experimental cost. Therefore, one often chooses to measure in the
eigenbases of all 3N possible combinations of tensor products of Pauli matrices
each consisting of 2N projection measurements. Hence, in total, 6N measurement
results are recorded. Another positive factor of this tomography scheme, also
known as Pauli tomography, is that it is more robust with respect to fluctuations of
the count rate since normalization is intrinsically guaranteed for each measurement
basis. A further advantage is that, by using more detection devices (one for
|x+〉〈x+| and one for |x−〉〈x−| etc.), in the same measurement time, more data is
recorded compared to a minimal tomographic set because the detection probability
for any state is always one, independent of the measurement basis. In our case,
the projectors are chosen as φ0k = |x+〉〈x+|, φ1k = |x−〉〈x−|, φ2k = |y+〉〈y+|,
φ3k = |y−〉〈y−|, φ4k = |z+〉〈z+| and φ5k = |z−〉〈z−| with k = 1, ..., N . In order
to determine the density matrix of the state, a decomposition of % similar to
Eq. 4.3 has to be found. In principle, it is possible to use the formalism presented
in section 4.1.1 and [211, 246] to find such a decomposition. However, there is
no need to resort to the Moore-Penrose pseudo-inverse since an elegant analytic
derivation for a linear decomposition of % exists [89] which delivers

% =
1

2N

∑
i1,...,iN
∈{x,y,z}

∑
m1,...,mN
∈{0,1}

pi1,...,iNm1,...,mN

N⊗
k=1

(
1

3
1 + (−1)mk σik

)
. (4.12)
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The probabilities pi1,...,iNm1,...,mN
are given by the expectation values of the respective

projection measurements

pi1,...,iNm1,...,mN
=

1

2N
Tr

(
%

N⊗
k=1

(1 + (−1)mk σik)

)
. (4.13)

Again, for finite measurement statistics, the probabilities have to be replaced by
the experimentally determined relative frequencies f i1,...,iNm1,...,mN

≈ pi1,...,iNm1,...,mN
. Please

note that due to the overcompleteness of the tomographic set, the elements of
the generating set {

⊗N
k=1(

1
3
1 + (−1)mk σik)} are non-orthogonal and there are,

in principle, infinitely many possible decompositions of %. Nonetheless, Eq. 4.12
can be seen as a natural decomposition of % where all the experimental data is
considered and directly contributes to the final result.

4.1.3. Physicality constraint

Both tomography schemes presented in section 4.1.1 and 4.1.2 interpret the exper-
imental data from a frequentistic point of view and do not impose any constraint
on the result. Due to unavoidable statistical fluctuations of the count rates, the
experimentally determined density matrix often fails to be positive-semidefinite,
i.e., in many cases it contains at least one negative eigenvalue. Since the eigen-
values are interpreted as probabilities, this poses a severe conceptual problem.
Especially when functions like, e.g., entanglement measures (see section 2.2.4)
are to be calculated, the result might be meaningless for unphysical states or the
function is mathematically just ill-defined outside the physical regime. For a more
elaborate discussion about possible causes for negative eigenvalues, please see sec-
tion 5.1. Here, the focus is entirely on the standard approach which guarantees
that the experimentally determined state lies within the physical regime and, at
the same time, optimally reflects the experimental data. More precisely, the task
is to find a state such that a target function FT is minimized for the experimentally
determined set of frequencies f = {fλ}

%̂ = arg min F
%≥0T

(%|f). (4.14)

The two most common choices for the target function FT are maximum likeli-
hood [219]

FMLE
T = −

∑
λ

fλ log(Tr(%|φλ〉〈φλ|)) (4.15)

and least squares [211]

FLS
T =

∑
λ

1

wλ
[fλ − Tr(%|φλ〉〈φλ|)]2 (4.16)
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with weights wλ. There are basically two options for the weights, to leave them
fixed, w = 1/fλ, or to leave them free, w = 1/Tr(%|φλ〉〈φλ|). Please note that for
the choice w = 1/fλ and especially for small sample sizes, the case fλ = 0 may
occur for some λ, leading to a singularity of FLS

T . In the following, three widely
used numerical procedures to find the optimum of Eq. 4.14 will be discussed.

Iterative fixed point algorithm

An iterative algorithm to find the optimum of Eq. 4.15 was proposed by Hradil
and is discussed, e.g., in [244, 247, 248]. One starts with the completely mixed
state %(0) = 1

2n
1⊗n as initial guess. Then one repetitively applies the update rule

%(k+1) = N [R(%(k))%(k)R(%(k))] (4.17)

with

R(%(k)) =
∑
λ

fλ
Tr(%(k)Mλ)

Mλ (4.18)

and normalization constant N such that Tr(%(k+1)) = 1 to determine %(k+1). Al-
though this algorithm is a generalization of the classical expectation-maximization
algorithm as presented in [249], its convergence towards the optimum of Eq. 4.14
cannot always be guaranteed. Nonetheless, in practical applications, its conver-
gence rate is often sufficiently high and it has to be noted that each step of the
algorithm requires only matrix-matrix multiplication which can be implemented
efficiently on a classical computer.

Cholesky decomposition

Another easy to implement numerical procedure to find the optimum of FT is
given by James et al. in [211]. It is based on the fact that every non-negative
Hermitian matrix can be decomposed into a product of a lower triangular matrix
Λ and its conjugate transposed Λ†. This decomposition, also known as Cholesky
decomposition, is always given for non-negative Hermitian matrices. Thus, by
parameterizing % as

% =
ΛΛ†

Tr(ΛΛ†)
(4.19)

with

Λ =


t1 0 · · · 0 0

tn+1 + itn+2 t2 · · · 0 0
tn+3 + itn+4 tn+5 + itn+6 t3 · · · 0

...
...

...
. . .

...
t4n−2n−1 + it4n−2n t4n−2n+1 + it4n−2n+2 · · · · · · tn

 , (4.20)
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it is guaranteed that % is a normalized non-negative Hermitian matrix. Hence,
for any choice of ~t ∈ R4N , %(~t) can be interpreted as a valid density matrix of a
quantum state. Then the constrained optimization problem of Eq. 4.14 can be
transformed in an unconstrained one

%̂ = arg min
~t∈R4N

FT (%(~t)|f). (4.21)

which can be solved with the aid of the build-in functions FindMinimum in
Mathematica® or fminunc in MATLAB®.

Convex optimization

The above algorithms to find the optimum of Eq. 4.15 and Eq. 4.16 are easy
to implement on a digital computer, which is their great advantage, and most
likely the main reason for their wide usage. However, both algorithms do not
explicitly take advantage of the convexity of the target functions FMLE

T and FLS
T .

For convex functions, the methods from the mathematically fully developed field
of convex optimization can be applied which hugely benefit from the fact that
convex functions have a unique optimum [57, 250, 251]. In consequence, this
means that one can estimate by how much the true solution of Eq. 4.14 differs
from the current iteration. Therefore, one can easily give a stopping condition for
a fitting algorithm, i.e., a prescription when no further iterations are necessary.

In order to actually apply convex optimization to Eq. 4.22, one still has to
restrict the solution to the physical regime. This can be achieved by adding a so
called barrier term to the respective target function

FT (%) −→ F̃T (%) = FT (%) + ε log[det(%)]. (4.22)

The barrier term log[det(%)] diverges for rank-deficit states, i.e., for states with at
least one vanishing eigenvalue. Thus, it penalized states that are “too close” to
the border of the state space. In the limit ε −→ 0, the function F̃T (%) converges
to the original function FT (%). Please note that also the function of Eq. 4.22 is
convex. In order to find the optimum of Eq. 4.14, one chooses a parametrization
of the form

%(x) =
1

2N
1⊗N +

∑
i

xiSi (4.23)

where x ∈ R4N−1 and {Si} (together with 1
2N

1⊗N) is some appropriate operator
basis. For each choice of ε, the optimum can be found by a Newton method [252].
Starting with x0 = 0 and, e.g., ε = 1, one finds the next iteration by

xi+1 = xi − β[H(F̃T (xi))]
−1∇F̃T (xi) (4.24)

where H(F̃T (xi)) is the Hessian matrix at xi and β is determined by a so-called
backtracking line search [250, 252] to fulfill the Wolfe conditions [253]. For
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4.1. Standard tomography

more details on how to determine the Hessian matrix H(F̃T (xi)) and the gra-
dient ∇F̃T (xi) for the respective target function, please see appendix A and
[57]. When the 2-norm of the gradient ‖∇F̃T (xi)‖2 falls below some limit, e.g.
‖∇F̃T (xi)‖2 < 10−7, ε is decreased further and the optimization procedure is
repeated. Here, it is crucial to decrease ε in a way that during the next opti-
mization, quadratic convergence is achieved after a few iterations [252]. In the
work presented here, ε was reduced by a factor of 10 each time until ε = 10−10

which turned out to deliver fast convergence and good numerical accuracy of the
result. As already mentioned above, the great advantage of convex optimization
is that the quality of the solution can directly be quantified. As shown in [57],
the difference between F̃T (%) and FT (%) is bounded by

F̃T (%)− FT (%) ≤ εdim(H) (4.25)

where dim(H) is the dimension of the Hilbert space. Thus, for small ε, the solution
of Eq. 4.22 gives an excellent approximation to the solution of Eq. 4.14.

4.1.4. Comparison of algorithms

Next, the convergence of the fitting algorithms introduced in section 4.1.3 shall
be investigated. Therefore, in a first step, tomographic data of random two- to
six-qubit states %0 are simulated in order to eliminate any unwanted experimental
imperfections and statistical noise. For these data, the result %̂ for the respective fit
functions Eq. 4.15 and Eq. 4.16 has to be identical to the initial state. The figure
of merit in this context is the number of iterations of the respective algorithm
that is necessary until the distance between %0 and %̂ falls below some given
threshold. In the following, the distance between %0 and %̂ is quantified by the
trace norm. Please note that here, the different algorithms are compared by the
number of iterations that are needed and not by the time they require because
then, the actual implementation would have a too strong influence, i.e., in which
programming language the respective algorithm is written, which linear algebra
libraries are available etc. For a fair comparison, it has to be mentioned that
the short run time of the convex optimization algorithm, as implemented in this
work, is to a large part due to the usage of the Hessian matrix. However, for even
larger qubit systems, the determination of the Hessian can become unfeasible.
In order to also benefit from convex optimization techniques in such cases, one
possibility is to resort to quasi Newton methods like, e.g., Broyden [254], DFP
[255, 256] or BFGS [257–260], where the Hessian matrix is only approximated.
Alternatively, conjugate gradient methods [261] allow for optimization without
the need to determine second derivatives.

93



4. Quantum state tomography

Figure 4.1.: Convergence of ML and LS fitting algorithms based on the Cholesky
decomposition, the iterative fixed point algorithm, and convex optimization. The
quality of the fit is quantified by the trace distance between the fitted and the
initial state. For two qubits, as can be seen in subfigures a) and b), all algorithms
achieve a good accuracy for the final result, although the convergence rates differ
significantly. For higher qubit numbers however, as shown in subfigures c)-f),
the supremacy of convex optimization becomes obvious. Please note that due to
limitations of memory and computational power, the fitting algorithm based on
the Cholesky decomposition could not be used for six qubits.
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4.2. Partial tomography schemes

4.2. Partial tomography schemes

The major drawback of full quantum state tomography is the exponential scaling
of the number of measurements with the system size. As shown above, at least
4N measurements are necessary to gain complete knowledge of an N -qubit state.
Moreover, this unfavorable scaling also poses, from today’s point of view, an insur-
mountable obstacle for data post processing on digital computers. For example,
in order to store the 430 measurement results obtained from the complete tomo-
graphic analysis of a 30-qubit state in double precision, 10 Exabyte of disc space
would be required! However, already for much smaller system sizes, the limits of
full quantum state tomography are reached due to experimental restrictions, like
the maximum measurement time or drifts of the setup, to name just a few. Hence,
it is highly desirable to develop tomography schemes with better than exponential
scaling by using additional knowledge like that the state is of low rank, features
a certain symmetry or allows for some efficient representation [55–58, 77, 221–
224, 228–233, 262–267].

In this thesis, the focus lies on two efficient partial tomography schemes: The
first one is compressed sensing, which exploits the fact that most experimentally
prepared states are close to pure states or are at least mixtures of only a few
pure states. The second scheme is permutationally invariant tomography which
is tailored to states that are invariant under particle swapping. The discussion
starts with CS, as it is more closely related to the Pauli tomography scheme in the
sense that it also uses Pauli measurements. After that, PI tomography is treated.

4.2.1. Compressed sensing

The first precursors of compressed or compressive sensing date back to the 1970’s
when seismologists observed that even from data that seemingly violated the
Nyquist-Shannon theorem, it was possible to reconstruct images of reflective lay-
ers within the earth [268, 269]. However, at that time, a rigorous mathematical
theory of the observed effect was still missing and it took two more decades until
Candés et al. [270] and Donoho [271] were able to put the method on solid math-
ematical ground. Shortly after, CS was adopted to quantum state tomography
[55, 228–231, 272]. Although the mathematical theory behind CS goes way beyond
the scope of this work, an intuitive understanding of CS can already be obtained
from a simple parameter counting argument. A pure quantum state is described
by only 2N −1 complex parameters, whereas a state with full rank requires 4N −1
real parameters in order to be uniquely described. Hence, if one knows or if one
can certify that a state is pure or of low rank, i.e., only few eigenvalues are non-
zero, it is plausible that the measurement effort can be reduced. However, it is
not a priori clear which settings should be measured in order to get the maximum
information which leads to some oversampling c. More precisely, the measure-
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4. Quantum state tomography

ment effort of CS is O(log(cr2N)) for a state with rank r [55]. In order to obtain
the density matrix, the respective target function FT from Eq. 4.15 or Eq. 4.16
has to be minimized for an tomographically incomplete set of measurement data.
In practice, one performs the optimization for more and more measurement data
until convergence sets in, i.e., further measurements do not alter the result any
more and then one stops measuring, see Fig. 4.2. Please note, that in [55] CS

Figure 4.2.: Simulation of CS on the example of a four-qubit state of rank three.
As can be seen, as soon as the number of (randomly) chosen measurement settings
surpasses 30, the initial state is perfectly reconstructed.

for quantum state tomography is discussed for `1 minimization and in [228] opti-
mization based on the matrix Dantzig selector and the matrix Lasso is considered.
In this thesis, however, the target function FMLE

T is chosen together with convex
optimization for a better comparability with the standard approach.

4.2.2. Permutationally invariant tomography

Permutationally invariant states allow for tomographic analysis at largely reduced
cost because they can be parametrized efficiently. In detail, PI tomography allows
to determine the projection of a quantum state on the permutationally invariant
subspace. Every quantum state % can be decomposed into a PI part %PI and a
part which is not PI %PI,

% = %PI + %PI. (4.26)

For any quantum state %, the PI part can be determined as

%PI =
1

N !

∑
i

Πi%Π†i (4.27)
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where the Πi are permutation operators for qubits. For many relevant quantum
states like GHZ states, W states or symmetric Dicke states, the non-permutatio-
nally invariant part vanishes and thus, even in many experimental realizations,
only determining %PI is a fairly good approximation to %. So far, determining %PI
has been theoretically discussed for spin systems in [273, 274] and experimentally
implemented for polarized photons in a single mode optical fiber in [275–277].

In the following, two different efficient representations of %PI shall be discussed
and how they can be exploited for tomographic analysis. The first one is based
on PI correlations, which allows for a simple derivation of the number of free
parameters. The second representation utilizes a block diagonalization of %PI
together with coarse graining, which proves to be advantageous especially for
maximum likelihood and least squares fitting algorithms.

Formally, a PI correlation TPI
i1,...,iN

is defined as

TPI
i1,...,iN

= 〈σi1 ⊗ ...⊗ σiN 〉PI =
1

N !

∑
i

Tr[%Πi(σi1 ⊗ ...⊗ σiN )Π†i ]. (4.28)

This definition reflects the fact that for PI states, the result of a correlation mea-
surement is independent under swapping of local measurements. A PI quantum
state is uniquely described by its PI correlations, also called generalized Bloch
vector. Thus, in order to determine the measurement effort, it is necessary to
count the number of PI correlations. Therefore, let us consider Fig. 4.3a) where
a simple scheme to count PI correlations on the example of four qubits is shown.
There are three vertical red bars to separate the local settings σ0, σx, σy and σz.
The horizontal black place holders left of the red bar 1 are filled up with σ0, the
place holders between the red bars 1 and 2 are filled up with σx, those between
the red bars 2 and 3 are filled up with σy, and, finally, those right of the red bar 3
are filled up with σz. The PI correlation corresponding to this arrangement of red
the bars is shown beneath. A second example is shown in Fig. 4.3b). With this
scheme, one can easily count all PI correlations of an N -qubit state. The total

1 2 3

ZZZX X Y
1 2 3

11

XsX s s sZ Z Z\PI Xs0 s s s0 X Y\PI

a) b)

Figure 4.3.: With a simple combinatorial argument, the number of parameters
that need to be determined for permutationally invariant tomography is

(
N+3
N

)
.

For details, see the main text.

number of PI correlations is given then by the number of possible distributions of
the three red bars which is, as can easily be seen,

(
N+3
N

)
= 1

6
(N3+6N2+11N+6).
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4. Quantum state tomography

Thus the number of free parameters of a PI state is O(N3). Hence, for an optimal
scheme, the measurement effort scales polynomially with the number of qubits.

In order to determine all PI correlations, an efficient approach is to measure a
set of global operators A⊗Nj (j = 1, ..., DN) where for each measurement setting,
the same local operator is measured on all qubits, with Aj = ~nj · ~σ, |~nj| = 1,
~σ = (σx, σy, σz) and with DN =

(
N+2
N

)
= 1

2
(N2 + 3N + 2) [56]. In principle,

the set of operators can be chosen quite arbitrarily, however, in order to achieve
small errors, it is best to choose an optimized set of measurement operators.
From these measurements, all expectation values of the form 〈A⊗(N−n)j ⊗ 1⊗n〉PI
(n = 0, ..., N − 1) can be inferred. All expectation values 〈A⊗(N−n)j ⊗ 1⊗n〉PI can
be inferred from collective measurements alone, i.e., only the number of up and
down clicks has to be recorded but not at which individual site they occurred.
From each measurement setting, N measurement results are obtained. Please
note that n = N is excluded because 〈1⊗N〉 ≡ 1 does not deliver any additional
information. The total number of parameters determined in this ansatz is hence
N
(
N+2
N

)
= 1

2
(N3 + 3N2 + 2N) which has, up to an oversampling of 3 in the limit

N →∞, the optimal scaling. The PI correlations in the standard Pauli basis can
be inferred from the measurement operators as [56]

〈σi1 ⊗ ...⊗ σiN 〉PI =

DN∑
j=1

ck,l,mj 〈A⊗(N−n)j ⊗ 1⊗n〉PI (4.29)

with real coefficients ck,l,mj . For every fixed set of measurement operators Aj,

the coefficients ck,l,mj can be determined such that the sum of variances of all PI
correlations

(Etotal)2 =
∑

k+l+m+n=N

E2[(σi1 ⊗ ...⊗ σiN )PI]

(
N !

k!l!m!n!

)
(4.30)

is minimal as described in [56]. For Poissonian measurement statistics, as common
in photonic experiments, Eq. 4.30 can be recast as

(Etotal)2 =
∑

k+l+m+n=N

DN∑
j=1

|ck,l,mj |2
[∆(A

⊗(N−n)⊗1⊗n

j )]

λj − 1

(
N !

k!l!m!n!

)
(4.31)

where λj is the parameter of the Poissonian distribution.
In order to obtain possibly small variances, it is, additional to an optimal choice

of coefficients ck,l,mj , necessary to optimize the measurement operators Aj. As al-
ready mentioned above, Aj = ~nj ·~σ with |~nj| = 1, and therefore the measurement
operators can be visualized on the Bloch sphere. Here, the best choice turned out
to be an even distribution of the Aj’s, as shown in Fig. 4.4. Please note that it is
possible to include the settings σ⊗Nx , σ⊗Ny and σ⊗Nz without significantly chang-
ing the variances in Eq. 4.30. From these measurement settings, various fidelity
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4.2. Partial tomography schemes

witnesses [278], entanglement witnesses [61, 158, 278, 279] and, more important
in this context, a lower bound for the overlap with the symmetric subspace can
be deduced [56].

1
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a) b)

Figure 4.4.: Optimized set of measurement operators Aj visualized on the Bloch
sphere for a) four and b) six-qubit PI tomography.

Alternatively to the approach presented above, which is closely linked to the
concept of correlations, another ansatz based on a block diagonal decomposition
of % and coarse graining exists. It is advantageous both with respect to linear
inversion and a maximum likelihood reconstruction. As already mentioned, the
PI part of a state % can be reconstructed from collective measurements alone.
This property is reflected by the coarse grained measurement operators Mn

j [57]

Mn
j =

∑
i

Πi|0〉j〈0|⊗N−nj ⊗ |1〉j〈1|⊗N−nj Π†i (4.32)

=

(
N

n

)[
|0〉j〈0|⊗N−nj ⊗ |1〉j〈1|⊗N−nj

]
PI

(4.33)

where Πi are permutation operators for qubits and |0〉j and |1〉j are the eigenvec-
tors of Aj with eigenvalue +1 and −1, respectively. Using the expectation values
of the coarse grained measurement operators, %PI can be expressed as a linear
function of these expectation values in a similar way as in section 4.1.1. More
precisely, a basis of the PI subspace {Yn,PIj }, similar to the set {Yi} in Eq. 4.1,
has to be found, such that %PI can be expressed as

%PI =

DN∑
j=1

N∑
n=1

Yn,PIj 〈Mn
j 〉. (4.34)

Similar to section 4.1.1, a shorthand notation is introduced, Yn,PIj −→ YPI
λ and

Mn
j −→ Mλ. As explained, %PI is uniquely described by its PI correlations, here

labeled as TPI
µ ,

%PI =
1

2N

∑
µ

TPI
µ ΓPI

µ (4.35)
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with ΓPI
µ the corresponding element of the symmetrized Pauli basis. Then the

expectation value pλ = 〈Mλ〉 can be determined as

pλ = Tr(%PIMλ) = Tr

(
1

2N

∑
µ

TPI
µ ΓPI

µ Mλ

)
=

1

2N

∑
µ

Tr(MλΓ
PI
µ )TPI

µ (4.36)

Similar to Eq. 4.7 in section 4.1.1, introducing matrix Bλ,µ = 1
2N

Tr(MλΓ
PI
µ ), allows

to interpret Eq. 4.36 as a system of linear equations

~p = B~TPI. (4.37)

The further derivation of the basis elements YPI
λ goes along the same line as in the

case of standard tomography discussed in section 4.1. Therefore, only the final
result shall be given

YPI
λ =

1

2N

∑
µ

B−1µ,λΓ
PI
µ . (4.38)

As already mentioned before, due to finite measurement statics, the probabilities
pλ can only be approximately determined in real experiments, i.e., fλ ≈ pλ, and
thus

%PI =
∑
λ

YPI
λ fλ. (4.39)

Note that the presented approach is simpler in the sense that it does not ne-
cessitate to determine the coefficients ck,l,mj from Eq. 4.29. However, here, the
drawback is that there is no direct way as in Eq. 4.31 to quantify the expected
errors for a certain choice of measurement operators Aj. Nonetheless, as soon as
a set of operators is proven to be appropriate in terms of the expected errors,
Eq. 4.39 is a simple and straightforward way to infer the PI part of a quantum
state.

Apart from their usefulness for a direct evaluation of the PI part of a quantum
state, the coarse grained operators Mn

j are also beneficial for a scalable max-
imum likelihood reconstruction of %PI. Permutationally invariant tomography
does not only offer an efficient measurement scheme but also offers the possibility
to efficiently store and further process the obtained data on a digital computer.
For this purpose, a basis change to the angular momentum basis is required.
A possible choice of basis states for the N -qubit Hilbert space is |j, jz, α〉, with
~J2|j, jz, α〉 = j(j+1)|j, jz, α〉, Jz|j, jz, α〉 = jz|j, jz, α〉. The total spin numbers are
restricted to j = jmin, jmin+1, ..., N

2
starting from jmin = 0 for N even and jmin = 1

2

for N odd, while jz = −N
2
,−N

2
+ 1, ..., N

2
. Here, the label α was introduced to

remove the degeneracy of the eigenstates of ~J2 and J2
z with degree dj [280]. In

this basis, any PI operator, like, e.g., %PI or Mn
j , can be written in a simple block

diagonal form

%PI =

N/2⊕
k=kmin

1dk
dk
⊗ pk%k (4.40)
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with %k being the density operators of the spin-k subspace and pk a probability
distribution, see Fig. 4.5. Hence, as an equally efficient alternative to storing

Figure 4.5.: Every PI state allows for a block diagonal decomposition.

the generalized Bloch vector introduced in Eq. 4.28, it is also possible to store
only the N

2
blocks %̃j = pj%j/dj (of which each has a multiplicity of dj). The

largest of these blocks, which corresponds to the symmetric subspace, is of size
(N+1)×(N+1) and multiplicity dN

2
= 1. Thus, the block diagonal representation

of PI states is an efficient scheme for data storage. Moreover, as also the coarse
grained measurement operators Mn

k allow for a block diagonal representation,

Mn
k =

N/2⊕
j=jmin

1dk ⊗Mn
k,j, (4.41)

expectation values of the kind Tr(%PIM
n
j ) can efficiently be calculated as follows

Tr(%PIM
n
j ) =

N/2∑
k=kmin

pkTr(%kM
n
k,j). (4.42)

More precisely, in the standard representation the trace has to be taken over the
product of two 2N -dimensional matrices, now there are only about N

2
terms with

traces of at most (N + 1)-dimensional matrices. Again, the effort reduces from
exponential to polynomial. This speedup can be used beneficially to also make
maximum likelihood estimation scalable, i.e., the computational effort increases
polynomially with the system size. For details see publication P4.3.

Even if the state to be analyzed is not PI, as long as the observable to be
measured is PI one can hugely benefit from the scheme thanks to the fact that
a similarly scalable decomposition can be found for any PI operator O, i.e., O =⊕

j 1dj ⊗Oj. Together with Eq. (4.40) this yields an efficient way to calculate the
expectation values 〈O〉 = Tr(%O) =

∑
j pjTr(%jOj) also for non-PI states. Please

note that if the operator whose expectation value is to be determined is PI, the
result obtained by means of permutationally invariant tomography is correct, even
in case the state under investigation is not PI.
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4. Quantum state tomography

4.2.3. Compressed sensing in the permutationally invariant
subspace

In sections 4.2.1 and 4.2.2, two efficient tomography schemes were presented.
The first one, CS, is suited for low rank states, i.e., states with only few non-
zero eigenvalues. The second scheme, PI tomography, is ideal for the analysis
of states that lie within the PI subspace. At this point, the question arises if
it is also possible to combine these two schemes as there are states that are at
the same time of low rank and PI. Prominent examples for such states are GHZ
states and the symmetric Dicke states as discussed in this work. As expected, the
answer turns out to be positive. More precisely, in order to carry out CS in the PI
subspace, only a subset of the set of operators A⊗Nj (j = 1, ..., DN) is measured.
Then, the target function 4.14 is minimized under the constraint of % being PI and
positive-semidefinite. This scheme is experimentally implemented in publication
P4.3 on the example of a symmetric six-photon Dicke state. There, it could be
shown that CS in the PI subspace can further reduce the experimental without
significantly changing the reconstructed state. For more details see publication
P4.2 and for a description of the fitting algorithm, see publication P4.3.
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We present a scalable method for the tomography of large multiqubit quantum registers. It acquires

information about the permutationally invariant part of the density operator, which is a good approxi-

mation to the true state in many relevant cases. Our method gives the best measurement strategy to

minimize the experimental effort as well as the uncertainties of the reconstructed density matrix. We apply

our method to the experimental tomography of a photonic four-qubit symmetric Dicke state.

DOI: 10.1103/PhysRevLett.105.250403 PACS numbers: 03.65.Wj, 03.65.Ud, 42.50.Dv

Because of the rapid development of quantum experi-
ments, it is now possible to create highly entangled multi-
qubit states using photons [1–5], trapped ions [6], and cold
atoms [7]. So far, the largest implementations that allow
for an individual readout of the particles involve on the
order of 10 qubits. This number will soon be overcome, for
example, by using several degrees of freedom within each
particle to store quantum information [8]. Thus, a new
regime will be reached in which a complete state tomog-
raphy is impossible even from the point of view of the
storage place needed on a classical computer. At this point
the question arises: Can we still extract useful information
about the quantum state created?

In this Letter we propose permutationally invariant
(PI) tomography in multiqubit quantum experiments [9].
Concretely, instead of the density matrix %, we propose to
determine the PI part of the density matrix defined as

%PI ¼ 1

N!

X
k

�k%�k; (1)

where �k are all the permutations of the qubits.
Reconstructing %PI has been considered theoretically for
spin systems (see, e.g., Ref. [10]). Recently it has been
pointed out that photons in a single mode optical fiber will
always be in a PI state and that there is only a small set of
measurements needed for their characterization [11,12].

Here, we develop a provably optimal scheme, which is
feasible for large multiqubit systems: For our method, the
measurement effort increases only quadratically with the
size of the system. Our approach is further motivated by
the fact that almost allmultipartite experiments are donewith
PI quantum states [2–4,6]. Thus, the density matrix obtained
from PI tomography is expected to be close to the one of the
experimentally achieved state. The expectation values of
symmetric operators, such as some entanglement witnesses,
and fidelities with respect to symmetric states are the same

for both density matrices and are thus obtained exactly from
PI tomography [2–4]. Finally, if %PI is entangled, so is the
state % of the system, which makes PI tomography a useful
and efficient tool for entanglement detection.
Below, we summarize the four main contributions of this

Letter. We restrict our attention to the case of N qubits—
higher-dimensional systems can be treated similarly.
(1) In most experiments, the qubits can be individually

addressed whereas nonlocal quantities cannot be measured
directly. The experimental effort is then characterized by
the number of local measurement settings needed, where
‘‘setting’’ refers to the choice of one observable per qubit,
and repeated von Neumann measurements in the observ-
ables’ eigenbases [13]. Here, we compute the minimal
number of measurement settings required to recover %PI.
(2) The requirement that the number of settings be

minimal does not uniquely specify the tomographic proto-
col. On the one hand, there are infinitely many possible
choices for the local settings that are both minimal and
give sufficient information to find %PI. On the other hand,
for each given setting, there are many ways of estimating
the unknown density operator from the collected data. We
present a systematic method to find the optimal scheme
through statistical error analysis.
(3) Next, we turn to the important problem of gauging

the information loss incurred due to restricting attention to
the PI part of the density matrix. We describe an easy test
measurement that can be used to judge the applicability of
PI tomography before it is implemented.
(4) Finally, we demonstrate that these techniques are

viable in practice by applying them to a photonic experi-
ment observing a four-qubit symmetric Dicke state.
Minimizing the number of settings.—We will now

present our first main result.
Observation 1. For a system of N qubits, permuta-

tionally invariant tomography can be performed with
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D N ¼ N þ 2
N

� �
¼ 1

2
ðN2 þ 3N þ 2Þ (2)

local settings. It is not possible to perform such a tomog-
raphy with fewer settings.

Proof.—First, we need to understand the information
obtainable from a single measurement setting. We assume
that for every given setting, the same basis is measured at
every site [14]. Measuring a local basis fj�1i; j�2ig is
equivalent to estimating the expectation value of the trace-
less operator A ¼ j�1ih�1j � j�2ih�2j. Merely by mea-
suring A�N , it is possible to obtain all the N expectation
values

hðA�ðN�nÞ � 1�nÞPIi; ðn ¼ 0; . . . ; N � 1Þ; (3)

and, conversely, that is all the information obtainable about
%PI from a single setting.

Next, we will use the fact that any PI density operator
can be written as a linear combination of the pairwise
orthogonal operators ðX�k � Y�l � Z�m � 1�nÞPI, where
X, Y, and Z are the Pauli matrices. We consider the space
spanned by these operators for one specific value of n.
Simple counting shows that its dimension is DðN�nÞ. The
same space is spanned by DðN�nÞ generic operators of the
type ðA�ðN�nÞ � 1�nÞPI. We draw two conclusions: First,
any setting gives at most one expectation value for every
such space. Hence the number of settings cannot be smaller
than the largest dimension, which isDN . Second, a generic
choice of DN settings is sufficient to recover the correla-
tions in each of these spaces, and hence completely char-
acterizes %PI. This concludes the proof [15].

The proof implies that there are real coefficients cðk;l;mÞ
j

such that

hðX�k � Y�l � Z�m � 1�nÞPIi

¼ XDN

j¼1

cðk;l;mÞ
j hðA�ðN�nÞ

j � 1�nÞPIi: (4)

Wewill refer to the numbers on the left-hand side of Eq. (4)
as the elements of the generalized Bloch vector. The ex-
pectation values on the right-hand side can be obtained by
measuring the settings with Aj for j ¼ 1; 2; . . . ;DN .

Minimizing uncertainties.—We now have to determine
the optimal scheme for PI tomography. To this end, we
define our measure of statistical uncertainty as the sum of
the variances of all the Bloch vector elements

ðEtotalÞ2 ¼
X

kþlþmþn¼N

E2½ðX�k � Y�l � Z�m � 1�nÞPI�

�
�

N!

k!l!m!n!

�
; (5)

where the term with the factorials is the number of differ-
ent permutations of X�k � Y�l � Z�m � 1�n. Based on
Eq. (4), the variance of a single Bloch vector element is

E 2½ðX�k � Y�l � Z�m � 1�nÞPI�

¼ XDN

j¼1

jcðk;l;mÞ
j j2E2½ðA�ðN�nÞ

j � 1�nÞPI�: (6)

Equation (5) can be minimized by changing the Aj matrices

and the cðk;l;mÞ
j coefficients.We consider the coefficients first.

For any Bloch vector element, finding cðk;l;mÞ
j ’s thatminimize

the variance Eq. (6) subject to the constraint that equality
holds in Eq. (4) is a least squares problem. It has an analytic
solution obtained as follows: Write the operator on the left-
hand side of Eq. (6) as a vector ~v (with respect to some basis).
Likewise, write the operators on the right-hand side as ~vj and

define a matrix V¼½ ~v1; ~v2; .. . ; ~vDN
�. Then Eq. (4) can be

cast into the form ~v ¼ V ~c, where ~c is a vector of the cðk;l;mÞ
j

values for given ðk; l; mÞ. If E is the diagonal matrix with en-

triesE2
j;j ¼ E2½ðA�ðN�nÞ

j � 1�nÞPI�, then the optimal solution

is ~c ¼ E�2VTðVE�2VTÞ�1 ~v, where the inverse is taken over
the range [16].
Equipped with a method for obtaining the optimal

cðk;l;mÞ
j ’s for every fixed set of observables Aj, it remains to

find the best settings tomeasure. Every qubit observable can
be defined by the measurement directions ~aj using Aj ¼
aj;xX þ aj;yY þ aj;zZ. Thus, the task is to identify DN

measurement directions on the Bloch sphere minimizing
the variance. In general, finding the globally optimal solu-
tion of high-dimensional problems is difficult. In our case,
however, Etotal seems to penalize an inhomogeneous distri-
bution of the ~aj vectors; thus, using evenly distributed vec-

tors as an initial guess, usual minimization procedures can
be used to decrease Etotal and obtain satisfactory results [16].

The variance E2½ðA�ðN�nÞ
j � 1�nÞPI� of the observed

quantities depends on the physical implementation. In the
photonic setup below, we assume Poissonian distributed
counts. It follows that (see also Refs. [17,18])

E 2½ðA�ðN�nÞ
j � 1�nÞPI� ¼

½�ðA�ðN�nÞ
j � 1�nÞPI�2%0

�j � 1
; (7)

where ð�AÞ2% ¼ hA2i% � hAi2%, %0 is the state of the system,

and �j is the parameter of the Poissonian distribution,

which equals the expected value of the total number of
counts for the setting j. The variance depends on the un-
known state. If we have preliminary knowledge of the
likely form of %0, we should use that information in the
optimization. Otherwise, %0 can be set to the completely
mixed state. For the latter, straightforward calculation

shows that E2½ðA�ðN�nÞ
j � 1�nÞPI� ¼ ðNnÞ�1=ð�j � 1Þ. For

another implementation, such as trapped ions, our scheme
for PI tomography can be used after replacing Eq. (7) by
a formula giving the variance for that implementation.
Estimating the information loss due to symmetriza-

tion.—It is important to know how close the PI quantum
state is to the state of the system as PI tomography should
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serve as an alternative of full state tomography for experi-
ments aiming at the preparation of PI states.

Observation 2. The fidelity between the original state
and the permutationally invariant state, Fð%; %PIÞ, can

be estimated from below as Fð%; %PIÞ � hPsi2%, where Ps ¼P
N
n¼0 jDðnÞ

N ihDðnÞ
N j is the projector to the N-qubit symmetric

subspace, and the symmetric Dicke state is defined as

jDðnÞ
N i ¼ ðNnÞ�1=2

P
kP kðj0i�ðN�nÞ � j1i�nÞ, where the sum-

mation is over all the different permutations of the qubits.
Observation 2 can be proved based on Ref. [19] and elemen-
tary matrix manipulations. Note that Observation 2 makes
it possible to estimate Fð%; %PIÞ based on knowing only %PI.

Lower bounds on the fidelity to symmetric Dicke states,

i.e., TrðjDðnÞ
N ihDðnÞ

N j%Þ can efficiently be obtained by mea-
suring X, Y, and Z on all qubits, i.e., measuring only three
local settings independent of N [20]. With the same
measurements, one can also obtain a lower bound on the
overlap between the state and the symmetric subspace.
For four qubits, this can be done based on Ps � ½ðJ4x þ
J4y þ J4z Þ � ðJ2x þ J2y þ J2z Þ�=18, where Jx ¼ ð1=2ÞPkXk,

Jy ¼ ð1=2ÞPkYk, etc. Operators for estimating hPsi for

N ¼ 6; 8 are given in Ref. [16]. This allows one to judge
how suitable the quantum state is for PI tomography before
such a tomography is carried out.

Experimental results.—We demonstrate the method and
the benefits of our algorithm for PI tomography for a four-

qubit symmetric Dicke state with two excitations jDð2Þ
4 i.

First, we optimize the ~aj’s and the cðk;l;mÞ
j ’s for %0 ¼ 1=16

and only for the uncertainty of full four-qubit correlation
terms, which means that when computing Etotal, we carry out
the summation in Eq. (5) only for the termswith n ¼ 0. With
simple numerical optimization,wewere looking for the set of
Aj basis matrices that minimize the uncertainty of the full

correlation terms. Then,we also looked for the basismatrices
that minimize the sum of the squared error of all the Bloch
vector elements and considered also density matrices differ-
ent from white noise, such as a pure Dicke state mixed with
noise. We find that the gain in terms of decreasing the
uncertainties is negligible in our case and that it is sufficient
to optimize for %0 ¼ 1=16 and for the full correlation terms.
To demonstrate the benefits of the optimization of the mea-
surement directions, we also compare the results with those
obtained with randomly distributed basis matrices.

The Dicke state was observed in a photonic system.
Essentially, four photons emitted by the second-order col-
linear type-II spontaneous parametric down-conversion
process were symmetrically distributed into four spatial
modes. Upon detection of one photon from each of the

outputs, the state jDð2Þ
4 i is observed. Polarization analysis

in each mode is used to characterize the experimentally
observed state. We collected data for each setting for 5 min,
with an average count rate of 410 per minute. The experi-
mental setup has been described in detail in Refs. [2,3].

First, to check the applicability of the PI tomography,
we apply our tools described above requiring only the

measurement of the three settings, X�4, Y�4, and Z�4.
We determine the expectation value of the projector to
the symmetric subspace, yielding hPsi � 0:905� 0:015.
Based on Observation 2, we obtain Fð%; %PIÞ � 0:819�
0:028. These results show that the state is close to be PI
and has a large overlap with the symmetric subspace. Thus,
it makes sense to apply PI tomography.
For PI tomography of a four-qubit system, the measure-

ment of 15 settings is needed. We used Eq. (4) to obtain the
Bloch vector elements from the experimentally measured
quantities. This way, we could obtain all the 34 symmetric
correlations of the form ðX�k � Y�l � Z�m � 1�nÞPI. In
Fig. 1, we give the values of the correlations for optimized
and for randomly chosen measurement directions, com-
pared to the results obtained from full tomography, which
needed 81 measurement settings. As can be seen in Fig. 1,
the uncertainty for the optimized settings is considerably
smaller than the one for the randomly chosen settings.
Moreover, the results from the optimized settings fit very
well the results of the full tomography. In Fig. 2, we
compare the density matrices obtained from full tomogra-
phy [Fig. 2(a)], from PI tomography for optimized
[Fig. 2(b)], and for random measurement directions
[Fig. 2(c)]. Because of noise, the fidelity of the result of

the full tomography with respect to jDð2Þ
4 i is 0:873� 0:005,

which is similar to the fidelity of the results of the PI
tomography with optimized settings, 0:852� 0:009 [21].
In contrast, for the method using random measurement
directions, the fidelity is 0:814� 0:059, for which the
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FIG. 1 (color online). (a) Comparison of the 34 symmetrized
correlations coming from (crosses with error bars) 15 permutation-
ally invariant measurement settings with optimized Aj matrices for

N ¼ 4 qubits and (diamonds) from full tomography requiring 81
local settings. The average uncertainty of all symmetrized correla-
tions obtained from full tomography is�0:022, and is not shown in
the figure. The labels refer to symmetrized correlations of the form
given in the left-hand side of Eq. (4). The results corresponding to
the 15 full four-qubit correlations are left from the vertical dashed
line. (b)Measurement directions.A point at ðax; ay; azÞ corresponds
to measuring operator axX þ ayY þ azZ. (c) Results for randomly

chosen Aj matrices and (d) corresponding measurement directions.
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uncertainty is the largest compared to all previous fidelity
values. Finally, we also computed the fidelity of the results
with respect to the PI density matrix obtained from full
tomography [22]. The results of the PI tomography with
optimized settings show a good agreement with full to-
mography: the fidelity is 0.947, which is quite close to the
fidelity between the results of full tomography and its PI
part, 0.964. On the other hand, for the PI tomography with
random settings the corresponding fidelity is much lower,
0.880. Overall, the PI tomography shows a good agreement
with the full tomography for this particular experiment.
However, a reasonable choice of measurement directions is
needed to obtain uncertainties in the reconstructed Bloch
vector elements similar to the ones from full tomography.

Finally, let us comment on how our method can be ex-
tended to lager systems. Permutationally invariant operators
can be represented efficiently on a digital computer in the
basis of ðX�k�Y�l�Z�m�1�nÞPI operators.Wedetermined
the optimal Aj operators for PI tomography for systems with

N ¼ 6; 8; . . . ; 14 qubits. To have the same maximum uncer-
tainty of theBlochvector elements as for theN ¼ 4 case, one
has to increase the counts per setting by less than 50% [16].

In summary, we presented a scalablemethod for permuta-
tionally invariant tomography, which can be used in place of
full state tomography in experiments that aim at preparing
permutationally invariant many-qubit states. For our ap-
proach, the same operator has to be measured on all qubits,

which is a clear advantage in some experiments.We showed
how to choose themeasurements such that the uncertainty in
the reconstructed density matrix is the smallest possible.
This paves the way of characterizing permutationally in-
variant states of many qubits in various physical systems.
Moreover, this work also shows that, given some knowledge
or justifiable assumptions, there is a way to obtain scalable
state tomography for multiqubit entangled states.
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Proof of that we have to measure the same operator on all
qubits. From the proof of Observation 1, we know that at least
DN measurements are needed to get the expectation values
of all the DN independent symmetric full N -particle correla-
tions. What if we measure DN settings, but several of them
are not {Aj , Aj , ..., Aj}-type, but {A(1)

j , A
(2)
j , ..., A

(N)
j }-

type, i.e., we do not measure the same operator on all qubits?
Each setting makes it possible to get a single operator con-
taining full N -qubit correlations. Let us denote this operator
by Mk for k = 1, 2, ...,DN . Then, we know the expectation
value of any operator of the space defined by the Mk oper-
ators. However, not all Mk’s are permutationally invariant.
Thus, the size of the PI subspace of the space of the Mk opera-
tors is less than DN . We do not have DN linearly independent
symmetric operators in this space. Thus, DN measurement
settings are sufficient to measure ϱPI only if we have settings
of the type {Aj , Aj , ..., Aj}.

Derivation of Eq. (7). The eigen-decomposition of the cor-
relation term is

(A
⊗(N−n)
j ⊗ 11⊗n)PI =

∑
k

Λj,n,k|Φj,k⟩⟨Φj,k|. (S1)

The individual counts NC(Aj)k follow a Poissonian distribu-
tion f(nc, λj,k), where λj,k are the parameters of the Poisso-
nian distributions and

∑
k λj,k = λj . The conditional vari-

ance, knowing that the total count is NC(Aj), is

E2[(A
⊗(N−n)
j ⊗11⊗n)PI|NC(Aj)] =

[∆(A
⊗(N−n)
j ⊗ 11⊗n)PI]

2

NC(Aj)
.

(S2)
After straightforward algebra, the variance is obtained as

E2[(A
⊗(N−n)
j ⊗ 11⊗n)PI]

=
∑
m

f(m,λj)E2[(A
⊗(N−n)
j ⊗ 11⊗n)PI|NC(Aj) = m]

=
[∆(A

⊗(N−n)
j ⊗ 11⊗n)PI]

2

λj − 1
. (S3)

Similar results can be obtained through assuming Poisso-
nian measurement statistics and Gaussian error propagation

[S1, S2]. If ϱ0 = 11/2N , then ∆(A
⊗(N−n)
j ⊗ 11⊗n)PI is in-

dependent from the choice of Aj . By substituting Aj = Z,
straightforward calculations gives

E2[(A
⊗(N−n)
j ⊗ 11⊗n)PI] =

(
N
n

)−1

λj − 1
. (S4)

Obtaining the formula for c(k,l,m)
j for the smallest error.

We look for c(k,l,m)
j for which the squared uncertainty given in

Eq. (6) is the smallest. In the following, we use the definition
given in the main text for c⃗, v⃗, V and E. Thus, V is matrix
mapping a large space Rl to a small space Rs. Let E be a
non-singular diagonal matrix in the small space. We have to
solve

min
c⃗

∥Ec⃗∥2 s.t. V c⃗ = v⃗, (S5)

where ||⃗a|| is the Euclidean norm of a⃗. Using Lagrangian mul-
tipliers, we write down the condition for a minimum fulfilling
the constraints V c⃗ = v⃗

∇c⃗

{
c⃗TE2c⃗+

s∑
i=1

λi

[
(V c⃗)i − wi

]}
= 0. (S6)

Hence, the condition for a local (and, due to convexity, global)
minimum is

c⃗ =
1

2
E−2V T λ⃗, (S7)

where λ ∈ Rs is the vector of multipliers. In other words, we
have a minimum if and only if c⃗ ∈ rangeE−2V T . Because
the range of V T is an s-dimensional subspace in Rl, there is
a unique c⃗ in that range such that V c⃗ = v⃗. A solution in a
closed form can be obtained as

c = E−2V T (V E−2V T )−1v⃗. (S8)

Simple calculation shows that the V c⃗ = v⃗ condition holds

V c = V E−2V T (V E−2V T )−1v⃗ = v⃗. (S9)
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Table S1: Fidelities to the 4-qubit Dicke states.

measurement |D(0)
4 ⟩ |D(1)

4 ⟩ |D(2)
4 ⟩ |D(3)

4 ⟩ |D(4)
4 ⟩ Σ

full tomography −0.001± 0.002 0.023± 0.004 0.873± 0.005 0.026± 0.004 0.002± 0.002 0.922

full tomography (max-like) 0.001 0.021 0.869 0.023 0 0.914

PI tomography −0.001± 0.002 0.040± 0.007 0.852± 0.009 0.036± 0.007 −0.002± 0.002 0.925

PI tomography (max-like) 0.003 0.038 0.850 0.037 0 0.928

PI tomography (ran) 0.000± 0.002 0.055± 0.027 0.814± 0.059 0.023± 0.027 0.001± 0.002 0.893

PI tomography (ran,max-like) 0.004 0.050 0.816 0.020 0.007 0.897

Proof of Observation 2. The eigenstates of J⃗2 = J2
x +

J2
y+J2

z are usually labelled by |j,m, α⟩, where J⃗2|j,m, α⟩ =
j(j + 1)|j,m, α⟩, Jz|j,m, α⟩ = m|j,m, α⟩, and α is used to
label the different eigenstates having the same j and m [S3].
Let Pj,α denote the projector to the subspace of a given j and
α. The number of subspaces is denoted by NSS, and, for a
given N , it can be calculated from group theory. Moreover,
Ps ≡ PN/2,1. Using this notation, ϱPI =

∑
j,α Pj,αϱPj,α =

(PsϱPs) +
∑

j<N/2,α(Pj,αϱPj,α). In the basis of J⃗2 eigen-
states, ϱPI can be written as a block diagonal matrix

ϱPI =
⊕
j,α

(⟨Pj,α⟩ϱϱ̂j,α) , (S10)

where ϱ̂j,α are density matrices of size (2j + 1) × (2j + 1).
In another context,

ϱPI =
∑
j,α

⟨Pj,α⟩ϱϱj,α, (S11)

where ϱj,α = Pj,αϱPj,α/Tr(Pj,αϱPj,α). Based on that, we
obtain

F (ϱ, ϱj,α) = ⟨Pj,α⟩ϱ. (S12)

Then, due to the separate concavity of the fidelity, i.e.,
F (ϱ, p1ϱ1 + p2ϱ2) ≥ p1F (ϱ, ϱ1) + p2F (ϱ, ϱ2), we obtain
F (ϱ, ϱPI) ≥ ⟨Ps⟩ϱF (ϱ, ϱs) +

∑
j<N/2,α⟨Pj,α⟩ϱF (ϱ, ϱj,α).

Substituting Eq. (S12) into this inequality, we obtain
F (ϱ, ϱPI) ≥ ⟨Ps⟩2ϱ +

∑
j<N/2,α⟨Pj,α⟩2ϱ. Using the fact that

⟨Ps⟩ϱ +
∑

j<N/2,α⟨Pj,α⟩ϱ = 1, we obtain

F (ϱ, ϱPI) ≥ ⟨Ps⟩2ϱ +
(1− ⟨Ps⟩ϱ)2

NSS − 1
. (S13)

In many practical situations, the state ϱ is almost symmetric
and N is large. In such cases the second term in Eq. (S13)
is negligible. Thus, a somewhat weaker bound presented in
Observation 2 can be used.

Numerical optimization used to minimize Etotal. The
measurement directions minimizing Etotal can be obtained as
follows. Let us represent the measurement directions by three-
dimensional vectors {a⃗j}DN

j=1. The operators can be obtained
as Aj = aj,xX + aj,yY + aj,zZ.

First, we need an initial guess. This can come from a set
of randomly chosen vectors representing the measurement di-
rections. One can also use the result of a minimization for

Figure S1: (a) The difference of the real part of the density matri-
ces from optimized settings and the one of full tomography. (b) The
difference of the density matrices from random settings and the one
of full tomography. For the former, no clear structure is observed,
whereas for the latter the largest difference is observed for the antidi-
agonal elements.

some measure that characterizes how equally the vectors are
distributed. Such a measure is defined by

F({vj}) =
∑
k,l

(v⃗k · v⃗l)2m, (S14)

where v⃗k represent the measurement directions and · is the
scalar product and m is an integer. Such cost functions, called
frame potentials, appear in the theory of t-designs essentially
for the same purpose.

After we obtain the initial guess from such a procedure,
we start an optimization for decreasing Etotal. At each itera-
tion of the method, we change the measurement directions by
rotating them with a small random angle around a randomly
chosen axis. If the change decreases Etotal, then we keep the
new measurement directions, while if it does not then we dis-
card it. We repeat this procedure until Etotal does not change
significantly.

Three-setting witness for estimating the fidelity The
three-setting witness for detecting genuine multipartite entan-
glement in the vicinity of the Dicke state is [S4]

W(P3)
D(4,2) = 2·11+ 1

6 (J
2
x+J2

y−J4
x−J4

y )+
31
12J

2
z− 7

12J
4
z . (S15)

For this witness we have [S4]

W(P3)
D(4,2) − 3W(P)

D(4,2) ≥ 0, (S16)
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Figure S2: The maximum uncertainty of the Bloch vector elements
defined in Eq. (S21) for the optimal measurement settings as a func-
tion of the number of qubits, N, for N = 4, 6, 8, 10, 12 and 14.

where the projector witness is defined as

W(P)
D(4,2) =

2
3 · 11 − |D(2)

4 ⟩⟨D(2)
4 |. (S17)

Hence, the fidelity with respect to the state |D(2)
4 ⟩ is bounded

from below as [S4]

FD(4,2) ≥ 2
3 − 1

3 ⟨W
(P3)
D(4,2)⟩. (S18)

Fidelities with respect to the four-qubit Dicke states. In
Table S1 we summarize the results for full tomography (full)
and for permutationally invariant tomography (pi) for random
(ran) and optimized (opt) directions. To obtain a physical
density matrix with non-negative eigenvalues we perform a
maximum-likelihood fit (max-like) of the measured data. In
Fig. S1, the differences between the density matrix obtained
from full tomography and the ones obtained from permuta-
tionally invariant tomography can be seen.

Efficient representation of permutationally invariant
operators on a digital computer. Every PI operator O can
be decomposed as

O =
∑

k+l+m+n=N

c
(O)
k,l,m,n(X

⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 11⊗n)PI.

(S19)
Such a decomposition for operators of the form (A⊗(N−n) ⊗
11⊗n)PI with A = axX + ayY + azZ is given by∑
k,l,m

akxa
l
ya

m
z

(k + l +m)!

k!l!m!
(X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 11⊗n)PI,

(S20)
where the summation is carried out such that k+ l+m+n =
N.

Results for larger systems. We determined the optimal Aj

for PI tomography for N = 4, 6, ..., 14. In Fig. S2, we plot the
maximal uncertainty of the Bloch vector elements

ϵmax = max
k,l,m,n

E [(X⊗k ⊗ Y ⊗l ⊗ Z⊗m ⊗ 11⊗n)PI] (S21)

for the total count realized in the experiment λj = λ = 2050
as a function of N, when the state of the system is ϱ0 = 11/2N .
It increases slowly with N. Thus, for large N the number of

counts per measurement setting does not have to increase very
much in order to keep the maximal uncertainty of the Bloch
vector elements the same as for the N = 4 case. In particular,
for N = 14, a total count of 2797 per setting yields the same
maximal uncertainty as we had for the N = 4 case.

An upper bound on the uncertainty of PI tomography for
ϱ0 different from the white noise can be obtained by using
[∆(A

⊗(N−n)
j ⊗11⊗n)PI]

2
ϱ0

= 1 for error calculations. Accord-
ing to numerics, for optimal Aj for N = 4, 6, ..., 14, ϵmax re-
mains the same as in the case of white noise, since for the full
correlation terms with n = 0 the upper bound equals the value
for white noise, and the full correlations terms contribute to
the noise of the Bloch vector elements with the largest uncer-
tainty. Thus, the total count per setting will not increase more
with the number of qubits even for states different from the
completely mixed state.

The operators that give a bound on ⟨Ps⟩ with three settings
for N = 6 and 8 are the following

P (6)
s ≥ 2

225 (Q2 + J2
z )− 1

90 (Q4 + J4
z ) +

1
450 (Q6 + J6

z ),

P (8)
s ≥ −0.001616Q2 + 0.002200Q4 − 0.0006286Q6

+ 0.00004490Q8 + 0.003265J2
z − 0.004444J4

z

+ 0.001270J6
z − 0.00009070J8

z , (S22)

where Qn = Jn
x + Jn

y . They were determined using semi-
definite programming, with a method similar to one used for
obtaining three-setting witnesses in Ref. [S4]. They have an
expectation value +1 for the Dicke states |D(3)

6 ⟩ and |D(4)
8 ⟩,

respectively. Moreover, their expectation value give the high-
est possible lower bound on ⟨Ps⟩ for states of the form

ϱnoisy(p) = p
11
2N

+ (1− p)|D(N/2)
N ⟩⟨D(N/2)

N | (S23)

among the operators that are constructed as a linear combi-
nation of the operators Jn

l . The validity of the relations in
Eq. (S22) can easily be checked by direct calculation.

Bounding the differences between elements of ϱ and ϱPI

based on the fidelity. For any pure state |Ψ⟩, it is possible to
bound the difference between |⟨Ψ|ϱPI|Ψ⟩| and |⟨Ψ|ϱ|Ψ⟩| as

|⟨Ψ|ϱ|Ψ⟩ − ⟨Ψ|ϱPI|Ψ⟩| ≤
√
1− F (ϱ, ϱPI). (S24)

Thus, if the fidelity is close to 1, then ⟨Ψ|ϱ|Ψ⟩ ≈ ⟨Ψ|ϱPI|Ψ⟩,
even if |Ψ⟩ is non-symmetric. If |Ψ⟩ is an element of the prod-
uct basis, e.g., |0011 ⟩, then Eq. (S24) is a bound on the dif-
ference between the corresponding diagonal elements of ϱ and
ϱPI.

Eq. (S24) can be proved as follows: There is a well-known
relation between the trace norm and the fidelity [S5]

1

2
||ϱ− ϱPI||tr ≤

√
1− F (ϱ, ϱPI). (S25)

Moreover, for a projector P and density matrices ϱk we have
[S6]

|Tr(Pϱ1)− Tr(Pϱ2)| ≤
1

2
||ϱ1 − ϱ2||tr. (S26)
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Combining Eq. (S25) and Eq. (S26), leads to Eq. (S24).
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Quantum state tomography suffers from the measurement effort increasing exponentially with the
number of qubits. Here, we demonstrate permutationally invariant tomography for which, contrary to
conventional tomography, all resources scale polynomially with the number of qubits both in terms of the
measurement effort as well as the computational power needed to process and store the recorded data. We
demonstrate the benefits of combining permutationally invariant tomography with compressed sensing by
studying the influence of the pump power on the noise present in a six-qubit symmetric Dicke state, a case
where full tomography is possible only for very high pump powers.

DOI: 10.1103/PhysRevLett.113.040503 PACS numbers: 03.67.Mn, 03.65.Wj, 42.50.Dv

Introduction.—The number of controllable qubits in
quantum experiments is steadily growing [1,2]. Yet, to fully
characterize a multiqubit state via quantum state tomography
(QST), the measurement effort scales exponentially with the
number of qubits. Moreover, the amount of data to be saved
and the resources to process them scale exponentially, too.
Thus, the limit of conventional QST will soon be reached.
The following question arises: how much information about
a quantum state can be inferred without all the measurements
a full QST would require? Protocols have been proposed
which need significantly fewer measurement settings if one
has additional knowledge about a state, e.g., that it is of low
rank, a matrix product state, or a permutationally invariant
(PI) state [3–8]. Some of these approaches only require a
polynomially increasing number of measurements and even
offer scalable postprocessing algorithms [5,8]. Yet, it is
important to test the different approaches and evaluate their
results for various quantum states.
Here, we implement and compare four different QST

schemes in a six-photon experiment. In detail, we perform
the largest QST of a photonic multiqubit state so far. We
use these data as a reference for a detailed evaluation of
different tomography schemes, which enable the state
determination with significantly fewer measurements.
The recently proposed, scalable PI analysis is implemented

here and thus enables us, for the first time, to also perform
the numerical evaluation with polynomial resources only.
We evaluate the convergence of compressed sensing (CS)
schemes and show that the combination of PI and CS can
further reduce the measurement effort, without sacrificing
performance. We demonstrate the usability of these sig-
nificantly improved methods to characterize the effects of
higher-order emission in spontaneous parametric down-
conversion (SPDC), an analysis which would not have been
possible without the novel tomography schemes.
Scalable scheme for measurements.—Let us first con-

sider the measurement effort needed for tomography. For full
QST, each N-qubit state is associated with a normalized
non-negative Hermitian matrix ϱ with 4N − 1 real free
parameters. Since all free parameters have to be determined,
any scheme that is suitable to fully analyzing an arbitrary
state, such as, e.g., the standard Pauli tomography scheme,
suffers from an exponentially increasing measurement effort
[9,10]. PI states, in contrast, are described by only�
N þ 3

N

�
− 1 ¼ OðN3Þ free parameters. Tomography in

the PI subspace can be performed by measuring (global)
operators of the form A⊗N

i with Ai ¼ ~ni~σ, i.e., measurements
of the polarization along the same direction ~ni for every
photon [7]. Here, j~nij ¼ 1 and ~σ ¼ ðσx; σy; σzÞ with Pauli
operators σi (i ¼ x; y; z). Each single measurement setting
A⊗N
i delivers N expectation values of the operators

Mn
i ¼ ð1=N!ÞPkΠk½j0iih0j⊗ðN−nÞ ⊗ j1iih1j⊗n�Π†

k, where
the summation is over all permutations Πk and i refers to
the eigenbasis of Ai. This reduces the number of necessary

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 113, 040503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
25 JULY 2014

0031-9007=14=113(4)=040503(5) 040503-1 © 2014 Published by American Physical Society

4.3. Publications

P4.2

111



settings to DN ¼
�
N þ 2

N

�
¼ 1

2
ðN2 þ 3N þ 2Þ ¼ OðN2Þ.

Note that if one allows global entangled measurements, this
number can be further reduced [11]. Most importantly,
whether an unknown N-qubit state is close to being PI
can be checked in advance by measuring the settings
σ⊗N
x ; σ⊗N

y , and σ⊗N
z . These measurements are already

sufficient to give a lower bound for the overlap with the
symmetric subspace [7,12].
Scalable representation of states and operators.—The

above approach not only reduces the experimental effort, it
also offers the possibility to efficiently store and process the
measured data. Describing states in the PI subspace enables
an efficient representation with only polynomial scaling of
the storage space and processing time [8,13].
Consider the angular momentum basis states jj; jz; αi

for the N-qubit Hilbert space, with ~J2jj; jz; αi ¼
jðjþ 1Þjj; jz; αi and Jzjj; jz; αi ¼ jzjj; jz; αi, where the
total spin numbers are restricted to be j ¼ jmin; jmin þ
1;…; N=2 starting from jmin ¼ 0 for N even and jmin ¼ 1

2

forN odd, while jz ¼ −ðN=2Þ;−ðN=2Þ þ 1;…; N=2. Here,
α ¼ 1; 2;…; dj is a label to remove the degeneracy
(of degree dj [14]) of the eigenstates of ~J2 and J2z . In this
basis, PI states can bewritten in a simple block diagonal form

ϱPI ¼ ⨁
N=2

j¼jmin

1dj
dj

⊗ pjϱj; ð1Þ

with ϱj being the density operators of the spin-j subspace
and pj a probability distribution. Hence, it is sufficient to
consider only the N=2 blocks ~ϱj ¼ pjϱj=dj (of which
each has a multiplicity of dj; see Fig. 1) with the largest
block—the symmetric subspace—being of dimension
ðN þ 1Þ × ðN þ 1Þ and multiplicity dN=2 ¼ 1. Conse-
quently, a PI state can be stored efficiently.
Even if the state to be analyzed is not PI, as long as the

observable to be measured is PI, one can hugely benefit
from the scheme, since a similarly scalable decomposition
can be found for any PI operator O, i.e., O ¼ ⨁

j
1dj ⊗ Oj.

Together with Eq. (1), this yields an efficient way to also
calculate the expectation values hOi ¼ TrðϱOÞ ¼

P
jpjTrðϱjOjÞ for non-PI states. Note that while, in the

regular case, the trace has to be taken over the product of
two 2N-dimensional matrices, now we only have about N

2

terms with traces of at most ðN þ 1Þ-dimensional matrices.
Again, the effort reduces from exponential to polynomial.
For the six-qubit case (j ∈ jmin ¼ 0; 1; 2; N=2 ¼ 3), this
means that the state to be analyzed as well as each
measurement operator can be described by only four
Hermitian matrices of size 7 × 7, 5 × 5, 3 × 3, and
1 × 1, respectively, reducing the number of parameters

from 46 − 1 ¼ 4095 to

�
9

6

�
− 1 ¼ 83 only.

Data analysis starts with the counts cni observed meas-
uring Mn

i and the frequencies fni ¼ cni =
P

kc
k
i , respectively.

Solving the system of linear equations fni ≈ hMn
i i ¼

TrðϱMn
i Þ for the free parameters of ϱ usually results in a

nonpositive and thus unphysical density matrix (ϱ≱0) due
to statistical errors and misalignment. Here, typically, a
maximum likelihood (ML) fitting algorithm is used to find
the physical state that optimally agrees with the measured
data [9,15,16]. We use convex optimization [8,19], which
guarantees a unique minimum and fast convergence. The
performance of our algorithm is illustrated best by the fact
that a 20-qubit PI state can be reconstructed in fewer than
10 min on a standard desktop computer.
State reconstruction of low rank states and compressed

sensing.—As shown recently, low rank states, i.e., states
with only a few nonzero eigenvalues, enable state
reconstruction even if the underlying set of data obtained
from random Pauli measurements is incomplete [3]. There,
the measurement effort to analyze a state of rank r with r2N

free parameters scales like Oðr2N log 2NÞ—clearly achiev-
ing optimal scaling up to a log factor. Despite the still
exponential scaling, the square root improvement can be
considerable. Since, in many cases, the state to be exper-
imentally prepared is at the same time PI and of low rank,
we demonstrate here for the first time that combining the
two methods is possible [16,20].
Experimental state tomography.—Let us now compare

the various QST schemes. In particular, we evaluate the
number of settings necessary to obtain (almost) full knowl-
edge about the state. As a reference, we perform, for the
first time, full QST of a six-photon state. This is possible
only at very high pump power (8.4 W) of the down-
conversion source where we collect data for the complete
set of Pauli settings. PI tomography is performed to test it
against full QST and to analyze states emitted for lower
pump powers. For both strategies, we also analyze the
convergence of CS tomography for incomplete data.
The six-photon state observed in this work is the

symmetric Dicke state jDð3Þ
6 i. In general, symmetric

Dicke states are defined as

jDðnÞ
N i ¼

�
N
n

�
−1=2X

i

PiðjH⊗ðN−nÞi ⊗ jV⊗niÞ; ð2Þ
FIG. 1 (color online). Every PI state can be decomposed into a
block diagonal form. Exemplarily shown is the combination of dj
block matrices ~ϱj which are all identical.
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where jH=Vii denotes horizontal or vertical polarization in
the ith mode and the Pi represent all the distinct permu-

tations. In order to experimentally observe jDð3Þ
6 i, we

distribute an equal number of H and V polarized photons
over six output modes and apply conditional detection (for
details, see the Supplemental Material [16] and Ref. [21]).
The setup uses cavity enhanced SPDC [22] with special
care taken to further reduce losses of all components and to
optimize the yield of jDð3Þ

6 i.
Data are recorded at a pump power of 8.40� 0.56 W

over 4 min for each of the 36 ¼ 729 Pauli settings. The six-
photon count rate was 58 events per minute on average,
leading to about 230 events per basis setting within a total
measurement time of approximately 50 h [24]. The
reconstructed density matrix can be seen in Fig. 2(a).
Table I lists the fidelity [25] with all the various Dicke
states. Their sum reaches high values, proving that the state
is close to the symmetric subspace.
Evidently, the experimental state is a mixture of mainly

jDð2Þ
6 i, jDð3Þ

6 i, and jDð4Þ
6 i, and thus CS might be used

beneficially. The following question arises: how many
settings are required for CS for a faithful reconstruction
of the state? We chose random subsets of up to 300 settings
from the 729 settings for full tomography. Figure 2(d) gives
the probability distribution of the fidelity of the recon-
structed matrix for a bin size of 0.01 with respect to the
results of full tomography. While, for a low number of
settings (< 10), the results are randomly spread out, the
overlap is already, on average, ≥ 0.800 for 20 settings. We
find that to reach a fidelity of ≥ 0.950, one requires about
270 settings. Figure 2(c) shows the density matrix obtained
from 270 settings ½FðϱCS; ϱfullÞ ¼ 0.950�.
PI tomography should be clearly more efficient. To test its

applicability, we first determined the lower bound for the

projection of the state onto the symmetric subspace, i.e., the
largest block in Fig. 1, hPð6Þ

s i from the settings σ⊗6
x ; σ⊗6

y , and
σ⊗6
z by analyzing all photons under �45°, right- or

left-circular, and H=V polarization. We found that
hPð6Þ

s i ≥ 0.922� 0.055, indicating that it is legitimate to
use PI tomography, which for six qubits only requires 25
more settings [16].Under thesameexperimental conditions as
before and 4 min of data collection per setting, we performed
theexperimentwithin2honly.ThedensitymatrixϱPI obtained
is shown in Fig. 2(b), with its symmetric subspace shown
in Fig. 3(a). The fidelities with the symmetric Dicke states for
PI tomography can be found again in Table I. (For the

projector to the Dicke state jDðnÞ
N i, all fOjgkl ¼ 0, except

for fON=2gnþ1;nþ1 ¼ 1.) The overlap between the

TABLE I. Overlap with the symmetric Dicke states determined
from full tomography, PI tomography with 28 settings, CS with
270 settings, and CS in the PI subspace (PI,CS) with 16 settings.
The fidelities for all tomography schemes were determined from
the respective ML reconstructed states. Nonparametric boot-
strapping [23] was performed from which the corresponding
standard deviations were determined as < 0.005, < 0.015,
< 0.008, and < 0.020 for full tomography, PI tomography,
CS, and CS in the PI subspace, respectively.

State Full PI CS PI, CS

jDð0Þ
6 i 0.001 0.001 0.001 0.002

jDð1Þ
6 i 0.005 0.008 0.011 0.006

jDð2Þ
6 i 0.197 0.222 0.181 0.207

jDð3Þ
6 i 0.604 0.590 0.615 0.592

jDð4Þ
6 i 0.122 0.127 0.118 0.119

jDð5Þ
6 i 0.003 0.004 0.003 0.005

jDð6Þ
6 i 0.000 0.003 0.001 0.004P

0.933 0.954 0.929 0.935

FIG. 2 (color online). ML reconstruction of the state jDð3Þ
6 i

obtained from (a) full and (b) PI tomography and (c) CS with 270
settings performed at a pump power of 8.4 W. The respective
fidelities are 0.604, 0.590, and 0.615 with mutual overlaps
of Fðϱfull; ϱPIÞ ¼ 0.922, Fðϱfull; ϱCSÞ ¼ 0.950, and FðϱPI; ϱCSÞ ¼
0.908. (d) Probability to obtain a certain fidelity for CS with a
certain number of randomly chosen settings in comparison with
full tomography.

FIG. 3 (color online). Symmetric subspaces (j ¼ 3) obtained
with (a) PI tomography and (b) CS in the PI subspace with 16
settings. The central bars can be associated with the target state
jDð3Þ

6 i and the small bars next to it with jDð2Þ
6 i and jDð4Þ

6 i
originating from higher-order noise. (c) Probability to observe a
certain fidelity for arbitrarily chosen tomographically incomplete
sets of settings in comparison with PI tomography from 28
settings. For 16 settings, the overlap is ≥ 0.950 on average.
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reconstructedstatesusingeitherfullorPI tomographyis0.922,
which is equivalent to the fidelity of 0.923 between full
tomographyanditsPIpart.Clearly,PI tomographyrapidlyand
precisely determines the PI component of the state.
PI tomography with CS.—To speed up analysis even

further, based on subsets of the data used for PI tomog-
raphy, we derived the density matrix ϱPI;CS; see Fig. 3(b).
Here, the fidelity averaged over a series of different samples
is above 0.950 for 16 or more settings [Fig. 3(c)]. Again,
both methods are compatible within 1 standard deviation.
In summary, our results prove that PI tomography (with
CS) enables precise state reconstruction with minimal
experimental and computational effort.
Application to noise analysis.—As the count rates for

six-photon states depend on the cube of the pump power,
full QST is not possible for lower pump power within
reasonable time and thus does not allow us to analyze the
features of multiphoton states obtained from SPDC. As
SPDC is a spontaneous process, with certain probability,
there are cases where eight photons have been emitted but
only six have been detected, leading to an admixture of
ϱ
Dð2Þ

6

and ϱ
Dð4Þ

6

. Ideally, the amplitude of the two admixtures

should be the same, but, due to polarization dependent
coupling efficiencies of H and V photons [26,27], this
is not the case. Therefore, we extended the noise model
[28] to better specify the experimental state using
ϱnoiseexp ðq; λÞ ¼ ð1 − qÞϱ

Dð3Þ
6

þ qϱasym6 ðλÞ, with ϱasym6 ðλÞ ¼
4
7
ϱ
Dð3Þ

6

þ 3=14½ð1þ λÞϱ
Dð2Þ

6

þ ð1 − λÞϱ
Dð4Þ

6

�, the noise q,

and the asymmetry parameter λ. Both q and λ can be
determined from the fidelities to the Dicke states (see also
the Supplemental Material [16]). At 8.4 W, noise param-
eters of q ¼ 0.807� 0.013 and λ ¼ 0.234� 0.015 were
obtained from full tomography, which agree well with
those from PI tomography (q ¼ 0.867� 0.041 and
λ ¼ 0.273� 0.059). After convincing ourselves that (CS)
PI tomography is in excellent agreement with full QST, we
can now also perform tomography for low pump powers.

We performed PI analysis at 3.7, 5.1, 6.4, and 8.6 W [see
Fig. 4(a)] with sampling times of 67, 32, 18, and 15 h and
average counts per setting of 340, 390, 510, and 610,
respectively. PI tomography shows an increase of the noise
parameter q from 0.677� 0.029 for 3.7 W to 0.872� 0.023
for 8.6 W due to the increasing probability of eight-photon
emission for high pump power [29]. Note that the ratio
between six-photon detection from eight-photon emission
relative to detection from six-photon emission is given by
q=ð1 − qÞ; i.e., for a pump power of 8.6W, we obtain sixfold
detection events with 90% probability from eight photon
emissions, of which two photons were lost. Although fluc-
tuating, the asymmetry parameter λ does not show significant
dependence on the pump power and lies in the interval
[0.136� 0.042, 0.200� 0.053] for PI tomography (within
[0.101� 0.116, 0.190� 0.071] for CS in the PI subspace).
This confirms that the difference in the coupling efficiency of
H andV does not changewith the pumppower [see Fig. 4(b)].
The fidelity between the ML fits and the noise model
ϱnoiseexp ðp; λÞ is > 0.925 for all pump levels, and, for CS in
thePI subspace, it is> 0.897.Thehighvalues indicate thatour
noise model adequately describes the experimental results.
As an examplewhere full knowledge of ϱ is necessary, let us

consider the quantum Fisher information FQ which measures
the suitability of ϱ to estimate the phase θ in an evolution
Uðθ;ℋÞ ¼ e−iθℋ [30]. Here, wewant to test whether, in spite
of the higher-order noise, the reconstructed states still exhibit
sub-shot-noise phase sensitivity. For ℋ, we choose the
collective spin operator Jx ¼ 1=2

P
N
i¼1 σ

ðiÞ
x , where σðiÞx is

σx acting on the ith particle. In the case of N ¼ 6, a value
FQ > 6 indicates sub-shot-noise phase sensitivity. We
observed 11.858� 0.576, 10.904� 0.528, 10.289� 0.468,
and 9.507� 0.411 for the corresponding pump powers from
3.7 to 8.6 W [29] [see Fig. 4(b)]; i.e., sub-shot-noise phase
sensitivity is maintained for high pump powers.
Conclusions.—We compared standard quantum state

tomography with the significantly more efficient permutation-
ally invariant tomography and alsowith compressed sensing in
the permutationally invariant subspace. For this purpose, we

used data of the symmetric Dicke state jDð3Þ
6 i obtained from

spontaneous parametric down-conversion of very high pump
power. All methods give compatible results within their
statistical errors. The number of measurement settings was
gradually reduced from 729 for full tomography, to 270 for
compressed sensing, to 28 for permutationally invariant
tomography, and to only 16 for compressed sensing in the
permutationally invariant subspace, giving, in total, a reduction
of about a factor of 50 without significantly changing the
quantities specifying the state. We applied this highly efficient
state reconstruction scheme to study the dependence of higher-
order noise on the pump power, clearly demonstrating its
benefits for the analysis of multiqubit states required for future
quantum computation and quantum simulation applications.
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FIG. 4 (color online). (a) Observed fidelities with the states
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6 i at different ultraviolet (UV) pump
powers for PI tomography and CS in the PI subspace from 12
settings. The error bars were determined by nonparametric boot-
strapping [23]. (b) The influence of the pump power on the higher-
order noise expressed via the noise q and the asymmetry parameter
λ (upper part) and the phase estimation sensitivity expressed via the
quantum Fisher information (QFI) (lower part).
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In the Supplemental Material, we present further experimental results and calculations.

THE SETUP

The photon source is based on a femtosecond enhance-
ment cavity in the UV with a 1 mm thick β-barium borate
(BBO) crystal cut for type II phase matching placed in-
side [22] (Fig. S1). In order to compensate for walk off
effects a half-wave plate (HWP) and a second BBO crys-
tal of 0.5 mm are applied. Spatial filtering is achieved by
coupling the photons into a single mode fiber (SM) and
an interference filter (IF) (∆λ = 3 nm) enables spectral
filtering. Distributing the photons into six spatial modes
is realized by 3 beam splitters with a splitting ratio of
50:50 (BS1, BS3, BS4) and two beam splitters with a ratio
of 66:33 (BS2, BS4). Yttrium-vanadate (YVO4) crystals
are used to compensate for unwanted phase shifts. State
analysis is realized by half-wave and quarter-wave plates
(QWP) and polarizing beam splitters (PBS). The pho-
tons are detected by fiber-coupled single photon counting
modules connected to a FPGA-based coincidence logic.

In Fig. S1 (lower right corner) a visualization of the
measurement directions on the Bloch sphere is depicted.
Each point (ax, ay, az) on the sphere corresponds to a
measurement operator of the form axσx+ayσy+azσz. In
order to perform PI tomography for 6 qubits 28 operators
have to be measured.

STATE RECONSTRUCTION

The target function to be minimized is the logarithmic
likelihood which is given by

∑
k,s

nk,s

Nmax
log(pk,s) where

nk,s labels the number of counts for the outcome k when
measuring setting s with the corresponding probability
pk,s for the guess %̂. In order to take into account slightly
different total count numbers per setting, the nk,s have
to be divided by the maximum count number observed
in one setting Nmax = max(Ns).

For CS exactly the same target function has to be min-
imized with the only difference that the underlying set of

FIG. S1. Schematic drawing of the experimental setup to

observe the symmetric Dicke state |D(3)
6 〉 For a description,

see text.

measurement data is tomographically incomplete.

CONVERGENCE OF CS IN THE PI SUBSPACE

As described in the main text, we performed PI tomog-
raphy together with CS in the PI subspace at different
UV pump powers. In order to investigate the conver-
gence of CS, series of different samples were randomly
chosen from the full set of measurements. For all pump
powers, the average fidelity with respect to all PI settings
is above 0.950 as soon as the number of settings is ≥ 12
(out of 28), see Fig. S2.
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FIG. S2. Probability to observe a certain fidelity for arbi-
trarily chosen tomographically incomplete sets of settings in
comparison with PI tomography from 28 settings at different
pump levels. As soon as the number of settings surpasses 12,
the state is almost perfectly determined, i.e., the overlap with
respect to the states reconstructed from all settings ≥ 0.950.

NOISE MODEL

As already explained in the main part of this paper,
SPDC is a spontaneous process and therefore with a cer-
tain probability 8 photons are emitted from the source.
The loss of two of these 8 photons in the linear optical
setup and subsequent detection leads to an admixture of
the states %

D
(2)
6

and %
D

(4)
6

for the case that either two

H or two V polarized photons are not detected, respec-
tively. However, in the case that one H and one V polar-
ized photon remain undetected a considerable amount of
this higher-order noise consists of the target state %

D
(3)
6

thus preserving genuine multipartite entanglement even
at high UV pump powers. The probabilities of the respec-
tive states to occur can be deduced from simple combi-
natorics, see Fig. S3. From this simple noise model, an
experimental state of the form

%noiseexp (q, λ) = (1− q)%
D

(3)
6

+ q%6 (S1)

with

%6 =
4

7
%
D

(3)
6

+
3

14

[
%
D

(2)
6

+ %
D

(4)
6

]
(S2)

would be expected. However, this is not observed exper-
imentally since the emission angles of down-conversion
photons are polarization dependent [26, 27] leading to
an asymmetry in the coupling into the single mode fiber

FIG. S3. The loss of two photons in a 8 photon event leads to
an admixture of the state %

D
(2)
6

and %
D

(4)
6

to the target state.

The respective probabilities p can be determined by simple
combinatorics.

used. Therefore, the noisemodel was extended by the
asymmetry parameter λ. Both q and λ can be deduced
form the fidelities F with respect to the Dicke states

|D(2)
6 〉, |D

(3)
6 〉 and |D(4)

6 〉

q =
7

3
·

F|D(2)
6 〉 + F|D(4)

6 〉

F|D(2)
6 〉 + F|D(3)

6 〉 + F|D(4)
6 〉

,

λ =
F|D(2)

6 〉 − F|D(4)
6 〉

F|D(2)
6 〉 + F|D(4)

6 〉
. (S3)

ENTANGLEMENT WITNESS

Entanglement witnesses with respect to symmetric
states are PI operators and thus can be determined effi-
ciently. For detecting genuine multipartite entanglement,
we used the entanglement witness

W = 0.420 · 11− 0.700|D(3)
6 〉〈D

(3)
6 | (S4)

− 0.160|D(2)
6 〉〈D

(2)
6 | − 0.140|D(4)

6 〉〈D
(4)
6 |,

where an expectation value 〈W〉 < 0 rules out any bisep-
arability. In order to obtain W we take an operator of
the form

Aα = α|D(3)
6 〉〈D

(3)
6 |+ β|D(2)

6 〉〈D
(2)
6 | (S5)

+ (1− α− β)|D(4)
6 〉〈D

(4)
6 |.

An entanglement witness can be obtained as

Wα = max
PPT
〈Aα〉 · 11−Aα (S6)

where the maximum for bipartite PPT states can be ob-
tained with semidefinite programming [17]. For α =
0.700, β = 0.160 we have for PPT states over all parti-
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tions maxPPT 〈Aα〉 = 0.420. It is important that semidef-
inite programming always finds the global optimum. A
systematic generalization to construct witnesses for Dicke
states can be found in Ref. [18].

Here, we want use this witness to test whether, in spite
of the higher-order noise, the observed states are still
genuinely six-partite entangled. For the corresponding
pump powers from 3.7 W to 8.6 W, we determined the
expectation value ofW as −0.088±0.006, −0.078±0.006,
−0.075 ± 0.006 and −0.048 ± 0.005 for PI tomography
and −0.082± 0.011, −0.064± 0.013, −0.083± 0.009 and
−0.044 ± 0.009 for CS in the PI subspace. Clearly, due
to the high probability of %

D
(3)
6

states in the higher-order

noise the entanglement is maintained also for high pump
powers.
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Abstract. Feasible tomography schemes for large particle numbers must
possess, besides an appropriate data acquisition protocol, an efficient way
to reconstruct the density operator from the observed finite data set. Since
state reconstruction typically requires the solution of a nonlinear large-scale
optimization problem, this is a major challenge in the design of scalable
tomography schemes. Here we present an efficient state reconstruction scheme

9 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 14 (2012) 105001
1367-2630/12/105001+25$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

4.3. Publications

P4.3

119



2

for permutationally invariant quantum state tomography. It works for all common
state-of-the-art reconstruction principles, including, in particular, maximum
likelihood and least squares methods, which are the preferred choices in
today’s experiments. This high efficiency is achieved by greatly reducing
the dimensionality of the problem employing a particular representation of
permutationally invariant states known from spin coupling combined with
convex optimization, which has clear advantages regarding speed, control
and accuracy in comparison to commonly employed numerical routines. First
prototype implementations easily allow reconstruction of a state of 20 qubits in
a few minutes on a standard computer.
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1. Introduction

Full information about the experimental state of a quantum system is naturally highly desirable
because it enables one to determine the mean value of each observable and thus also of every
other property of the quantum state. Abstractly, such a complete description is given, for
example, by the density operator, a positive semidefinite matrix ρ with unit trace. Quantum state
tomography [1] refers to the task to determine the density operator for a previously unknown
quantum state by means of appropriate measurements. Via the respective outcomes, more and
more information about the true state generating the data is collected up to the point where this
information uniquely specifies the particular state. Quantum state tomography has successfully
been applied in many experiments using different physical systems, including trapped ions [2]
or photons [3], as prominent instances.

Unfortunately, tomography comes with a very high price due to the exponential scaling
of the number of parameters required to describe composed quantum systems. For an N -qubit
system the total number of parameters of the associated density operator is 4N

− 1 and any
standard tomography protocol is naturally designed to determine all these variables. The

New Journal of Physics 14 (2012) 105001 (http://www.njp.org/)

4. Quantum state tomography

120



3

most common scheme used in experiments [4] consists of locally measuring in the basis
of all different Pauli operators and requires an overall amount of 3N different measurement
settings with 2N distinct outcomes each. Other schemes, e.g. using an informationally complete
measurement [5] locally, would require just one setting but, nevertheless, the statistics for 4N

give different outcomes. Hence the important figure of merit to compare different methods is
given by the combination of settings and outcomes.

For such a scaling, the methods rapidly become intractable, already for present state-of-
the-art experiments: recording, for example, the data of 14 trapped ions [6], currently the record
for quantum registers, would require about 150 days, although 100 measurement outcomes
can be collected for a single setting in only about 3 s. In photonic experiments this scaling
is even worse because count rates are typically much lower; for example, in recent eight-photon
experiments [7, 8], a coincidence of single click events occurs only on the order of minutes;
hence, it would require about 7 years to collect an adequate data set. This directly shows that
more sophisticated tomography techniques are mandatory.

New tomography protocols equipped with better scaling behaviour exploit the idea that
the measurement scheme is explicitly optimized only for particular kinds of states rather than
for all possible ones. If the true unknown state lies within this designed target class, then
full information about the state can be obtained with much less effort, and if the underlying
density operator is not a member, then a certificate signals that tomography is impossible in
this given case. Recent results along this direction include tomography schemes designed for
states with a low rank [9–11], particularly for important low rank states such as matrix product
[12, 13] or multi-scale entanglement renormalization ansatz states [14]. Other schemes include
a tomography scheme based on information criteria [15, 16] or—the topic of this paper—states
with permutation invariance [17].

However, it needs to be stressed that in any real experiment all these tomography
schemes must cope up with another, purely statistical challenge: since only a finite number
of measurements can be carried out in any experiment, one cannot access the true probabilities
predicted by quantum mechanics pk = tr(ρtrue Mk), operator Mk describing the measurements,
but merely relative frequencies fk . Although these deviations might be small, the approximation
fk ≈ pk causes severe problems in the actual state reconstruction process, i.e. the task to
determine the density operator from the observed data. If one naı̈vely uses the frequencies
according to Born’s rule fk = tr(ρ̂lin Mk) and solves for the unknown operator ρ̂lin, then, apart
from possible inconsistencies in the set of linear equations, the reconstructed operator ρ̂lin 6> 0 is
often not a valid density operator anymore because some of its eigenvalues are negative. Hence,
in such cases, this reconstruction called linear inversion delivers an unreasonable answer. It
should be kept in mind that the inconsistencies can also be due to systematic errors, e.g. if the
true measurements are aligned wrongly relative to the respective operator representation, but
such effects are typically ignored [18].

Therefore, statistical state reconstruction relies on principles other than linear inversion.
In general, these methods require the solution of a nonlinear optimization problem, which is
much harder to solve than just a system of linear equations. For large system sizes this becomes,
besides the exponential scaling of the number of settings and outcomes, a second major problem,
again due to the exponential scaling of the number of parameters of the density operator. In
fact for the current tomography record of eight ions in a trap [2], this actual reconstruction
took even longer than the experiment itself (one week versus a couple of hours). Hence,
feasible quantum state tomography schemes for large systems must, in addition to an efficient
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measurement procedure, also possess an efficient state reconstruction algorithm; otherwise they
are not scalable.

In this paper, we develop a scalable reconstruction algorithm for the proposed
permutationally invariant tomography scheme [17]. It works for common reconstruction
principles, including, among others, maximum likelihood and least squares methods. This
scheme becomes possible once more by taking advantage of the symmetry of permutationally
invariant states, which provides an efficient and operational way to store, characterize and
even process those states. This method enables a large dimension reduction in the underlying
optimization problem such that it gets into the feasible regime. The final low dimensional
optimization is performed via nonlinear convex optimization which offers a great advantage in
contrast to commonly used numerical routines, in particular regarding numerical stability and
accuracy. Already a first prototype implementation of this algorithm allows state reconstruction
for 20 qubits in a few minutes on a standard desktop computer.

The outline of the paper is as follows. Section 2 summarizes the background on
permutationally invariant tomography and on statistical state reconstruction. The key method
is explained in section 3 and highlighted via examples in section 4, which are generated by
our current implementation. Section 5 collects all the technical details: the mentioned toolbox,
more notes about convex optimization, additional information about the pretest or certificate
and the measurement optimization, both addressed for large qubit numbers. Finally, in section 6
we conclude and provide an outlook on directions for further research.

2. Background

2.1. Permutationally invariant tomography

Permutationally invariant tomography has been introduced as a scalable reconstruction protocol
for multi-qubit systems in [17]. It is designed for all states of the system that remain invariant
under all possible interchanges of its different particles. Abstractly, such a permutationally
invariant state ρPI of N qubits can be expressed in the form

ρPI = [ρ]PI =
1

N !

∑
p∈SN

V (p) ρ V (p)†, (1)

where V (p) is the unitary operator which permutes the N different subsystems according to the
particular permutation p and the summation runs over all possible elements of the permutation
group SN . Many important states, such as the Greenberger–Horne–Zeilinger states or Dicke
states, fall within this special class.

As shown in [17], full information on such states can be obtained by using in total
(

N+2
N )= (N 2 + 3N + 2)/2 different local binary measurement settings, while for each setting

only the count rates of (N + 1) different outcomes need to be registered. This finally leads to a
cubic scaling in contrast to the exponential scaling of standard tomography schemes.

The measurement strategy that attains this number runs as follows: each setting is described
by a unit vector â ∈ R3 which defines associated eigenstates |i〉a of the trace-less operator â · Eσ .
Each part locally measures in this basis and registers the outcomes ‘0’ or ‘1’, respectively. The
permutationally invariant part can be reconstructed from the collective outcomes, i.e. only the
number of ‘0’ or ‘1’ results at the different parties matters but not the individual site information.
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The corresponding coarse-grained measurements are given by

Ma
k =

∑
p′

V (p′)|0〉a〈0|
⊗k

⊗ |1〉a〈1|
⊗N−k V (p′)†, (2)

=

(
N

k

) [
|0〉a〈0|

⊗k
⊗ |1〉a〈1|

⊗N−k
]

PI
(3)

with k = 0, . . . , N , and where the summation p′ is over all permutations that give distinct
terms. In total, one needs the above stated number of different settings â. These settings can be
optimized in order to minimize the total variance which provides an advantage in contrast to
random selection.

In addition to this measurement strategy there is also a pretest which estimates the
‘closeness’ of the true, unknown state with respect to all permutationally invariant states
from just a few measurement results [17]. This provides a way to test in advance whether
permutationally invariant tomography is a good method for the unknown state.

Restricting oneself to the permutationally invariant part of a density operator has already
been discussed in the literature: for example, for spins in a Stern–Gerlach experiment [19] or in
terms of the polarization density operator [20–22]. Here, due to the restricted class of possible
measurements, only the permutationally invariant part of, in principle distinguishable, particles
is accessible [21, 22]. This is a strong conceptual difference compared to permutationally
invariant tomography where one intentionally constrains oneself to this invariant part.
Nevertheless, it should be emphasized that the employed techniques are similar.

2.2. Statistical state reconstruction

Since standard linear inversion of the observed data typically results in unreasonable estimates
as explained in the introduction, one employs other principles for actual state reconstruction.
In general, one uses a certain fit function F(ρ) that penalizes deviations between the observed
frequencies fk and the true probabilities predicted by quantum mechanics pk(ρ)= tr(ρMk) if
the state of the system is ρ. The reconstructed density operator ρ̂ is then given by the (often
unique) state that minimizes this fit function,

ρ̂ = arg min
ρ>0

F(ρ); (4)

hence the reconstructed state is precisely the one which best fits the observed data. Since
the optimization explicitly restricts itself to physical density operators this ensures validity of
the final estimate ρ̂ in contrast to linear inversion. Depending on the functional form of the
fit function, different reconstruction principles are distinguished. A list of the most common
choices is provided in table 1.

The presumably best-known and most widely employed method is called the maximum
likelihood principle [23]. Given a set of measured frequencies, fk , the maximum likelihood
state, ρ̂ml, is exactly the one with the highest probability of generating these data. Other common
fit functions, usually employed in photonic state reconstruction, are different variants of least
squares [4, 24] that originate from the likelihood function using Gaussian approximations for the
probabilities. There, this is often called maximum likelihood principle, but we distinguish these,
indeed different, functions here explicitly. Typically, the weights in the least squares function are
set to wk = 1/ fk because fk represents an estimate of the variance in a multinomial distribution,
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Table 1. Common reconstruction principles and their corresponding fit functions
F(ρ) used in the optimization given by equation (4); see text for further details.

Reconstruction principle Fit function F(ρ)

Maximum likelihood [23] −
∑

k fk log[pk(ρ)]

Least squares [24]
∑

k wk[ fk − pk(ρ)]2, wk > 0

Free least squares [4]
∑

k 1/pk(ρ)[ fk − pk(ρ)]2

Hedged maximum likelihood [25] −
∑

k fk log[pk(ρ)] −β log[det(ρ)], β > 0

cf the free least squares principle. However, this leads to a strong bias if the count rates are
extremal; for example, if one of the outcomes is never observed, this method naturally leads to
difficulties. A method to circumvent this is given by the free least squares function [4] or using
improved error analysis for rare events. Let us stress that all these principles have the property
that if linear inversion delivers a valid estimate ρ̂lin > 0, it is also the estimate given by these
reconstruction principles10.

Finally, hedged maximum likelihood [25] represents a method that circumvents low rank
state estimates. Via this, one obtains more reasonable error bars using parametric bootstrapping
methods [26]; for other error estimates, see the recently introduced confidence regions for
quantum states [27, 28]. In principle, many more fit functions are possible, such as generic
loss functions [29], but considering these is beyond the scope of this work.

3. Method

From the above, it is apparent that permutationally invariant state reconstruction requires the
solution of

ρ̂PI = arg min
ρPI>0

F(ρPI) (5)

for the preferred fit function. This large-scale optimization becomes feasible along the following
lines.

Firstly, one reduces the dimensionality of the underlying optimization problem because
one cannot work with full density operators anymore. This requires an operational way to
characterize permutationally invariant states ρPI > 0 over which the optimization is performed,
and additionally, demands an efficient way to compute probabilities pk(ρPI) which appear in the
fit function. Secondly, one needs a method for performing the final optimization. We employ
convex optimization for this.

3.1. Reduction of the dimensionality

This reduction relies on an efficient toolbox to handle permutationally invariant states, which
exploits the particular symmetry. Here we will explain this method and the final structure; for

10 For the least squares fit functions this follows because F = 0 in this case and clearly F > 0 for those functions.
In the case of the likelihood it follows from positivity of the classical relative entropy between probability
distributions.
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more details see section 5.1. These techniques are well proven and established; we employ and
adapt them here for the permutationally invariant tomography scheme such that we finally reach
state reconstruction of larger qubits.

The methods of this toolbox are obtained via the concept of spin coupling that
describes how individual, distinguishable spins couple to a combined system if they become
indistinguishable. Since we deal with qubits we only need to focus on spin-1/2 particles. In
the simplest case, two spin-1/2 particles can couple to a spin-1 system, called the triplet, if
both spins are aligned symmetric, or to a spin-0 state, the singlet, if the spins are aligned anti-
symmetric. Abstractly, this can be denoted as C2

⊗ C2
= C3

⊕ C1. If one considers now three
spins, then of course all spins can point in the same direction giving a total spin-3/2 system.
There is also a spin-1/2 system possible if two particles form already a spin-0 and the remaining
one stays untouched. This can be achieved, however, by more than one possibility, in fact by
two inequivalent choices11, and is expressed by C2

⊗ C2
⊗ C2

= C4
⊕ (C2

⊗ C2).
This scheme can be extended to N spin-1/2 particles to obtain the following decomposition

of the total Hilbert space,

H= (C2)⊗N
=

N/2⊕
j= jmin

H j ⊗K j , (6)

where the summation runs over different total spin numbers j = jmin, jmin + 1, . . . , N/2 starting
from jmin ∈ {0, 1/2}, depending on whether N is even or odd. Here, H j are called the spin
Hilbert spaces with dimensions dim(H j)= 2 j + 1, while K j are referred to as multiplicative
spaces that account for the different possibilities to obtain a spin- j state. They are, generally, of
a much larger dimension, cf equation (22).

Permutationally invariant states have a simpler form on this Hilbert space decomposition,
namely

ρPI =

N/2⊕
j= jmin

p jρ j ⊗
1

dim(K j)
, (7)

with density operators ρ j called spin states and according probabilities p j . Thus a
permutationally invariant density operator only contains non-trivial parts on the spin Hilbert
spaces while carrying no information on the multiplicative spaces. Note, further, that there
are no coherences between different spin states. This means that any permutationally invariant
state can be parsed into a block structure as schematically represented in figure 1. The main
diagonal is made up of unnormalized spin states ρ̃ j = p jρ j/ dim(K j), which appear several
times, the number being equal to the dimension of the corresponding multiplicative space. This
block-decomposition represents a natural way to treat permutationally invariant states and has,
for example, already been employed in the aforementioned related works on permutationally
invariant tomography [19–22] but also in other contexts [30–33].

This structure shows that if we work with permutationally invariant states, we do not need
to consider the full density operator but rather that it is sufficient to deal only with this ensemble

11 More precisely, all states of the form |ψ〉 = V (p)|ψ−
〉 ⊗ |0〉, with p being any possible permutation, are states

of total spin j = 1/2 and projection m = 1/2 to the collective spin operators Ji =
∑3

n=1 σi;n/2, σi;n being the
corresponding Pauli operator on qubit n. However, as can be checked, these states only span a two-dimensional
subspace.
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Figure 1. Block decomposition for a generic permutationally invariant state as
given by equation (7) with ρ̃ j = p jρ j/ dim(K j). Note that we interchanged the
spin- and multiplicative spaces.

of spin states. Therefore we identify from now on

ρPI ⇐⇒ p jρ j , j = jmin, jmin + 1, . . . , N/2. (8)

This provides already an efficient way to store and to visualize such states. More importantly, it
also provides an operational way to characterize valid states, since any permutationally invariant
operator ρPI represents a true state if and only if all these spin operators ρ j are density operators
and p j a probability distribution. This is in contrast to the generalized Bloch vector employed
in the original proposal of permutationally invariant tomography [17] given by equation (52),
which also provides efficient storage and processing of permutationally invariant states, but
where Bloch vectors of physical states are not as straightforward to characterize.

Via this identification one can demonstrate once more the origin of the cubic scaling of
the permutationally invariant tomography scheme. The largest spin state is of dimension N + 1
which requires parameters of the order of N 2 for characterization. Since one has of the order of
N of these states, this results in a cubic scaling.

Fixing the ensemble of spin states as parameterization, it is now necessary to obtain an
efficient procedure to compute the probabilities pa

k (ρPI) for the optimized measurement scheme.
This is achieved as follows: let us first stress that a similar block decomposition to that given by
equation (7) holds for all permutationally invariant operators. Hence also the measurements Ma

k
given by equation (2) can be cast into this form. Using the convention

Ma
k =

N/2⊕
j= jmin

Ma
k, j ⊗ 1 (9)

leads to

tr(ρPI M
a
k )=

N/2∑
j= jmin

p j tr(ρ j Ma
k, j). (10)

Therefore the problem is shifted to the computation of the spin- j operators Ma
k, j for each

setting â. As we show in proposition 5.2 below, using the idea that measurements can be
transformed into each other by a local operation Ua|i〉 = |i〉a, this provides the relation

Ma
k, j = W a

j Me3
k, j W

a,†
j . (11)
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Here Me3
k, j corresponds to the measurement in the standard basis (that need to be computed once)

and W a
j is a unitary transformation determined by the rotation Ua. This connection is given by

Ua = exp

(
−i
∑

l

tlσl/2

)
H⇒ W a

j = exp

(
−i
∑

l

tl Sl, j

)
, (12)

where Sl, j stands for the spin operators in dimension 2 j + 1. This finally provides an efficient
way to compute probabilities.

3.2. Optimization

As a second step one still needs to cope up with the optimization itself. Although there are
different numerical routines for statistical state reconstruction like maximum likelihood [34]
or least squares [4, 35], we prefer nonlinear convex optimization [36] to obtain the final
solution. Quantum state reconstruction problems are known to be convex [35, 37], but convex
optimization has hardly been used for this task. However, convex optimization has several
advantages: first of all it is a systematic approach that works for any convex fit function,
including maximum likelihood and least squares. In contrast to other algorithms such as the
fixed-point algorithm proposed in [34], it gives a precise stopping condition via an appropriate
error control (see, however, [38]) and still exploits all the favourable, convex, structure in
comparison with re-parameterization ideas as in [4]. Moreover, it is guaranteed to find the
global optimum and the accuracy obtained is typically much higher than that obtained with
other methods.

Quantum state reconstruction as defined via equation (4) can be formulated as a convex
optimization problem as follows: all fit functions listed in table 1 are convex on the set of
states. Via a linear parameterization of the density operator ρ(x)= 1/ dim(H)+

∑
xi Bi , using

an appropriate operator basis Bi such that normalization is fulfilled directly, the required
optimization problem becomes

min
x

F[ρ(x)]
(13)

s.t. ρ(x)=
1

dim(H)
+
∑

i

xi Bi > 0,

with a convex objective function F(x)= F[ρ(x)] and a linear matrix inequality as the
constraint, i.e. precisely the structure of a nonlinear convex optimization problem [36].
For permutationally invariant states, one uses ρ(x)= ⊕ j ρ̄ j(x) with ρ̄ j = p jρ j by using an
appropriate block-diagonal operator basis Bi ; therefore we continue this discussion with the
more general form.

The optimization given by equation (13) can be performed, for instance, with the help
of a barrier function [36]12. Rather than considering the constrained problem, one solves the
unconstrained convex task given by

min
x

F[ρ(x)] − t log[det ρ(x)], (14)

12 Let us stress that both least squares options can be parsed into a simpler convex problem, called a semidefinite
program, as shown in, for instance, [24, 35], but that this does not work with the true maximum likelihood function
to our best knowledge.
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where the constraint is now directly included in the objective function. This so-called barrier
term acts precisely as its name suggests: if one tries to leave the strictly feasible set, i.e.
all parameters x that satisfy ρ(x) > 0, one always reaches a point where at least one of the
eigenvalues vanish. Since the barrier term is large within this neighbourhood, in fact singular
at the crossing, it penalizes points close to the border and thus ensures that one searches for an
optimum well inside the region where the constraint is satisfied. The penalty parameter t > 0
plays the role of a scaling factor. If it becomes very small the effect of the barrier term becomes
negligible within the strictly feasible set and only remains at the border. Therefore a solution
of equation (14) with a very small value of t provides an excellent approximation to the real
solution. As shown in section 5.2 this statement can be made more precise by

F[ρ(x t
sol)] − F[ρ(xsol)]6 t dim(H), (15)

which follows from convexity and which relates the true solution xsol of the original problem
given by equation (13) to the solution x t

sol of the unconstrained problem with penalty
parameter t . This condition represents the above-mentioned error control and serves as a
stopping condition, i.e. as a quantitative error bound for a given t . Note that for permutationally
invariant tomography dim(H) is not the dimension of the true N -qubit Hilbert space but
instead the dimension of ρ(x)= ⊕ j ρ̄ j(x), i.e.

∑
j= jmin

(2 j + 1)= (N + 1)(N + 2 jmin + 1)/4
which increases only quadratically.

Small penalty parameters are approached by an iterative process: for a given starting point
xn

start and a certain value of the parameter tn > 0, one solves equation (14). Its solution will be
the starting point for xn+1

start = xn
sol for the next unconstrained optimization with a lower penalty

parameter tn+1 < tn. As the starting point for the first iteration, we employ t0 = 1 and the point
x0

start corresponding to the totally mixed state. This procedure is repeated until one has reached
small enough penalty parameters. The penalty parameter is decreased step-wise. Then each
unconstrained problem can be solved very efficiently since one starts already quite close to the
true solution.

Let us point out that via the above-mentioned barrier method, one additionally obtains
solutions to the hedged state reconstruction with β = t since the unconstrained problem given
by equation (14) is precisely the fit function of the hedged version of table 1.

Finally, for comparison purposes, we would also like to mention the iterative fixed-point
algorithm of [39]; for a modification see [40]. It is designed for maximum likelihood estimation
and is straightforward to implement, since it only requires matrix multiplication; however, it has
deficits regarding control and accuracy. For permutationally invariant tomography the algorithm
can be adapted as follows: given a valid iterate ρn

PI characterized by the ensemble of spin states
ρ̄n

j = pn
jρ

n
j , one evaluates the probabilities pa

k (ρ
n
PI) using equation (10). Next, one computes the

operators

Rn
j =

∑
a,k

f a
k

pa
k (ρ

n
PI)

Ma
k, j , (16)

which determine the next iterate ρ̄n+1
j = Rn

j ρ̄
n
j Rn†

j /N with N =
∑

j tr(Rn
j ρ̄

n
j Rn†

j ). This iteration
is started, for example, from the totally mixed state and repeated until a sufficiently good
solution is obtained.
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Figure 2. Trace distance between the analytic solution and the estimate after
n algorithm steps for the three most common reconstruction principles from
table 1.

4. Examples

The two methods from the previous section are employed in a prototype implementation under
MATLAB, which already enables state reconstruction of about 20 qubits on a standard desktop
computer.

The current algorithm is tested along the following lines: for a randomly generated
permutationally invariant state ρ true

PI we compute the true probabilities pa
k,true for the chosen

measurement settings. Rather than sampling we set the observed frequencies equal to this
distribution, i.e. f a

k = pa
k,true. In this way linear inversion would return the original state; hence

also every other reconstruction principle from table 1 has this state as the solution. We now
start the algorithm and compare the trace distance between the analytic solution ρ true

PI and the
state after n iterations ρn

PI. This distance 1
2 tr|ρ true

PI − ρn
PI| quantifies the probability with which

the two states, the true analytic solution and the iterate after n steps in the algorithm, could be
distinguished [41].

A typical representative of this process is depicted in figure 2 for 12 qubits using optimized
settings. The randomly generated state ρ true

PI was chosen to lie at the boundary of the state
space since such rank-reduced solutions better resemble the case of state reconstruction of
real data. More precisely, each spin state of the true density operator is given by a pure
state ρ true

j = |ψ j〉〈ψ j | chosen according to the Haar measure, while the p j are selected by the
symmetric Dirichlet distribution with concentration measure α = 1/2 [42]. As is apparent the
algorithm behaves similarly for all three reconstruction principles and rapidly obtains a good
solution after about 70 iterations. The steps in this plot are points where the penalty parameter
is reduced by a factor of 10 starting from t = 1 and decreased down to t = 10−10. The slight rise
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Figure 3. Comparison of the maximum likelihood principle between convex
optimization and the iterative fixed-point algorithm for the described testing
procedure with respect to accuracy and algorithm time.

after these points comes from the fact that we plot the trace distance and not the actual function
(fit function plus penalty term) that is minimized.

Figure 3 shows a similar comparison for the maximum likelihood reconstruction of
20 qubits but now plotted versus algorithm time13. For comparison we include the performance
of the iterative fixed-point algorithm, which requires much more iterations in general (3000 in
this case versus about 90 for convex optimization). Let us emphasize that a similar behaviour
between these two algorithms appears also for smaller qubit numbers. As one can see, convex
optimization delivers a faster and in particular more accurate solution. In contrast, the iterative
fixed-point algorithm shows a bad convergence rate although it initially starts off better. This
was one of the main reasons for us to switch to convex optimization.

The current algorithm times of this test are listed in table 2 which are averaged over
50 randomly generated states. Thus already this prototype implementation enables state
reconstruction of larger qubit numbers in moderate times. The small time difference between
reconstruction principles is because least squares as a quadratic fit function provides some
advantages in the implementation. More details of this difference are given in section 5.

Table 2 also contains the algorithm times for reconstructions using simulated frequencies
f a
k = na

k/Nr. For each setting they are deduced from the count rates na
k sampled from a

multinomial distribution using the true event distribution pa
k,true and Nr = 1000 repetitions. The

true probabilities correspond to the same states as already employed in the algorithm test. From
the table, one observes that state reconstruction for data with count statistics requires only
slightly more time than the algorithm test with the correct probabilities. We attribute this to
the fact that a few more iterations are typically required in order to achieve the desired accuracy.

13 All simulations were performed on an Intel Core i5-650, 3.2 GHz, 8 GB RAM using MATLAB 7.12.
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Table 2. Current performance of the convex optimization algorithm on the
described test procedure and on frequencies from simulated experiments; free
least squares provides similar results to the maximum likelihood principle.

N = 8 N = 12 N = 16 N = 20

Maximum likelihood
Algorithm test 8.5 s 47 s 2.7 min 9.2 min
Simulated experiment 9.2 s 48 s 2.9 min 9.3 min

Least squares
Algorithm test 8.4 s 39 s 2.5 min 6 min
Simulated experiment 9.2 s 43 s 2.7 min 6.7 min

Finally, let us perform the reconstruction of a simulated experiment of N = 14 qubits.
Suppose that one intends to create a Dicke state |Dk,N 〉 as given by equation (26) for some k and
N , but that the preparation suffers from some imperfections such that at best one can prepare
states of the form

ρdicke mix =

N∑
l=0

(
N

l

)
pl(1 − p)N−l

|Dl,N 〉〈Dl,N |, (17)

where p = 0.6 characterizes some asymmetry. As the true state prepared in the experiment we
now model some further imperfection in the form of an additional small misalignment U⊗N ,
with U = exp(−iθσy/2), θ = 0.2, and some permutationally invariant noise σPI (chosen via the
aforementioned method but using Hilbert–Schmidt instead of the Haar measure), i.e.

ρtrue = 0.6 U⊗Nρdicke mixU †⊗N + 0.4 σPI. (18)

The frequencies are obtained via sampling from the state given by equation (18) using
intentionally only Nr = 200 repetitions per setting (to see some differences). Finally, we
reconstruct the state according to the maximum likelihood principle. Figure 4 shows the
tomography bar plots of one of these examples for the largest spin state p jρ j , j = N/2 = 7
for both states. Although this state might be artificial, this example should highlight once more
that this state reconstruction algorithm works also for realistic data and for qubit sizes where
clearly any non-tailored state reconstruction scheme would fail. Moreover, it demonstrates that
the spin ensemble p jρ j represents a very convenient graphical representation of such states
(compared to a 214

× 214 matrix in this case).

5. Details

5.1. Reduction

Let us first give more details regarding the reduction step. This starts by recalling a group
theoretic result summarized in the next section, which is then used to show how the stated
simplifications with respect to states and measurements are obtained.
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Figure 4. The real part of the true and reconstructed (according to maximum
likelihood) largest spin state ensemble p jρ j , j = N/2 = 7 using the optimal
measurement setting. The basis is given by the Dicke basis |Dk,14〉, cf
equation (26).

5.1.1. Background. Consider the following two unitary representations defined on the N qubit
Hilbert space: the permutation or symmetric group V (p) which is defined by their action onto a
standard tensor product basis by V (p)|i1, . . . , iN 〉 = |i p−1(1), . . . , i p−1(N )〉 according to the given
permutation p, and the tensor product representation W (U )= U⊗N of the special unitary group.
A result known as the Schur–Weyl duality [43, 44] states that the action of these two groups is
dual, which means that the total Hilbert space can be divided into blocks on which the two
representations commute. More precisely, one has

(C2)⊗N
=

N/2⊕
j= jmin

H j ⊗K j , (19)

V (p)=

N/2⊕
j= jmin

1 ⊗ V j(p), (20)

W (U )=

N/2⊕
j= jmin

W j(U )⊗ 1. (21)

Here V j and W j are the respective irreducible representations, and jmin ∈ {0, 1/2} depending on
whether N is even or odd. The dimensions of the appearing Hilbert spaces are dim(H j)= 2 j + 1
and

dim(K j)=

(
N

N/2 − j

)
−

(
N

N/2 − j − 1

)
(22)

for all j < N/2 and dim(KN/2)= 1. Let us note that equation (20) already ensures the
block-diagonal structure of permutationally invariant operators, while equation (21) becomes
important for the measurement computation.

A basis of the Hilbert spaceH j ⊗K j is formed by the spin states | j,m, α〉 = | j,m〉 ⊗ |α j〉

with m = − j,− j + 1, . . . , j and α j = 1, . . . , dim(K j). These are obtained by starting with the
states having the largest spin number m = j , which are given by

| j, j, 1〉 = |0〉
⊗2 j

⊗ |ψ−
〉
⊗N/2− j , (23)
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| j, j, α〉 =

∑
p

c j,pV (p)| j, j, 1〉, (24)

for all α > 2. The coefficients c j,p must ensure that the states | j, j, α〉 are orthogonal; otherwise
their choice is completely free since the detailed structure of different α’s is not important. The
full basis is obtained by subsequently applying the ladder operator J− =

∑N
n=1 σ−;n to decrease

the spin number m. Here σ−;n refers to the operator with σ− = (σx − iσy)/2 on the nth qubit and
identity on the rest. Thus in total the basis becomes

| j,m, α〉 =N J j−m
− | j, j, α〉, (25)

with appropriate normalizations N . Note that the subspace corresponding to the highest spin
number j = N/2 is also called the symmetric subspace, which contains many important states
such as the Greenberger–Horne–Zeilinger or Dicke states, which using the spin states read as

|GHZ〉 =
1

√
2

(
|0〉

⊗N + |1〉
⊗N
)
=

1
√

2
(|N/2, N/2, 1〉 + |N/2,−N/2, 1〉), (26)

|Dk,N 〉 =N
[
|1〉

⊗k
⊗ |0〉

⊗N−k
]

PI
= |N/2, N/2 − k, 1〉. (27)

5.1.2. Permutationally invariant states and measurement operators. Let us now employ this
result in order to derive a generic form for permutationally invariant states; we give the proof
for completeness.

Proposition 5.1 (Permutationally invariant states). Any permutationally invariant state of N
qubits ρPI defined via equation (1) can be written as

ρPI =

N/2⊕
j= jmin

p jρ j ⊗
1

dim(K j)
; (28)

hence it is fully characterized by the ensemble p jρ j . Moreover, ρPI is a density operator if and
only if all ρ j are density operators and p j a probability distribution.

Proof. The proposition follows using the representation V (p) given by equation (20) in the
definition of the states, cf equation (1), and then applying Schur’s lemma [43, 44]. This lemma
states that any linear operator A fromK j toKi which commutes with all elements p of the group
Vi(p)A = AV j(p) must either be zero if i and j label different irreducible representations or
A = c1 if they are unitarily equivalent. Since API = 1/N !

∑
p Vi(p)AV j(p)† fulfils this relation,

one obtains
1

N !

∑
p

Vi(p)AV j(p)
†
= δi j tr(A)

1

dim(K j)
. (29)

The normalization can be checked taking the trace on both sides. Adding appropriate identities
provides

1

N !

∑
p

1 ⊗ Vi(p)B1 ⊗ V j(p)
†
= δi j trK j (B)⊗

1

dim(K j)
, (30)

where B should now be a linear operator from H j ⊗K j to Hi ⊗Ki .
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Finally, let Pj denote the projector onto H j ⊗K j , and using equation (30) yields

ρPI =
1

N !

∑
p

V (p)ρV (p)† =

∑
i,i ′, j, j ′

1

N !

∑
p

Pi V (p)Pi ′ρPj V (p)
† Pj ′ (31)

=

∑
i, j

{
1

N !

∑
p

Pi [1 ⊗ Vi(p)]PiρPj [1 ⊗ V j(p)]
† Pj

}
(32)

=

∑
i, j

Pi

[
δi j trK j (PiρPj)⊗

1

dim(K j)

]
Pj (33)

=

⊕
j

trK j (PjρPj)⊗
1

dim(K j)
, (34)

which provides the general structure.
The state characterization part follows because positivity of a block matrix is equivalent to

positivity of each block. ut

Next let us concentrate on the measurement part. Although the block decomposition
follows already from the previous proposition, it is here more important to obtain an efficient
computation of each measurement block for the selected setting.

Proposition 5.2 (Measurement operators). The POVM elements Ma
k as defined in equa-

tion (2) for any local setting â ∈ R3 can be decomposed as Ma
k =

⊕
j Ma

k, j ⊗ 1 with

Ma
k, j = W j(Ua)M

e3
k, j W j(Ua)

†. (35)

The unitary is given by W j(Ua)= exp(−i
∑

l tl Sl, j) using the spin operators Sl, j in dimension
2 j + 1, while the coefficients tl are determined by Ua = exp(−i

∑
l tlσl/2) which satisfies â · Eσ =

UaσzU †
a . For the measurement in the standard basis â = ê3 one obtains

Me3
k, j = | j, N/2 − k〉〈 j, N/2 − k| (36)

if − j 6 N/2 − k 6 j and zero otherwise.

Proof. The basic idea is to consider the measurement in an arbitrary local basis â by a rotation
followed by the collective measurement in the standard basis. The block decomposition is
obtained as follows:

Ma
k = U⊗N

a Me3
k U †⊗N

a = W (Ua)

⊕
j

Me3
k, j ⊗ 1

W (Ua)
† (37)

=

⊕
j

W j(Ua)M
e3
k, j W j(Ua)

†
⊗ 1. (38)

The first step holds because Ua satisfies |i〉a〈i | = Ua|i〉〈i |U †
a , while the block decomposition of

the standard basis measurement Me3
k is employed afterwards. In the last part one uses the tensor

product representation given by equation (21).
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Since one knows that W j is irreducible it can be uniquely written in terms of its Lie algebra
representation dW j as W j(Ua)= W j(e−iX)= e−idW j (X), which is given by the spin operators in
this case, i.e. dW j(σl/2)= Sl, j [45].

Thus we are left to compute the measurement blocks Me3
k, j for the standard basis. Note

it is sufficient to evaluate Me3
k, j ⊗ |1 j〉〈1 j | such that one can employ the spin basis states

| j,m, 1〉 as introduced in section 5.1.1. At first, note that Me3
k exactly contains k projections

onto |0〉, while each basis state | j,m, 1〉 possesses (N/2 + m) zeros. Therefore one obtains
Me3

k, j | j,m, 1〉 ∝ δk,N/2+m| j,m, 1〉. Since each POVM has to resolve the identity this is only
possible if each Me3

k, j is the stated rank-1 projector on the basis states. ut

Finally one still needs to express Ua = exp(−i
∑

l tlσl/2) for the chosen setting â ∈ R3.
Since this can be related to a familiar rotation [45] these coefficients can be expressed as
tl = (θ n̂)l via a rotation about an angle θ around the axis n̂. Since this rotation should turn
ê3 into â, its parameters are given by

n̂ =
ê3 × â

‖ê3 × â‖2
, (39)

θ = arccos(ê3 · â), (40)

and n̂ = ê1 (or any other orthogonal vector) if â = ±ê3.

5.2. Convex optimization

In this part, we collect some more details of the described convex optimization algorithm; for
complete coverage see the book [36].

Each unconstrained optimization given by equation (14) is solved via a damped Newton
algorithm. The minimization of f (x)= F[ρ(x)] − t log[det ρ(x)] is obtained by an iterative
process. In order to determine a search direction at a given iterate xn, one minimizes the
quadratic approximation

f (xn +1x)≈ f (xn)+ ∇ f (xn)T1x + 1
21x T

∇
2 f (xn)1x . (41)

This reduces to solving a linear set of equations called the Newton equation

∇
2 f (xn)1xnt = −∇ f (xn), (42)

which determines the search direction 1xnt. The step length s for the next iterate xn+1
=

xn + s1xnt is chosen by a backtracking line search. Here one picks the largest s = maxk∈N β
k

with β ∈ (0, 1) such that the iterate stays feasible ρ(xn+1) > 0 and that the function value
decreases sufficiently, i.e. f (xn+1)6 f (xn)+αs∇ f (xn)T1xnt with α ∈ (0, 0.5). The process is
stopped if one has reached an appropriate solution, which can be identified by ‖∇ f (xn)‖26 ε.
If the initial point xstart is already sufficiently close to the true solution then the whole algorithm
converges quadratically, i.e. the precision gets doubled at each step.

At this point, let us give the gradient and Hessian of the appearing functions. For the barrier
term ψ(x)= − log[det ρ(x)] restricted to the positive domain ρ(x)= 1/ dim(H)+

∑
i xi Bi>0,

one obtains [36]

∂ψ(x)

∂xi
= − tr[ρ(x)−1 Bi ], (43)
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∂2ψ(x)

∂x j∂xi
= tr[ρ(x)−1 B jρ(x)

−1 Bi ]. (44)

Equation (44) shows that the Hessian of the penalty term ∇
2ψ(x) > 0 is positive definite,

such that ψ(x) is indeed convex. The derivatives of the preferred fit function can be computed
directly. For instance, using the likelihood function Fml(x)= −

∑
k fk log pk(x) with pk(x)=

tr[ρ(x)Mk], they read

∂Fml(x)

∂xi
= −

∑
k

fk

pk(x)
tr(Bi Mk), (45)

∂2 Fml(x)

∂x j∂xi
=

∑
k

fk

p2
k(x)

tr(B j Mk)tr(Bi Mk). (46)

The bottleneck of such an algorithm is the actual computation of the second derivatives.
Although the expansion coefficients of each measurement tr(B j Mk) can be computed in
advance, it is still necessary to compute equation (46) anew at each point x due to the
dependence of pk(x). With respect to that, the least squares fit function bears a great advantage
since its Hessian is constant, i.e. ∂ j∂i Fls(x)= 2

∑
k wktr(B j Mk)tr(Bi Mk), such that one saves

time on this part.
Finally, let us comment on the optimality conditions, known as the Karush–Kuhn–Tucker

conditions [36]. A given x? is the global solution of the convex problem given by equation (13)
if and only if14 there exists an additional Lagrange multiplier Z ? (as given in the equations
beneath) such that the pair (x?,3?) satisfies

∂

∂xi
F(x?)− tr[3?Bi ] = 0, ∀i, (47)

3? > 0, ρ(x?)> 0, (48)

tr[3?ρ(x?)] = 0. (49)

Given the solution x t
sol of the corresponding unconstrained problem with penalty parameter t ,

it follows from ∇ f (x t
sol)= 0 using equation (43) that the gradient conditions are satisfied with

3t = tρ(x t
sol)

−1 being the Lagrange multiplier. This pair (x t
sol,3t) also satisfies equation (48);

only the duality gap condition tr[3tρ(x t
sol)] = t dim(H) > 0 does not hold exactly. However,

this quantity appears in the following inequality:

F(x t
sol)− tr[3tρ(x

t
sol)] = min

x :ρ(x)>0
F(x)− tr[3tρ(x)] (50)

6 min
x :ρ(x)>0

F(x)= F(xsol). (51)

Here one used that x t
sol is the solution of F(x)− tr[3tρ(x)] because the gradient vanishes

(and the solution is not at the border), and tr[3tρ(x)]> 0 for the inequality. This is the stated
accuracy given by equation (15) which relates the function value of x t

sol to the true solution xsol.

14 Sufficiency holds under the Slater regularity condition that demands a strictly feasible point ρ(x) > 0, which
naturally holds for state reconstruction problems.
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5.3. Additional tools

5.3.1. Optimization of measurement settings. Measurement settings, each described by a unit
vector âi ∈ R3 as explained in section 2.1, are chosen to optimize a figure of merit characterizing
how well a given permutationally invariant target state ρtar can be reconstructed. As such a
quality measure we use the sum of errors for the tomographically complete operator set of all
tensor products of Pauli operators. Note that a permutationally invariant state ρPI is already
uniquely determined by its generalized Bloch vector [17] defined as

bklmn = tr
([
σ⊗k

x ⊗ σ⊗l
y ⊗ σ⊗m

z ⊗ 1⊗n
]

PI
ρPI

)
(52)

with natural numbers satisfying k + l + m + n = N . Consequently, the total error of all Bloch
vector elements is given by

E2
total(âi , ρtar)=

∑
k,l,m,n

(
N

k, l,m, n

)
E2

bklmn
(âi , ρtar), (53)

where the multinomial coefficient weights the error of each generalized Bloch vector by its
number of appearance in a generic Pauli product decomposition.

The error of each Bloch vector element must now be related to the carried out
measurements. For that, note that each Bloch vector element can be expressed as

bklmn =

∑
i

cklmn
i tr([(âi · Eσ)⊗N−n

⊗ 1⊗n]PIρtar) (54)

using appropriate coefficients cklmn
i and the expectation values of [(âi · Eσ)⊗N−n

⊗ 1⊗n]PI which
can be computed from the coarse-grained measurement outcomes Mai

k of setting âi as given by
equation (2) using linear combinations. Assuming independent errors, one obtains

E2
bklmn

(âi , ρtar)=

∑
i

cklmn
i E2

ρtar

(
[(âi · Eσ)⊗N−n

⊗ 1⊗n]PI

)
. (55)

The detailed form of the error expression E2
ρtar
([(âi · Eσ)⊗N−n

⊗ 1⊗n]PI) may depend on the actual
physical realization, but we assume the following form:

E2
ρtar

(
[(âi · Eσ)⊗N−n

⊗ 1⊗n]PI

)
= K1ρtar

(
[(âi · Eσ)⊗N−n

⊗ 1⊗n]PI

)
, (56)

where1ρ[A] = tr(ρA2)− [tr(ρA)]2 is the standard variance and K is a state-independent factor.
This form fits well, for example, to the common error model in photonic experiments where
count rates are assumed to follow a Poissonian distribution. For more details of this derivation,
see [17].

For large qubit numbers, N , this optimization is carried out iteratively. Starting from
randomly chosen measurement directions or from vectors which are uniformly distributed
according to some frame potential [46], one searches for updates according to

â′

i =
pân

i + (1 − p)r̂i

‖pân
i + (1 − p)r̂i‖

. (57)

Here ân
i is the current iterate, p < 1 a probability close to 1 and r̂i are randomly chosen unit

vectors. If this new set of directions â′

i leads to a smaller total error E2
total(â

′

i , ρtar) than the
previous set, then these new measurement settings form the next iterate ân+1

i = ân
i ; otherwise

this procedure is carried out once more. This process is repeated until the total error does not
decrease anymore. This way of optimizing the measurements requires a method for computing
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the total error E2
total(âi , ρtar) for a given set of measurements âi . Using the generalized Bloch

vector or the spin ensemble this computation can be carried out again efficiently for larger qubit
numbers N .

Although this algorithm is not proven to attain the true global optimum it is still a
straightforward technique to obtain good settings. In the end this is often sufficient, recalling
that the true unknown state can deviate from the target state and that one considers ‘just’ an
overall single figure of merit. For our simulations we always use the optimized settings for the
totally mixed state; a reasonable guess if no extra information is available [47].

Regarding this point, we finally like to add that if one does not employ the minimal number
of measurement settings, but rather an over-complete set, e.g. four times as many settings but
four times fewer measurements per setting, then the procedure is quite insensitive to the chosen
measurement directions. Hence, in many practical situations the search for optimal directions
might not even be necessary and randomly chosen measurement directions suffice equally well.

5.3.2. Statistical pretest. Via the pretest one estimates the fidelity between the true ρtrue

and the best permutationally invariant state FPI(ρtrue)= maxρPI>0 tr(
√√

ρtrueρPI
√
ρtrue) using

only measurement results from a few settings â ∈ T , e.g. employing only T = {ê1, ê2, ê3}.
Depending on this quantity, one decides on whether permutationally invariant tomography is
worth continuing. As explained in detail in [17], this fidelity can be bounded by

FPI(ρtrue)> [tr(ρtrue Z)]2 (58)

with an operator Z =
∑

za
k Ma

k being built up by the carried out measurements Ma
k given by

equation (2) and satisfying Z 6 Psym, where Psym denotes the projector onto the symmetric
subspace.

The expansion coefficients za
k should be optimized to attain the best lower bound. For a

given target state ρtar this problem can be cast into a semidefinite program [36, 48] that can
be solved efficiently using standard numerical routines. However, for larger qubit numbers one
must again employ the block structure of the measurement operators as given by equation (9) to
handle the operator inequality. Note that the projector on the symmetric subspace has a Block
structure Psym, j = δ j,N/21. Then the final problem reads as

max
z

∑
a∈T,k

za
k tr(ρtar M

a
k )

(59)

s.t.
∑

a∈T,k

za
k Ma

k, j=N/2 6 1,
∑

a∈T,k

za
k Ma

k, j 6 0, ∀ j < N/2.

If one experimentally implements this pretest, one must account for additional statistical
fluctuations. For the chosen Z , one can employ the sample mean Z̄ =

∑
za

k f a
k using the

observed frequencies f a
k = na

k/NR in NR repetitions of setting â, as an estimate of the true
expectation value tr(ρtrue Z). This sample mean Z̄ will fluctuate around the true mean but
large deviations will become less likely, such that for an appropriately chosen ε the quantity
sign(Z̄ − ε)(Z̄ − ε)2 is a lower bound to the true fidelity at the desired confidence level. The
proof essentially uses the techniques employed in [49, 50].

Proposition 5.3 (Statistical pretest). For any Z =
∑

za
k Ma

k 6 Psym let Z̄ =
∑

za
k na

k/NR

denote the sample mean using NR repetitions for setting â ∈ T . If the data are generated by
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the state ρtrue, then

Prob
[
FPI(ρtrue)> sign(Z̄ − ε)(Z̄ − ε)2

]
> 1 − exp(−2NRε

2/C2
z ) (60)

with C2
z =

∑
a

(
zs

max − zs
min

)2
where za

max/min are the respective optima for setting â over all
outcomes k.

Proof. The given statement follows along

Prob
[
FPI(ρtrue)> sign(Z̄ − ε)(Z̄ − ε)2

]
> Prob

[
tr(ρtrue Z)> Z̄ − ε

]
, (61)

> 1 − Prob
[
tr(ρtrue Z)6 Z̄ − ε

]
> 1 − exp(−2NRε

2/C2
z ). (62)

Here the first inequality holds because the set of outcomes satisfying {na
k : tr(ρtrue Z)> Z̄ − ε}

is a subset of {na
k : FPI(ρtrue)> sign(Z̄ − ε)(Z̄ − ε)2} using equation (58). In the last inequality

we use the Hoeffdings tail inequality [51] to bound Prob[tr(ρtrue Z)6 Z̄ − ε]. ut

Note that this pretest can also be applied after the whole tomography scheme in which
case the projector Psym =

∑
za

k Ma
k becomes accessible. Moreover, let us point out that a strong

statistical significance, or a low ε respectively, might not be achieved with the best expectation
value as given by equation (59) [52]; hence, optimizing Z for a rather mixed state is often better.

Finally, let us remark that the pretest can be improved by additional projectors, see the
supplementary material of [17]. This leads to the bound FPI(ρtrue)>

∑
j p2

j with p j being the
weight of the corresponding spin- j state of the permutationally invariant part of ρtrue as given
in equation (7). From this expression one sees that this test only works well for states having a
rather large weight on one of these spin states. Others, like the totally mixed state, while clearly
being permutationally invariant, are not identified as states close to the permutationally invariant
subspace. This is in stark contrast to compressed sensing where the certificate succeeds for the
whole class of low-rank target states [10].

5.3.3. Entanglement and the MaxLik–MaxEnt principle. Following the last comment from
the previous subsection, we want to argue that even in the case of an inefficient certificate,
permutationally invariant state reconstruction as given by equation (5) is meaningful. Firstly
we would like to emphasize that the permutationally invariant part of any density operator
corresponds to a good representative to investigate the entanglement properties of the true,
unknown state. This is because the transformation given by equation (1) can be achieved by
permutations or multiple swap operations together with classical mixing, whereby entanglement
cannot be created [53]. Thus if the permutationally invariant part of the density operator is
entangled this holds true also for the real state. In addition, any symmetric entanglement
measure, i.e. all commonly known ones, can only decrease under this operation, thereby even
quantification is faithful [54].

Secondly, permutationally invariant state reconstruction also represents the solution of the
maximum-likelihood maximum-entropy principle as introduced in [55], which goes as follows:
if the carried out measurements are not tomographically complete, then there is, in general, not
a single state ρ̂ml that maximizes the likelihood but rather a complete set of them. In order to
single out a ‘good’ representative, the authors of [55] propose to choose the state that has the
largest entropy, which, according to the Jaynes principle [47], is the special state for which one
has the fewest information.
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Proposition 5.4 (Permutationally invariant MaxLik–MaxEnt principle). Using the de-
scribed permutationally invariant tomography scheme, the reconstructed permutationally
invariant state given by equation (5) (with the likelihood function) is also the solution of the
maximum-likelihood maximum-entropy principle.

Proof. Since the measurements given by equation (2) are invariant and tomographically
complete for permutationally invariant states, all density operators with the same spin ensemble
as ρ̂PI have the same maximum likelihood. According to Ref. [47], the state with maximal
entropy and consistent with a given set of expectation values for operators Ma

k has the form
ρ ∝ exp(

∑
a,k λ

a
k Ma

k ). The Lagrange multipliers λa
k ∈ R must be chosen such that the given

expectation values match. However, because all Ma
k are permutationally invariant we can

employ the block decomposition given by equation (9) and finally obtain exp(
∑

a,k λ
a
k Ma

k )=

exp(⊕ j
∑

a,k λ
a
k Ma

k, j ⊗ 1)= ⊕ j exp(
∑a

k λ
a
k Ma

k, j)⊗ 1. Hence we obtain the same structure as
ρ̂PI, which therefore is also the state with maximum entropy. ut

6. Conclusion and outline

In this paper, we have provided all the necessary ingredients to carry out permutationally
invariant tomography [17] in experiments with large qubit numbers. This includes, besides
scheme-specific tasks such as the statistical pretest and the optimization of the measurement
settings, in particular the state reconstruction part. Accounting for statistical fluctuations due
to a finite number of data, this reconstruction demands the solution of a nonlinear large-
scale optimization problem. We achieve this, firstly, by using a convenient toolbox to store,
characterize and process permutationally invariant states, which largely reduces the dimension
of the underlying problem and, secondly, by using convex optimization, which is superior
compared to commonly used numerical routines in many respects. This makes permutationally
invariant tomography a complete tomography method requiring only moderate measurement
and data analysis effort.

There are many questions one may pursue in this direction: firstly, let us stress that
the current prototype implementation is still not optimal. As explained, the bottleneck is
the computation of the second derivatives; hence, we strongly believe that Hessian free
optimization, like quasi-Newton or conjugate gradients [56], or the use of other barrier functions
more tailored to linear matrix inequalities [57] are likely to push the reconstruction limit
further. Secondly, it is natural to try to exploit other symmetries in the development of
‘symmetry’ tomography protocols; that is, tomography should work for all states that remain
invariant under the action of a specific group. Clearly, any symmetry decreases the number
of state-dependent parameters, but the challenge is to devise efficient local measurement
strategies. Interesting classes here are graph-diagonal [58] or, more general, locally maximally
entangleable states [59], translation or shift-invariant states [60], or U⊗N invariant states
[61, 62]. Thirdly, it is worth investigating to what extent particularly designed state tomography
protocols are useful for further tasks, such as process tomography for quantum gates. For
instance, permutationally invariant tomography might be unable to resolve the Toffoli gate [63]
directly, but since the operation on all N target qubits is symmetric, a permutationally invariant
resolution of this subspace (and the additional control qubit) might be sufficient. Finally, let us
point out that permutationally invariant tomography can be further restricted to the symmetric
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subspace, which often contains the desired states. This is reasonable since we have seen that the
pretest is only good if the unknown state has a large weight in one of the spin states. However,
since the symmetric subspace grows only linearly with the number of particles, this tomography
scheme can analyse many more qubits efficiently.
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[17] Tóth G, Wieczorek W, Gross D, Krischek R, Schwemmer C and Weinfurter H 2010 Phys. Rev. Lett.

105 250403
[18] Moroder T, Kleinmann M, Schindler P, Monz T, Gühne O and Blatt R 2012 Detection of systematic errors in

quantum experiments arXiv:1204.3644
[19] D’Ariano G M, Maccone L and Paini M 2003 J. Opt. B: Quantum Semiclass. Opt. 5 77
[20] Karassiov V P 2005 J. Russ. Laser Res. 26 484
[21] Adamson R B A, Shalm L K, Mitchell M W and Steinberg A M 2007 Phys. Rev. Lett. 98 043601

New Journal of Physics 14 (2012) 105001 (http://www.njp.org/)

4.3. Publications

141



24

[22] Adamson R B A, Turner P S, Mitchell M W and Steinberg A M 2008 Phys. Rev. A 78 033832
[23] Hradil Z 1997 Phys. Rev. A 55 R1561
[24] Langford N K 2007 Encoding, manipulating and measuring quantum information in optics PhD Thesis School

of Physical Sciences, University of Queensland
[25] Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504
[26] Efron B and Tibshirani R J 1994 An Introduction to the Bootstrap (London: Chapman and Hall)
[27] Christandl M and Renner R 2011 Reliable quantum state tomography arXiv:1108.5329
[28] Blume-Kohout R 2012 Robust error bars for quantum tomography arXiv:1202.5270
[29] Mood A F 1974 Introduction to the Theory of Statistics (New York: McGraw-Hill)
[30] Cirac J I, Ekert A K and Macchiavello C 1999 Phys. Rev. Lett. 82 4344
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[35] Reimpell M 2008 Quantum information and convex optimization PhD Thesis Technische Universität

Braunschweig
[36] Boyd S and Vandenberghe S 2004 Convex Optimization (Cambridge: Cambridge University Press)
[37] Kosut R L, Walmsley I A and Rabitz H 2004 Optimal experiment design for quantum state and process

tomography and Hamiltonian parameter estimation arXiv:quant-ph/0411093
[38] Glancy S, Knill E and Girard M 2012 Gradient-based stopping rules for maximum-likelihood quantum-state

tomography arXiv:1205.4043
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5. Systematic errors of standard
quantum state estimation

Applying the tomography schemes described in section 4.1.1 and 4.1.2 often results
in a density matrix which fails to be physical, i.e., some of its eigenvalues are
negative. Since the eigenvalues are associated with probabilities, and are thus
constrained to lie within the interval [0, 1], this poses a serious conceptual problem.
One might argue that as long as a value of 0 lies within the error, there is no
reason to bother. Nevertheless, the question arises how to deduce entanglement
measures or mixed state fidelities for such states, as they might be mathematically
ill-defined or just meaningless.

Typically, in such a situation, maximum likelihood or least squares fitting algo-
rithms as discussed in section 4.1.3 are applied which guarantee to deliver a phys-
ical result. Recently, various alternative approaches have been proposed which all
restrict the result to lie within the physical regime [281, 282] and even, although
numerically expensive, allow to calculate meaningful confidence and credibility
regions for the estimate itself [263, 283–287]. Furthermore, quantum state tomog-
raphy and the closely related quantum process tomography could even be adopted
to detect systematic errors in the alignment of an experiment [246, 288–292].

In this chapter, several reasons for seemingly unphysical results in tomography
experiments will be discussed. In section 5.1, it will be shown that the origin of
such unphysical results can be manifold, ranging from experimental imperfections
to the orientation of the state with respect to the measurement axis. Then, in
section 5.2, it will be shown that implying additional constraints in quantum state
estimation, such as non-negativity of a quantum state, can introduce systematic
errors. In estimation theory, such errors are well-known under the term bias [80,
293] (see publication P5.1). The size of these errors for derived quantities like,
e.g., the fidelity with respect to a target state is investigated on the example of
a four-qubit GHZ state mixed with white noise. Furthermore, it will be proven
that an estimator which always delivers a state obeying the physicality constraint
cannot be unbiased. In publication P5.1, the way towards an, at least partial,
solution of this problem is presented. There, it is shown that any quantity that
is given by a convex function, like, e.g., many entanglement measures, can be
approximated by a linear function for which meaningful bounds together with
simple to calculate errors can be given. However, as these bounds are derived
with the aid of Hoeffding’s tail inequality [294], they are relatively week.
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5. Systematic errors of standard quantum state estimation

5.1. Origin of unphysical density matrices

It is known that misalignment in an experimental apparatus can cause inconsis-
tencies in the data evaluation process when it remains undetected [288]. Here, by
means of two illustrative examples, it will be shown that there are several reasons
why the states as obtained from a tomographic analysis together with linear in-
version (see section 4.1) can lead to seemingly unphysical results, i.e., states with
at least one negative eigenvalue. More precisely, the misalignment of the exper-
imental apparatus is just one possible reason for such unphysical results and, in
view of the quality of today’s experiments, it is by far not the most relevant one.
Below, a few examples are given, where it is the statistical noise which suffices to
cause unphysical estimates.

As a first example, let us consider Pauli tomography of a pure single-qubit state
|z+〉 and measurements in the standard bases σx, σy, and σz. When performing
measurements in the σz basis, the result is always +1 and thus Tz = 1, indepen-
dently of the measurement statistics! Consequently, the remaining correlations Tx

Xs
Z
\

Xs
X

\

+1

0

-1

+10-1

ρ ³ 0

êZ+\

Figure 5.1.: Experimental Pauli tomography of the single-qubit state |z+〉. For
simplicity, only the x-z plane is shown. The square represents all results that can,
at least in principle, be observed in a experiment. All points inside the gray circle
represent valid quantum states %, i.e, Tr(%) = 1 and % ≥ 0, with the pure states
lying on the rim of the circle. The states represented by the white corners of
the square correspond to states where the physicality condition % ≥ 0 is violated.
Measuring in the σz basis delivers a correlation value of Tz = 1 independently
of the number of repetitions of the experiment. Then, when measuring in the
σx basis afterwards, all resultant states except the one for Tx = 0 lie outside
the physical regime as indicated by the red line in the figure. However, when
the number of measurements in the σx basis is odd, Tx 6= 0. Please note that
this peculiar behavior cannot be overcome by simply improving the measurement
statistics!
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and Ty both have to be 0 because otherwise the state would lie outside the Bloch
sphere. This can easily be seen by expressing the purity of a single-qubit state in
terms of its Bloch vector elements, Tr(%2) = 1

2
(1+T 2

x +T 2
y +T 2

z ) and the fact that
the purity is bounded from above by 1. Now, when measuring in the σx basis,
the correlation Tx can only vanish if the results +1 and −1 are observed with the
same frequency. However, this is not possible if the number of measurements in
the σx basis is odd! For more details, see Fig. 5.1.

The second example to be considered is Pauli tomography of the one parameter
family of four-qubit states p1⊗4

16
+ (1− p)|GHZ4〉〈GHZ4| with p ∈ [0, 1]. The two

extremal cases p = 0 and p = 1 correspond to a GHZ state and to white noise,
respectively. Since all the eigenvalues of white noise are 1

2N
, i.e., it is a full rank

state, at first glance, one would expect, that it is fairly unlikely to observe negative
eigenvalues in a tomographic experiment. This view is further supported by the
fact that the overlap between white noise and any pure state |φ〉 is 〈φ|1⊗N

2N
|φ〉 = 1

2N

which means that, in some sense, white noise can be considered to lie in the mid-
dle of the state space. However, as can be seen in Fig. 5.2, the opposite turns out
to be the case, namely, that on the order of 1000 counts per basis setting (a mea-
surement statistics hardly found in multiqubit experiments) are necessary until
one can expect to observe no negative eigenvalues. This counterintuitive behavior
can be explained by the fact that determining the eigenvalues of a state comes
with some statistical error and that the observed eigenvalues scatter around their
true value. Obviously, the smaller the sample size, the larger the scattering is
expected to be. Hence, for small sample sizes, an eigenvalue < 0 lies within the
scatter of the respective eigenvalue. Thus, it is likely that at least one of the 2N

eigenvalues is negative and it is therefore normal to observe negative eigenvalues
even for white noise.

As explained in section 4.1.3, when determining % by means of linear inver-
sion, one interprets the experimental data from a frequentistic point of view. The
observed relative frequencies are treated as an approximation to the unknown un-
derlying probabilities. In the asymptotic limit, i.e., for infinitely many repetitions
of the experiment, the relative frequencies converge towards the probabilities.
Therefore, one might expect that the probability to observe a state with at least
one negative eigenvalue decreases for better and better statistics. In principle, this
view is correct, as can be seen in Fig. 5.2, for values of p > 0. However, for pure
states (i.e. p = 0) increasing the sample size does not reduce the number of states
with at least one negative eigenvalue, as can be seen in Fig. 5.2. This peculiar
behavior comes from the fact that for pure N -qubit states 2N − 1 eigenvalues are
exactly 0 and thus every infinitesimal perturbation, as induced for example by
statistical noise, will generally lead to at least one negative eigenvalue .

To show that the above described characteristics of the Pauli tomography
scheme together with linear inversion are no artifact of the considered family
of states, the simulation was repeated for a second family of states, p1⊗4

16
+ (1 −

147



5. Systematic errors of standard quantum state estimation

Figure 5.2.: Simulation of Pauli tomography for two one parameter families
a) p1⊗4

16
+ (1 − p)|GHZ4〉〈GHZ4| and b) p1⊗4

16
+ (1 − p)|D(2)

4 〉〈D
(2)
4 | for different

measurement statistics under the assumption of a multinomial distribution of
the counts. As can be seen in both cases, the percentage of states violating the
physicality condition % ≥ 0, is significant for small sample sizes and high purities.

p)|D(2)
4 〉〈D

(2)
4 |. Moreover, it has to be excluded that the orientation of the state

with respect to the measurement axes plays a role. Therefore, the Dicke state
D

(2)
4 was not expressed in the computational basis (|z+〉 and |z−〉) but rotated

such that |z+〉 −→ |x+〉+ |y+〉+ |z+〉 and |z−〉 −→ |x−〉+ |y−〉+ |z−〉. The result
of the simulation can be seen in Fig. 5.2b). As the similarity between Fig. 5.2a)
and Fig. 5.2b) is remarkable, it is save to say that the observed characteristics
can really be attributed to the Pauli tomography scheme together with linear
inversion.

Furthermore, in Fig. 5.2, it can be seen that there is a sharp border between
the regime where the reconstructed state is almost certainly positive-semidefinite
and where it normally fails to be positive-semidefinite. More precisely, this means
that when the number of counts surpasses a certain limit, the reconstructed state
is almost for sure physical. By means of random matrix theory, it can be shown
that the eigenvalues of the reconstructed density matrix follow a Wigner semicircle
distribution. Additionally, random matrix theory even allows to determine the
number of counts where the transition between the physical and the unphysical
regime occurs. A detailed discussion of these findings will be given in a future
publication by Lukas Knips.
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5.2. Constrained state estimation

5.2.1. Flaws of constrained state estimation

In order to ensure physicality of an experimentally determined density matrix,
the fitting algorithms described in section 4.1.3 are commonly applied. However,
at this point, one might ask if this approach really solves the problem of nega-
tive eigenvalues or whether it suffers from other shortcomings? To answer this
question, a simple numerical experiment shall be performed. In detail, the Pauli
tomography scheme is simulated on the example of a test state together with
different algorithms for data post processing, namely, maximum likelihood, least
squares, and, for comparison, linear inversion. As a test state, let us consider a
four-qubit GHZ state that is mixed with white noise

%GHZ(p) = (1− p) |GHZ4 〉〈GHZ4 | +p
1⊗4

16
(5.1)

where the parameter p is chosen such that the fidelity with the ideal GHZ state
is 0.8. The reason to consider a mixed state is to avoid possible boundary effects
from the border of the state space. The numerical experiment consists of 4 steps:

i) Calculate the expectation values pi for all measurement operators Mi.

ii) Toss coins to generate frequencies fi according to a multinomial distribution
with N counts for every measurement basis.

iii) Reconstruct the state with either procedure for data post processing men-
tioned above and, from the result, calculate any quantity of interest.

iv) Repeat steps i)-iv) 500 times

In Fig. 5.3, the result of this numerical experiment for N = 100 with the fidelity
as quantity of interest is shown. Ideally, on average, one would expect that all
three methods return a value of 0.8 for the fidelity. However, as can be clearly
seen, both maximum likelihood and, even worse, least squares fitting lead to a
systematic underestimation of the fidelity. In detail, maximum likelihood delivers
a value of 0.788 ± 0.010 for the fidelity and least squares fitting delivers 0.749 ±
0.010. Even if one takes the widths of the distributions into consideration, the
values are off by one and five standard deviations, respectively. In contrast, the
fidelity value of 0.799 ± 0.012 delivered by linear inversion is in agreement with
the true value of 0.8. From an engineering point of view, one might argue that
underestimating the fidelity is more an inconvenience than an actual problem.
However, much worse, other quantities that are used to detected entanglement,
like the negativity, are overestimated, see Fig. 5.4 which, as a consequence, can
lead to false entanglement detection! In general, this systematic offset depends
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Figure 5.3.: Histogram of the fidelity as obtained from 500 independent simu-
lations of the Pauli tomography scheme together with three different schemes for
data post processing. The average values delivered by maximum likelihood (ML)
and least squares (LS) clearly fluctuate around a value well below the true fidelity
of 0.8. This systematic error called bias is not observed for linear inversion (LIN).

on various parameters like, e.g., the system size, the quantity of interest or the
state itself (for details see publication P5.1). Therefore, a later manual correction
of the offset seems unjustifiable!

In mathematical statistics and in the theory of point estimates, such systemat-
ical offsets are well-known under the term bias [295]. Adopted to quantum state
tomography, an estimator %̂ is called unbiased if it fulfills the relation

E%0(%̂) ≡
∑
f

P%0(f)%̂(f) = %0. (5.2)

Otherwise it is called biased. In order to obtain a more intuitive understanding
of the origin of the bias in quantum state estimation consider Fig. 5.5. In sub-
figure a), possible results of tomography of a pure state before fitting are shown.
Due to statistical noise, many of these results lie outside the physical regime.
However, the center of mass of the whole distribution coincides with the true
(unknown) state. Subfigure b) shows how maximum likelihood or least squares
fitting change the distribution. All states that were positive-semidefinite remain
unchanged whereas all states that were outside the physical regime are mapped
on the border of the state space. Consequently, the center of mass of the whole
distribution changes which, as a result, leads to biased state estimation. Please
note that linear inversion does not suffer from this problem, i.e., it is unbiased
because, according to Eq. 4.12, %lin is a linear function of the frequencies fi and for
all frequencies E(fi) = pi holds. In estimation theory it is common knowledge that
applying additional constraints can lead to biased estimation. In section 5.2.2, it
is proven that by adding the physicality constraint any quantum state estimation
scheme necessarily becomes biased.
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Figure 5.4.: Both maximum likelihood (ML) and least squares (LS) estimation
can lead to a systematic overestimation of the negativity which, in consequence,
may lead to false entanglement detection when analyzing separable states as shown
in b). As discussed in publication P5.1, linearization of the negativity allows to
deduce a lower bound (LBL) such that a valid estimate is obtained.

Figure 5.5.: Enforcing physicality in a quantum state estimation scheme leads
to biased state estimation. Before fitting, the determined states scatter around
the true state % with many of them lying outside the physical regime. Fitting
algorithms based on maximum likelihood or a least squares minimization map
all states with negative eigenvalues on the border of the state space. Effectively,
this leads to a shift of the center of mass of the distribution of states which is
subsequently observed as a bias.
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5.2.2. Biasedness and physicality

As shown in section 5.2.1, for sample sizes typical for multiqubit experiments,
both maximum likelihood and least squares fitting algorithms lead to systematic
deviations for deduced quantities like, e.g., the fidelity with respect to a target
state. Thus, the question arises if such deviations are only a shortcoming of
the respective fitting algorithm and one only needs to find a better algorithm
or whether the observed effects are of a more general nature. In the following,
it will be proven that as soon as the constraint of non-negativity is imposed,
systematic deviations are unavoidable. More precisely, the constraint of non-
negativity automatically leads to biased state estimation. The proof given below
is a more detailed version of the proof presented in publication P5.1.

Figure 5.6.: a) A pure quantum state %1 =| ψ1 〉〈ψ1 | is analyzed by means
of quantum state tomography. Because the experimental measurement time is
finite, also the set of acquired experimental data has to be finite. Therefore, only
a subset of states is accessible, here, marked by crosses. b) Enforcing physicality
and unbiasedness of a reconstruction scheme for %1, leads to mapping all possible
results for tomography of %1 back to %1. c) Now a second pure quantum state
%2 =|ψ2 〉〈ψ2 | is to be analyzed which is non-orthogonal to %1 and, therefore, there
are some results which can be obtained for both states. If now the reconstruction
scheme shall also be unbiased for %2, all possible results would have to be mapped
back to %2. However, this is not possible because some of the results are already
mapped to %1, here marked in red. Therefore, a reconstruction scheme which
always returns a valid density operator cannot be unbiased.

Theorem. A reconstruction scheme for quantum state tomography that always
yields a valid, i.e., non-negative, density operators is biased.

Proof. Let us consider experimental quantum state tomography with, due to
limited measurement time, a finite sample size. For finite sample sizes, the set of
frequencies that can be observed is restricted because all frequencies have to be
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multiples of 1/N where N is a normalization constant that depends on the sample
size (for Pauli tomography N is the number of counts per measurement setting).
In Fig. 5.6a), the possible states that can be obtained in a tomography experiment
by linear inversion for a certain measurement statistic are marked by crosses. Now
consider tomography of a pure pure quantum state %1 =| ψ1 〉〈ψ1 | with a set of
possible data S1 = {f1|P|ψ1〉(f1) > 0}, where P|ψ1〉(f1) is the probability to obtain
data f1. The corresponding states that are obtained from f1 by linear inversion
are marked by the blue crosses in Fig. 5.6b). Let us assume that there exists
a reconstruction scheme %̂ which returns a valid quantum state %̂(f) ≥ 0 for all
possible outcomes f . Furthermore, the reconstruction scheme shall satisfy Eq. 5.2
for |ψ1〉, i.e.,

∑
S1 P|ψ1〉(f1)%̂(f1) = |ψ1〉〈ψ1|. This incoherent sum over all %̂(f1)

can only yield the pure state |ψ1〉〈ψ1|, if and only if, %̂(f1) = |ψ1〉〈ψ1| for all
f1 ∈ S1 as shown in Fig. 5.6b). Hence, the outcome of the reconstruction scheme
is identical for all possible f1 which is a quite pathological situation already. Now
consider a second pure state %2 =| ψ2 〉〈ψ2 | with S2 = {f2|P|ψ2〉(f2) > 0} which
is non-orthogonal with respect to |ψ1〉, i.e., 〈ψ1|ψ2〉 6= 0. For these two states,
there exists a non-empty set of data S12 = {f ′|P|ψ1〉(f

′) ·P|ψ2〉(f
′) > 0} = S1 ∩S2,

which can occur for both states as marked by the red crosses in Fig. 5.6c). Hence,
there exist f2 ∈ S12 with %̂(f2) = |ψ1〉〈ψ1| 6= |ψ2〉〈ψ2|. Consequently, the sum in
Eq. 5.2 now becomes an incoherent mixture of at least two pure states and thus
the equality

∑
S2 P|ψ2〉(f2)%̂(f2) = |ψ2〉〈ψ2| is violated for |ψ2〉. Thus, Eq. 5.2 does

not hold for |ψ2〉 and, consequently, the reconstruction scheme is biased.
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Common tools for obtaining physical density matrices in experimental quantum state tomography are
shown here to cause systematic errors. For example, using maximum likelihood or least squares
optimization to obtain physical estimates for the quantum state, we observe a systematic underestimation
of the fidelity and an overestimation of entanglement. Such strongly biased estimates can be avoided using
linear evaluation of the data or by linearizing measurement operators yielding reliable and computational
simple error bounds.
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Introduction.—Quantum state tomography (QST) [1]
enables us to fully determine the state of a quantum system
and, thereby, to deduce all its properties. As such, QST and
the closely related quantum process tomography (QPT) are
widely used to characterize and to evaluate numerous
experimentally implemented qubit states or their dynamics,
e.g., in ion trap experiments [2,3], photonic systems [4,5],
superconducting circuits [6], or nuclear magnetic resonance
systems [7,8]. The increasing complexity of today’s multi-
qubit or multiqudit quantum systems brought new chal-
lenges but, also, progress. Now, highly efficient methods
allow an even scalable analysis for important subclasses
of states [9,10]. The calculation of errors of QST was
significantly improved, although the errors remain numeri-
cally expensive to evaluate for larger systems [11].
Moreover, QST and QPTwere adopted to detect systematic
errors in the alignment of an experiment itself [12].
A central step in QST is to establish the state from the

acquired experimental data. A direct, linear evaluation
of the data returns, almost for sure, an unphysical density
matrix with negative eigenvalues [13]. Thus, several
schemes have been developed to obtain a physical state
which resembles the observed data as closely as possible
[4,14,15]. From classical statistics, it is known that a
constraint, such as the physicality of a state, can lead to
systematic deviations, called bias, in parameter estimation
for finite statistics [16,17]. However, in quantum tomog-
raphy experiments, this effect has hardly ever been
considered.
In this Letter, we test whether the naive expectation is

met that QST delivers meaningful estimates for physical
quantities. We test this for the two most commonly used
reconstruction schemes—maximum likelihood (ML) [15]

and least squares (LS) [4]—using Monte Carlo simulations.
In detail, we investigate whether or not a possibly occurring
bias of these reconstruction schemes is relevant at all on the
example of some of the most prominent multiqubit quan-
tum states. We find that, due to the constraint of physicality,
both ML and LS return states which deviate systematically
from the true state. Foremost, for small sample sizes, as
they are typical in multiqubit experiments, it leads to
significantly differing estimates for physical quantities as
illustrated for the fidelity with respect to the Greenberger-
Horne-Zeilinger (GHZ) state in Fig. 1 [18]. These devia-
tions depend on the experimental and statistical noise but
are typically larger than commonly deduced errors [19].
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FIG. 1 (color online). Histogram of the fidelity estimates of 500
independent simulations of QST of a noisy four-party GHZ state
for three different reconstruction schemes. The values obtained
via ML (blue) or LS (red) fluctuate around a value that is lower
than the initial fidelity of 80% (dashed line). For comparison, we
also show the result using LIN (green), which does not have this
systematic error called bias.
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We demonstrate that, for linear quantities, one can provide
meaningful confidence regions directly from the raw data
and that it is also possible to compute meaningful lower
(upper) bounds on convex (concave) functions like the
bipartite negativity.
Standard state tomography tools.—The aim of QST is to

find an estimate together with some confidence region for
the initially unknown state ϱ0 of a system via appropriate
measurements on multiple preparations of this state. For
an n-qubit system, the so-called Pauli tomography scheme
consists of measuring in the eigenbases of all 3n possible
combinations of local Pauli operators, each yielding 2n

possible results [4]. In more general terms, in a tomography
protocol, one repeats, for each measurement setting s, the
experiment a certain number of times Ns and obtains csr
times the result r. These numbers then yield the frequencies
fsr ¼ csr=Ns. The probability to observe the outcome r for
setting s is given by Ps

ϱ0ðrÞ ¼ trðϱ0Ms
rÞ. Here, Ms

r labels
the measurement operator corresponding to the result r
when measuring setting s. The probabilities Ps

ϱ0ðrÞwill uni-
quely identify the unknown state ϱ0, if the set of operators
Ms

r spans the space of traceless Hermitian operators.
Provided the data f, i.e., the experimentally determined

frequencies fsr, one requires a method to determine the
estimate ϱ̂≡ ϱ̂ðfÞ of the unknown state ϱ0. Simply
inverting the relations for Ps

ϱ0ðrÞ we obtain

ϱ̂LIN ¼
X
r;s

As
rfsr; ð1Þ

where As
r are determined from the measurement operators

Ms
r [8,20]. Note that there is a canonical construction of As

r
even for the case of an overcomplete set ofMs

r, see SM 1 in
the Supplemental Material (SM) [21]. This reconstruction
of ϱ̂LIN is computationally simple and has become known
as linear inversion (LIN) [23]. In principle, Gaussian
error propagation could also be used here to determine
confidence regions.
Yet, due to unavoidable statistical fluctuations, the

estimate ϱ̂LIN is not a physical density operator for typical
experimental situations; i.e., generally some eigenvalues
are negative. Apart from causing issues related to a physical
interpretation of such a “state”, negative eigenvalues
impedes the evaluation of interesting functions like the
von Neumann entropy, the quantum Fisher information, or
an entanglement measure like the negativity, as these
functions are defined, or meaningful, only for valid, i.e.,
positive semidefinite, quantum states.
For this reason, different methods have been introduced

that mostly follow the paradigm that the reconstructed state
ϱ̂ ¼ argmaxϱ≥0TðϱjfÞ maximizes a target function TðϱjfÞ
within the set of valid density operators. This target
function, thereby, measures how well a density operator
ϱ agrees with the observed data f. Two common choices
are ML [15] where TML ¼ P

r;sf
s
r log½Ps

ϱðrÞ�, and LS [4]
where TLS ¼ −

P
r;s½fsr − Ps

ϱðrÞ�2=Ps
ϱðrÞ. We denote the

respective optima by ϱ̂ML and ϱ̂LS. From these estimates,
one then easily computes any physical quantity of the
observed state, e.g., the fidelities F̂ML ¼ hψ jϱ̂MLjψi and
F̂LS ¼ hψ jϱ̂LSjψi with respect to the target state jψi.
Numerical simulations.—To enable detailed analysis of

the particular features of the respective state reconstruction
algorithm and to exclude influence of systematic exper-
imental errors, we perform Monte Carlo simulations.
For a chosen state ϱ0, the following procedure is used:
(i) Compute the single event probabilities Ps

ϱ0ðrÞ, (ii) toss
coins to get frequencies distributed according to the
multinomial distribution determined by Ps

ϱ0ðrÞ and Ns,
(iii) reconstruct the state with either reconstruction method
and compute the functions of interest, (iv) carry out steps
(ii) and (iii) 500 times. Note that the optimality of the
maximizations for ML and LS in step (iii) is certified by
convex optimization [10,24].
First, we consider the four-qubit GHZ state jGHZ4i ¼

ðj0000i þ j1111iÞ= ffiffiffi
2

p
mixed with white noise, i.e., ϱ0 ¼

pjGHZ4ihGHZ4j þ ð1 − pÞ1=16 where p is chosen such
that the fidelity is hGHZ4jϱ0jGHZ4i ¼ 0.8. This state is used
to simulate the Pauli tomography scheme. Figure 1 shows
a typical histogram of the resulting fidelities for Ns ¼ 100
measurement repetitions, which is a typical value
used for various multiqubit experiments. The fidelities
obtained via LIN reconstruction fluctuate around the
initial value (F̄LIN ¼ 0.799� 0.012). (The values given
there are the mean and the standard deviation obtained
from the 500 reconstructed states). In stark contrast, both
ML (F̄ML ¼ 0.788� 0.010) and even more LS (F̄LS ¼
0.749� 0.010) systematically underestimate the fidelity,
i.e., are strongly biased. Evidently, the fidelities of the
reconstructed states differ bymore than 1 standard deviation
for ML and even more than 5 standard deviations for LS.
The question of how these systematic errors depend on the
parameters of the simulation arises. Let us start by inves-
tigating the dependence on the number of repetitions Ns.
Figure 2(a) shows the mean and the standard deviations
of histograms like the one shown in Fig. 1 for different Ns.
As expected, the systematic errors are more profound for
low numbers of repetitions Ns per setting s and decrease
with increasingNs. Yet, even forNs ¼ 500, a number hardly
used in multiqubit experiments, F̄LS still deviates by 1
standard deviation from the value for the initial state. The
effect is also, by no means, special for the GHZ state but
was equally observed for other prominent four-party states,
here, also, chosen with a fidelity of 80%, see Figs. 2(b)–2(d)
and the SM [21].
The systematic deviations also vary with the number of

qubits or the purity of the initial state. Figure 3(a) shows the
respective dependencies of the fidelity for n-qubit states
ϱ0 ¼ pjGHZnihGHZnj þ ð1 − pÞ1=2n (for Ns ¼ 100).
Here, a significant increase of the bias with the number
of qubits is observed especially for LS. Also, when varying
the purity or fidelity with the GHZ state, respectively,
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we observe a large deviation for ML and LS estimators
[Fig. 3(b)]. If the initial fidelity is very low, the effect is
negligible, but large fidelity values suffer from stronger
deviations, especially for LS.
The reliability of the estimates ϱ̂ or of physical quantities

deduced thereof are quantified by the size of confidence
regions which commonly are deduced by bootstrapping
methods [19]. Starting either from the estimate ϱ̂EST
(EST ∈ fML;LSg) or the observed data set f, this error
is typically accessed by Monte Carlo sampling: One
repeatedly simulates data fðiÞ according to the state ϱEST
or f together with a reasonable noise model for the
respective experiment and reconstructs the state ϱ̂ðfðiÞÞ.
From the resulting empirical distribution, one then reports
the standard deviation (or a region including, say, 68%
of the simulated states) for the matrix elements or for
quantities of interest [19], see also SM 3. However, the
problem with such error regions is that they are typically
too small since they reflect only statistical fluctuations of

the biased estimate, which can easily be smaller than the
systematic error [26].
In summary, we observe systematic errors, which depend

on the state reconstruction method and the strength of the
statistical fluctuations of the count rates. Any manual
correction of the bias and the statistical fluctuations [17]
seems out of reach, since the effect depends on the
unknown initial state which cannot be calculated from
the observed data [16]. Let us emphasize that in most cases
the initial value differs by more than the statistical error
determined via bootstrapping (cf. SM 3 [21]).
Biased and unbiased estimators.—The systematic offset

discussed above is well known in the theory of point
estimates [26]. Expressed for QST, an estimator ϱ̂ is called
unbiased if its fluctuations are centered around the true
mean, such that, for its expectation value,

Eϱ0ðϱ̂Þ≡
X
f

Pϱ0ðfÞϱ̂ðfÞ ¼ ϱ0 ð2Þ

holds for all possible states ϱ0 with Pϱ0ðfÞ the probability
to observe the data f. An estimator that violates Eq. (2) is
called biased. Similar definitions hold, for instance, for
fidelity estimators, Eϱ0ðF̂Þ ¼ hψ jϱ0jψi≡ F0. This termi-
nology is motivated by the form of the mean squared error,
which decomposes, for example, for the fidelity into

Eϱ0 ½ðF̂ − F0Þ2� ¼ Vϱ0ðF̂Þ þ ½Eϱ0ðF̂Þ − F0�2; ð3Þ

where VðF̂Þ≡ EðF̂2Þ − EðF̂Þ2 denotes the variance.
Equation (3) consists of two conceptually different parts.
The first is a statistical term quantifying the fluctuations of
the estimator F̂ itself. The second, purely systematic term,
is called bias and vanishes for unbiased estimators [27].
Note that, since the expectation values of the frequencies
are the probabilities, Eϱ0ðfsrÞ ¼ Ps

ϱ0ðrÞ, and because ϱ̂LIN as
given by Eq. (1) is linear in fsr, the determination of a
quantum state using LIN is unbiased. However, as shown
below, for QST, the bias is inherent to estimators con-
strained to giving only physical answers.
Proposition.—A reconstruction scheme for QST that

always yields valid density operators is biased.
Proof.—For a tomography experiment on the state jψ ii

with finite measurement time, there is a set of possible data
Si ¼ ffijPjψ iiðfiÞ > 0g, with Pjψ iiðfiÞ the probability to
obtain data fi when observing state jψ ii.
Consider two pure nonorthogonal states jψ1i and jψ2i

(hψ1jψ2i ≠ 0). For these two states, there exists a nonempty
set of data S12 ¼ ff0jPjψ1iðf0Þ · Pjψ2iðf0Þ > 0g ¼ S1∩S2,
which can occur for both states.
Now, let us assume that a reconstruction scheme ϱ̂

provides a valid quantum state ϱ̂ðfÞ for all possible
outcomes f and that Eq. (2) is satisfied for jψ1i, i.e.,P

S1
Pjψ1iðf1Þϱ̂ðf1Þ ¼ jψ1ihψ1j. This incoherent sum over

all ϱ̂ðf1Þ can be equal to the pure state jψ1ihψ1j only for the
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(already pathological) case that ϱ̂ðf1Þ ¼ jψ1ihψ1j for all
f1 ∈ S1. This means that the outcome of the reconstruction
is fixed for all f1 including all data f0 ∈ S12. As these
data also occur for state jψ2i, there exist f2 ∈ S12 with
ϱ̂ðf2Þ ¼ jψ1ihψ1j ≠ jψ2ihψ2j. Thus, in Eq. (2), the sum
over all reconstructed states now is an incoherent
mixture of at least two pure states, and the conditionP

S2
Pjψ2iðf2Þϱ̂ðf2Þ ¼ jψ2ihψ2j is violated for jψ2i. Hence,

ϱ̂ does not obey Eq. (2) for jψ2i and is, therefore,
biased [28].
This leaves us with the tradeoff: Should one necessarily

use an algorithm like ML or LS to obtain a valid quantum
state but suffer from a bias, or should one use LIN which
is unbiased but typically delivers an unphysical result?
In the following, we propose a scheme using linearized
operators to provide a valid, lower or upper bound and
an easily computable confidence region for many quantities
of interest.
Parameter estimation by linear evaluation.—Many rel-

evant functions are either convex, like most entanglement
measures or the quantum Fisher information, or concave,
like the von Neumann entropy. Thus, these operators can be
linearized around some properly chosen state in order to
obtain a reliable lower (upper) bound. Note that, typically,
a lower bound on an entanglement measure is often suited
for evaluating experimental states, whereas an upper bound
does not give much additional information.
Recall that a differentiable function gðxÞ is convex if

gðxÞ ≥ gðx0Þ þ∇gðx0ÞTðx − x0Þ holds for all x; x0. In our
case, we are interested in a function gðxÞ ¼ g½ϱðxÞ� where x
is a variable to parametrize a quantum state ϱ in a linear
way. From convexity, it follows that it is possible to find an
operator L, such that

trðϱ0LÞ ≤ gðϱ0Þ ð4Þ
holds for all ϱ0 (similarly an upper bound is obtained for
concave functions). This operator L can be determined
from the derivatives of gðxÞ with respect to x at a suitable
point x0, from the Legendre transformation [29], or directly
inferred from the definition of the function gðxÞ [30].
A detailed discussion is given in SM 5 [21].
For this bound, a confidence region, i.e., the error region

for the frequentistic approach, can be calculated. For
example, a one-sided confidence region of level γ can
be described by a function Ĉ on the data f such that
Probϱ0 ½Ĉ ≤ gðϱ0Þ� ≥ γ holds for all ϱ0 [26]. According to
Hoeffding’s tail inequality [31] and a given decomposition
of L ¼ P

lsrMs
r into the measurement operators Ms

r, a
confidence region, then, is

Ĉ ¼ trðϱ̂LINLÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2j logð1 − γÞj

2Ns

s
; ð5Þ

where h2 is given by h2 ¼ P
sðlsmax − lsminÞ2, and lsmax =min

denotes the respective extrema of lsr over r for each

setting s. Although not optimal, such error regions are
easy to evaluate and valid without extra assumptions.
Since we directly compute a confidence region on gðxÞ,
we obtain, generally, a tighter result than what would be
obtained from a “smallest” confidence region on density
operators which tend to drastically overestimate the error
(see SM 4 [21] for an example).
In the following, we show how to use a linearized

operator on the example of the bipartite negativity [30].
(For the quantum Fisher information [32] and additional
discussion, see SM 5 [21].) A lower bound on the
negativity NðϱABÞ of a bipartite state ϱAB is given by
NðϱABÞ ≥ trðϱABLÞ for any L satisfying 1 ≥ LTA ≥ 0,
where the superscript TA denotes partial transposition
[33] with respect to party A. This bound is tight if L is
the projector on the negative eigenspace of ϱTA

AB. Using this
linear expression, one can directly compute the lower
bound on the negativity and, by using Eq. (5), the one-
sided confidence region. Any choice of L is, in principle,
valid, but, for a good performance, L should be chosen
according to the experimental situation. We assume, how-
ever, no prior knowledge and rather estimate L independent
of the tomographic data by the projection on the negative
eigenspace of ϱ̂TA

ML deduced from an additional tomography,
again withNs ¼ 100 counts per setting. One can, of course,
also start with an educated guess of L motivated by the
target state one wants to prepare.
Figure 4 shows the distributions of the negativity

between qubits A ¼ f1; 2g and B ¼ f3; 4g for the four-
qubit GHZ state and for the separable four-qubit state
jψ sepi ∝ ðj0i þ jþiÞ⊗4, with jþi∝ ðj0iþ j1iÞ, each mixed
with white noise such that the fidelity with the respective
pure state is 80%. In both cases, we observe that ML and
LS overestimate the amount of entanglement. Even if no
entanglement is present, ML and LS clearly indicate
entanglement. In contrast, the lower bound of the negativity
does not indicate spurious entanglement. As negativity
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FIG. 4 (color online). Lower bound obtained by linearizing
bipartite negativity (LBL) for the GHZ (left) and a four-qubit
product state (right) both mixed with white noise resulting in 80%
fidelity. The ML and LS reconstruction leads to a systematic
overestimation of the negativity, while the lower bound yields a
valid estimate.
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gives lower bounds of other entanglement measures, those
would overestimate entanglement of a state, too [34].
Conclusion.—Any state reconstruction algorithm enforc-

ing physicality of the result suffers from systematic devia-
tions. We have shown that, for the commonly used methods,
this bias is significant for data sizes typical in current
experiments. Quantities that are computed from such a point
estimate can easily inherit this bias and lead to erroneous
conclusions, as shown here on the examples of the fidelity,
the negativity, and the Fisher information. Equivalent
statements can be inferred for process tomography.
Recently, methods have been used to obtain confidence

regions via the likelihood function. However, these are
notoriously difficult to compute. The linearization method
developed here yields a well defined confidence region
for interesting quantities. This quantity is easily calculable,
yet pessimistic. The quest is, thus, open for finding tighter,
but still computationally accessible, confidence regions.
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SM1: QUANTUM STATE RECONSTRUCTION
USING LINEAR INVERSION

In [4] it is explained how to obtain the estimate %̂LIN
for an n-qubit state from the observed frequencies of a
complete set of projection measurements, i.e. 4n results.
Yet, the scheme described there is more general and can
be used for any (over)complete set of projection measure-
ments.

In the standard Pauli basis {σ0, σx, σyσz} the density
matrix of the state % is given by

% =
1

2n

∑
µ

TµΓµ (S1)

where µ = 1...4n enumerates all possible n-fold tensor
products of Pauli matrices Γ1 = σ0 ⊗ σ0 ⊗ ... ⊗ σ0,
Γ2 = σ0 ⊗ σ0 ⊗ ... ⊗ σx, etc. and with correlations
Tµ = tr(%Γµ). To simplify our notation we will use the
following mapping for a setting s with a respective out-
come r: (r, s) −→ ν = 2n(s−1) + r − 1, hence for the
projectors, Ms

r −→ Mν , and for the Asr −→ Aν , etc.
Then the probabilities to observe a result r for setting s,
or ν respectively, are given by

Pν = tr(%Mν) =
1

2n

∑
µ

tr(MνΓµ)Tµ. (S2)

Introducing the matrix B̂ with elements

Bν,µ =
1

2n
tr(MνΓµ) (S3)

Eq. (S2) simplifies to

~P = B̂ ~T . (S4)

Inverting Eq. (S4), the correlations can be obtained from
the probabilities Pν , i.e., Tµ =

∑
ν(B̂−1)µ,νPν . Note that

this is possible for any set of measurement operators. In
case of a tomographically overcomplete set, the inverse
B̂−1 has to be replaced by the pseudo inverse B̂−1 −→

B+ = (B†B)−1B†. Reinserting Tµ one obtains

% =
1

2n

∑
ν,µ

(B̂−1)µ,νΓµPν . (S5)

For finite data sets, the Pν are replaced by the frequencies
fν and with

Aν =
1

2n

∑
µ

(B̂−1)µ,νΓµ (S6)

Eq. (1) is obtained.

SM2: BIAS FOR OTHER PROMINENT STATES

The occurrence of a bias for fidelity estimation based
on ML and LS state reconstruction is by no means a
special feature of the GHZ state. In Fig. S1 we show
some further examples of the corresponding dependencies
of the bias on the number of measurements per setting
Ns for the W and the fully separable state |ψ〉 ∝ (|0〉 +
|+〉)⊗4. For all these pure states we assume that they
are mixed with white noise for an overall initial fidelity
of 80%, so that the states are not at the border of the
state space.
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FIG. S1. The behavior of ML, LS and LIN depending on
the number of events Ns per setting for different noisy initial
states %0.

Furthermore we observed that the fidelity values as
inferred via LS are systematically lower than those ob-
tained using ML, see Fig. S2.
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FIG. S2. Here we show the differences of the respective fidelity
estimates evaluated for each single simulated tomography ex-
periment as shown in Fig. 1 of the main text. It shows that
the respective ML or LS estimate, with one rare exception,
is always lower than the LIN estimate. Comparing ML and
LS (gray) shows that not only on average but also for every
single data set LS delivers a smaller fidelity value than ML.

SM3: BOOTSTRAPPING

As already mentioned in the main text, in many pub-
lications where QST is performed the standard error bar
is calculated by bootstrapping based on Monte Carlo
methods. One can here distinguish between paramet-
ric bootstrapping, where f (i) are sampled according to
P̂ s(r) = tr(%̂(fobs)M

s
r ), and non-parametric bootstrap-

ping, where P̂ s(r) = fobs is used instead.

We consider again the four-qubit GHZ state of 80%
fidelity and Ns = 100. Interpreting the simulations of
Fig. 1 as Monte-Carlo simulations from the parametric
bootstrap with P̂ s(r) = tr(%0M

s
r ) we have already seen

that ML and LS yield fidelity estimates below the actual
value. If one uses now one of these data sets fobs as a
seed to generate new samples f (i) the fidelity decreases
further. As shown in Fig. S3 this happens in particular
for parametric bootstrapping (0.777± 0.011 for ML and
0.700±0.012 for LS) while non-parametric bootstrapping
(0.780± 0.011 for ML and 0.714± 0.012 for LS) weakens
this effect. However, in this context, one is interested in
fact in the standard deviation of the simulated distribu-
tion. In our simulations it is somewhat smaller than the
distribution of linearly evaluated fidelities. This means,
the biasedness of ML and LS methods leads to a false
estimate of the error, too.

SM4: CONFIDENCE REGIONS FOR STATES
VS. SCALAR QUANTITIES

Let us now comment on confidence regions (CR) for
density operators and CR on parameter functions Q.
Having a (tractable) method to compute CR for states
Ĉ%(f) [11], one could think that this region of states also
provides good CR for the parameter functions Q, if one
manages to evaluate the minimal and maximal values of
Q(%) for all % ∈ Ĉ%(f). However, such CR are typically
much worse than CR evaluated for Q directly, the reason
being the large freedom in how to build up a CR. Let us

give the following illustrative example, see also Fig. S4:

Let us consider the task to obtain a CR for the two
mean values ~µ = (µ1, µ2) of two independent Gaussian
experiments, where the firstN samples xi are drawn from
N (µ1, σ

2) while the remaining N instances yi originate
from N (µ2, σ

2), both with the same known variances. If
one is interested in an 68% CR for both mean values ~µ
then both possible recipes

Ĉ(1) = {~µ : ‖~µ− (x̄, ȳ)‖ ≤ 1.52σ/
√
N}, (S7)

Ĉ(2) = [x̄− σ/
√
N, x̄+ σ/

√
N ]× (−∞,∞) (S8)

with x̄ = 1
N

∑
i xi and similar for ȳ are valid 68% CR.

However, while Ĉ(1) yields the smallest area for the CR, it
gives a much larger confidence region for Q(~µ) = µ1 than
if we would directly use Ĉ(2), which in fact is the smallest
one for µ1. Note that this effect increases roughly with√

dim if one adds further parameters in the considered
Gaussian example. Therefore we see that “errors” asso-
ciated with CR on the density operator are not the best
choice if one is interested only on a few key properties of
the state.
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FIG. S3. Error bar computation for the fidelity of the four-
qubit GHZ state via Monte-Carlo simulation using either
parametric or non-parametric bootstrapping with the data
from Fig. 1. For each of these 500 observations fobs, 100 new
data sets f (i) were generated and reconstructed in order to
deduce the mean and standard deviation as an error bar for
the fidelity. The histograms denoted by “after BS” show the
distributions of these means together with an averaged error
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FIG. S4. Which confidence region is the smallest? If one
is interested in both mean values ~µ = (µ1, µ2) then clearly
the left one represents the smallest one, but if Q(~µ) = µ1 is
chosen, then the CR obtained by projection onto theµ1-axis
is much larger for the disc-shaped area.

SM5: BOUNDS ON CONVEX/CONCAVE
FUNCTIONS

As mentioned in the main text, one can directly bound
convex (or concave) functions g(x) by linear ones using
an operator L

tr(%0L) ≤ g(%0). (S9)

Here, we want to explain in detail how the operator
L can be determined from the derivatives of g[%(x)].
Therefore, we parametrize the density operator %(x) =
11/ dim +

∑
i xiSi via an orthonormal basis Si of Her-

mitian traceless operators. A possible choice for the
Si are all normalized traceless tensor products of the
Pauli matrices and the identity. Since we employ an
affine parametrization, the function g(x) = g[%(x)] is con-
vex. Direct calculation shows that choosing the operator
L[%(x′)] = l011 +

∑
i liSi as

l0 = g[%guess(x
′)]−

∑
i

x′i
∂

∂xi
g[%guess(x

′)] (S10)

li =
∂

∂xi
g[%guess(x

′)] (S11)

gives due to the convexity condition g(x) ≥ g(x′) +
∇g(x′)T (x − x′) a lower bound as in Eq. (S9). Here,
L[%(x′)] is computed on a “guess” x′, i.e., %guess(x

′) of
the true state %0. Recall that while the guess %guess must
be a valid state the lower bound tr(%0L) is well-defined
also for nonphysical density operators.

As an example how to apply this linearization, let
us consider the quantum Fisher information f(x) =
F (%,H), which measures the suitability of a state % to
determine the parameter θ in an evolution U(θ,H) =

LBLIN
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FIG. S5. Full analysis of a Pauli QST scheme with Ns = 100
on four qubits in order to deduce the quantum Fisher infor-
mation with respect to H = Jz. As the true underlying state
we assume again a noisy four-party GHZ state. We observe
that the quantum Fisher information is underestimated from
both ML and LS, while the lower bound deduced from LIN is
fine.

e−iθH . More explicitly the formulae are given by

f(x) = 2
∑
jk

(λj − λk)2

λj + λk
HjkHkj , (S12)

∂

∂xi
f(x) = 4

∑
jkl

λjλk + λjλl + λkλl − 3λ2j
(λj + λk)(λj + λl)

HjkSi,klHlj

(S13)

where {λi, |ψi〉} denotes the eigenspectrum of %(x),
Hjk = 〈ψj |H|ψk〉 and Si,kl = 〈ψk|Si|ψl〉. In order to
compute the derivative of the Fisher information one
can employ the alternative form, as given for instance
in Ref. [32],

F (%,H) = tr[(H%2 + %2H − 2%H%)J−1% (H)], (S14)

J−1% (H) =

∫ ∞
0

dt e−t/2%He−t/2%. (S15)

such that the derivative can be computed via the help of
matrix derivatives [22].

Now let us imagine that we want to determine the
quantum Fisher information of a four-qubit state with
respect to H = Jz, while our true underlying state %0
is once more the noisy GHZ state of 80% fidelity. Fig-
ure S5 shows the full simulation of a Pauli tomography
experiment with Ns = 100 together with the standard
error analysis using parametric or non-parametric boot-
strapping. As with the other examples, we observe a sys-
tematic discrepancy between the results of standard QST
tools and the true value. In this case, though the quan-
tum Fisher information is typically larger for stronger
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entangled states, ML or LS underestimate the true ca-
pabilities of the state. However, if we use the described
method for LIN (with an in this case optimized operator
L) the lower bound via LIN is fine.

For completeness, we also give the respective deriva-
tives for further convex functions of interest like the pu-
rity g(x) = tr(%2)

∂

∂xi
g(x) = 2 tr[Si%(x)] (S16)

and correspondingly for the von Neumann entropy

g(x) = − tr(% log %)

∂

∂xi
g(x) = − tr[Si(log %(x))]. (S17)
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6. Conclusions

In the present thesis, highly efficient novel tools for entanglement detection and
the tomographic analysis of genuinely multipartite entangled quantum states were
presented. These tools were experimentally implemented on the example of vari-
ous multiqubit states with up to six photons. The focus of this research work was
twofold: First, the emphasis was on the development and application of experi-
mentally friendly entanglement indicators which allow for conclusive statements
about the presence of entanglement from possibly few measurements. In this con-
text, it was also investigated which types of correlations are actually necessary
for genuine N -partite entanglement. Second, new approaches for partial quantum
state tomography were studied. For the experimental implementation of these
schemes, and in order to compare them against full state tomography, it was nec-
essary to further increase the pump power of the photon source and to improve
the efficiency of the whole optical setup.

Many entanglement criteria that are state independent require knowledge of the
complete density matrix and are therefore experimentally costly. In contrast, other
criteria, like entanglement witnesses, are experimentally far more friendly in terms
of the measurement effort but dependent on the state to be investigated. Ideally,
an entangled criterion should be, at the same time, state independent and require
only few measurements. In this work, two schemes for fast entanglement detection
were presented that are both state independent and do not require a full state
tomography [52, 53] (see publications P3.1 and P3.2). The first scheme is designed
for pure two-qubit states and consists of two steps. In the first step, the local
Schmidt bases are determined and the state is (up to a phase) transformed into the
Schmidt basis. Then, in the second step, entanglement can easily be verified with
a simple criterion [51] which requires at maximum three correlation measurements.
The second scheme is based on the principle of correlation complementarity [63]
and can also be applied for states with more than two qubits. It can be expressed
in a compact form called decision tree which optimally reflects the adaptivity of
the scheme, i.e., the result of the previous correlation measurement determines
which is the next measurement to be carried out.

The approach to use correlation measurements to detect entanglement was also
applied to a particular three-qubit state [54] (see publication P3.3). Generally,
entanglement criteria that are used to verify N -partite genuine entanglement de-
pend on N -partite correlations [51, 60, 64–71]. However, interestingly, quan-
tum mechanics allows for states that are genuinely N -partite entangled without
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6. Conclusions

N -partite correlations [74]. In this work, a general scheme was presented to con-
struct quantum states with vanishing N -partite correlations for an odd number
of qubits. In order to characterize such remarkable states, two experiments aim-
ing at the preparation of symmetric Dicke states with four and six qubits were
carried out. The target states could then be obtained by performing appropriate
projection measurements [127].

In case one wants to gain more information about a quantum state than just
whether it is entangled or not but full tomography is unwanted or not feasible, the
application of a partial tomography scheme is the method of choice. In the present
work, two novel schemes for partial tomography schemes, compressed sensing and
permutationally invariant tomography, were discussed. They were both experi-
mentally implemented to characterize symmetric Dicke states with four and six
photons [56, 58] (see publications P4.1 and P4.2). In these experiments, it could
be shown that full tomography and permutationally invariant tomography deliver
compatible results. For the analysis of six qubits, it could be shown that the ex-
perimental effort in comparison to full tomography could be reduced considerably.
In detail, the effort could be reduced by a factor of 3 for compressed sensing, by a
factor of 25 for permutationally invariant tomography, and by a factor of 50 for a
combination of the two methods. In this context, it is also highly important that
one has efficient algorithms for data analysis at hand [57] (see P4.3). Therefore,
a novel algorithm based on convex optimization was applied.

For every experiment, a careful analysis of all the errors that might influence
the final result is required. In this work, it was investigated whether the standard
approach for data post processing itself can lead to systematic errors [59] (see
publication P5.1). There, it was observed that for the measurement statistics
that are typical for today’s multiqubit experiments, data analysis itself can lead
to a considerably biased estimate. More precisely, it could be shown that this bias
can be attributed to restricting the final result to lie within the physical regime.

As a closing remark, a short comment on possible further research based on
this work and on the obstacles that have to be surmounted seems appropriate.
In general, the preparation of photonic multiqubit states is still a great challenge
due to several reasons. First, as deterministic single photon sources are still under
development [44–48], one has to resort to the process of spontaneous parametric
downconversion. One of the largest drawbacks is that for downconversion sources,
there is always a nonvanishing probability to generate more photons than intended
which leads to higher order noise and consequently to a decreased quality of the
prepared states [58, 296]. Although the higher order noise cannot be completely
eliminated, one possibility to at least reduce its strength would be to decrease the
energy per pump pulse and, at the same time, to increase the repetition rate. This
could, for example, be realized by utilizing a shorter enhancement cavity such that
every pulse inside the cavity has to circulate n times before it interferes with the
next pulse coming from the laser. A major problem of multiphoton experiments is
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that they normally suffer from low count rates. In order to overcome this problem,
a whole bundle of measures is required. For example, by Huang et al. [33], it was
observed that replacing the lithium-triborate crystal used for second harmonic
generation with a bismuth-triborate crystal led to a better collection efficiency of
the down conversion photons and thus to higher count rates. Another drawback is
the limited photon detection efficiency of state of the art silicon based avalanche
photo diodes with a detection efficiency of around 60% in the near infrared. Since
most commercially available single photon counter are trimmed towards a low
dark count rate, it is, at least in principle, possible to increase the detection
efficiency at the price of more dark counts. However, if the dark count rate
becomes to high, this can also reduce the quality of the prepared state. Here, a
possible counter measure would be to use shorter time windows for the coincidence
logic. Alternatively, one could also utilize the recently developed superconducting
bolometric detectors which achieve a detection efficiency close to 100% and are also
intrinsically free of dark counts [297, 298]. However, the experimental overhead
of operating superconducting circuits in comparison to semiconductor devices like
avalanche photo diodes has to be taken into account. All in all, a combination
of these measures should hopefully pave the way to increase the photon number
to at least eight and to prepare states with a high fidelity. Apart from increasing
the number of photons, an alternative approach to increase the size of the Hilbert
space is to encode several qubits on the same photon using different degrees of
freedom like, e.g., polarization and momentum using interferometers [299, 300].
For this purpose, it might also be worth considering to use integrated optical
circuits which have been extensively discussed in the context of boson sampling
[301–305] to implement interferometers.

At the time of writing, it is not yet clear which one of the different approaches
for the realization of a quantum computer will prevail. For both ion traps and
superconducting qubits, two-qubit gates with a process fidelity of close to 100%
can be implemented now [28, 306]. Hence, there is good reason to assume that
for stationary quantum computing, one of these approaches will turn out to be
the most favorable one. For communication tasks however, photons are generally
considered as the best approach. Thus, most likely, a future quantum network
will have a hybrid structure with superconducting qubits or trapped ions for sta-
tionary quantum computing and data storage, and photons for communication
tasks between the different nodes of the network.
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A. Appendix

A.1. Additional remarks on convex optimization

The convex optimization algorithm developed for this thesis requires the knowl-
edge of both the first derivatives and the Hessian matrix [57, 250]. Therefore,
in the following, these quantities shall be derived for the target functions (see
Eq. 4.15 and 4.16)

FMLE
T = −

∑
λ

fλ log(Tr(%|φλ〉〈φλ|)) (A.1)

and

FLS
T =

∑
λ

1

wλ
[fλ − Tr(%|φλ〉〈φλ|)]2 (A.2)

with experimentally observed frequencies fλ when projecting on |φλ〉 and weights
1
wλ

. For simplicity, the shorthand notations

Φλ = |φλ〉〈φλ| (A.3)

pλ = Tr[%Φλ] (A.4)

will be used. The state % is parametrized as

%(~x) =
1

2N
1⊗N +

∑
i

xiSi (A.5)

where x ∈ R4N−1 and {Si} (together with 1
2n

1⊗N) is some appropriate operator

basis like, e.g, the Pauli basis. As it will be necessary below, the derivative ∂pλ
∂xi

,
is stated explicitly

∂pλ
∂xi

=
∂Tr[%Φλ]

∂xi
= Tr[SiΦλ]. (A.6)

It can easily be determined from Eq. A.4.

A.1.1. Maximum likelihood

First, the gradient of FMLE
T for the above chosen parametrization of % is deter-

mined. For a better readability, Eq. A.1 is rewritten as

FMLE
T = −

∑
λ

fλ log(pλ). (A.7)
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Direct calculation shows that the gradient
∂FMLE

t

∂xi
is given by

∂FMLE
t

∂xi
= −

∑
λ

fλ
pλ

∂pλ
∂xi

= −
∑
λ

fλ
pλ

Tr[SiΦλ]. (A.8)

Using the result from Eq. A.8, the Hessian matrix can directly be calculated as

∂2FMLE
t

∂xi∂xj
=

∑
λ

fλ
p2λ

Tr[SiΦλ]Tr[BjΦλ]. (A.9)

A.1.2. Least squares

For the following derivation, the weights 1
wλ

are set to 1
pλ

which is the common

choice for photonic experiments [211]. Then Eq. A.2 can be written as

FLS
t =

∑
λ

(pλ − fλ)2

pλ
. (A.10)

The gradient of FLS
t can be inferred as

∂FLS
t

∂xi
=

∑
λ

(
2(pλ − fλ)

pλ

∂pλ
∂xi
− (pλ − fλ)2

p2λ

∂pλ
∂xi

)
(A.11)

=
∑
λ

(
2− (pλ − fλ)

pλ

)
(pλ − fλ)

pλ

∂pλ
∂xi

(A.12)

=
∑
λ

(
2− 1 +

fλ
pλ

)(
1− fλ

pλ

)
∂pλ
∂xi

(A.13)

=
∑
λ

(
1 +

fλ
pλ

)(
1− fλ

pλ

)
∂pλ
∂xi

(A.14)

=
∑
λ

(
1− f 2

λ

p2λ
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(A.17)

Accordingly, the Hessian is determined as

∂2FLS
t

∂xi∂xj
=

∑
λ

2

(
f 2
λ

p3λ

)
Tr[SiΦλ]Tr[SjΦλ]. (A.18)
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A.1.3. Barrier term

The gradient and the Hessian matrix does not only have to be known for the
respective target function but also for the barrier term (see Eq. 4.22)

FB = − log[det(%)]. (A.19)

From a direct calculation, it follows that [57, 250]

∂FB
∂xi

= −Tr[%−1Si] (A.20)

∂2FB
∂xi∂xj

= Tr[%−1Si%
−1Bj]. (A.21)

In order to obtain the gradient and the Hessian of the modified target function
F̃T (%), i.e., the target function plus the barrier term, one simply has to add the
respective expressions of the original target function and the barrier term.

A.1.4. Implementation

The convex optimization algorithm described in chapter 4.1.3 was coded in C++
because the programming language is known for its high numerical performance.
Additionally, the program was parallelized using openMP® to benefit from the
multicore architecture of today’s CPUs. Basic linear algebra operations like, e.g.,
determining the inverse of a matrix, were carried out using highly optimized nu-
merical libraries like Armadillo or GotoBLAS. Since many operations had to be
repeated in an identical way at every step of the algorithm, the corresponding
results, were stored in lookuptables, see e.g. Eq. A.6. The program was compiled
with the g++ compiler from the gnu compiler collection using the optimization
level -O3. On a standard desktop PC with an AMD PhenomnTM II X4 840 quad
core processor with 8GB memory, reconstruction of a four-qubit state took only a
few seconds and a six-qubit state could be reconstructed in about seven minutes.

A.2. Measurement settings for PI tomography

In this appendix, the measurement settings used for PI tomography of four- and
six-qubit Dicke states are given. As explained in chapter 4.2.2, the measurement
operators for PI tomography are of the form A⊗Nj with Aj = ~nj ·~σ = nxjσx+nyjσx+
nzjσz and | ~nj| = 1. Experimentally, as described in detail in section 2.3.2, the
operators Aj are measured with a polarization analysis consisting of a HWP(Θ1),
a QWP(Θ2) and a PBS. The angles given in Tab. A.1-A.3 were used in order to
measure the corresponding Aj’s (expressed in terms of the respective nxj , n

y
j and

nzj) in publications P4.1 and P4.2. Please note that the angles are not unique,
i.e., generally, the same measurement setting can be realized with several different
choices of Θ1 and Θ2.
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j nxj nyj nzj HWP(Θ1) HWP(Θ2)

1 0.3946 0.9173 −0.0530 7.78 ◦ 56.73 ◦

2 0.6843 −0.5344 −0.4961 39.56 ◦ 106.20 ◦

3 −0.4307 −0.2082 −0.8782 54.53 ◦ 96.01 ◦

4 0.9903 −0.1388 0.0001 24.49 ◦ 93.99 ◦

5 −0.0455 0.2979 −0.9535 5.02 ◦ 98.67 ◦

6 −0.6880 0.7156 −0.1207 53.59 ◦ 67.15 ◦

7 0.1821 −0.9542 −0.2372 53.77 ◦ 126.30 ◦

8 0.8563 0.3493 0.3803 11.40 ◦ 79.78 ◦

9 0.6330 0.0326 −0.7734 34.71 ◦ 89.06 ◦

10 −0.3226 −0.7620 −0.5615 64.88 ◦ 114.80 ◦

11 0.4119 0.6373 −0.6513 27.03 ◦ 70.21 ◦

12 −0.6787 0.3455 −0.6481 51.53 ◦ 79.89 ◦

13 −0.1934 0.8361 −0.5134 35.98 ◦ 61.63 ◦

14 0.8639 0.4393 −0.2465 19.97 ◦ 76.97 ◦

15 −0.1918 0.4158 0.8890 80.81 ◦ 77.71 ◦

Table A.1.: Optimized measurement settings and angle settings of the cor-
responding wave plates in the polarization analyses for PI tomography of the
state |D(2)

4 〉 .

j nxj nyj nzj HWP(Θ1) HWP(Θ2)

1 −0.8096 −0.4635 0.3601 80.40 ◦ 103.8 ◦

2 −0.6506 −0.2752 0.7078 83.35 ◦ 97.99 ◦

3 −0.6676 0.4786 0.5703 39.78 ◦ 104.30 ◦

4 0.3366 0.4390 −0.8330 32.99 ◦ 76.98 ◦

5 0.5555 −0.4444 0.7028 16.18 ◦ 103.20 ◦

6 0.2141 −0.8069 0.5505 18.76 ◦ 116.90 ◦

7 −0.2604 −0.9640 0.0546 89.10 ◦ 127.30 ◦

8 −0.6521 −0.5568 0.5145 85.53 ◦ 106.90 ◦

9 0.0099 −0.1144 −0.9934 46.50 ◦ 93.28 ◦

10 −0.9204 0.2377 0.3104 68.72 ◦ 83.12 ◦

11 −0.8738 −0.1626 −0.4583 62.92 ◦ 94.68 ◦

12 0.4096 −0.0143 0.9121 6.25 ◦ 90.41 ◦

13 0.2048 0.0665 −0.9765 41.09 ◦ 88.09 ◦

14 −0.5149 −0.1140 0.8497 83.83 ◦ 93.27 ◦

15 −0.4491 0.6434 −0.6200 43.97 ◦ 69.98 ◦

Table A.2.: Randomly chosen measurement settings and angle settings of the
corresponding wave plates in the polarization analyses for PI tomography of the
state |D(2)

4 〉 .
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j nxj nyj nzj HWP(Θ1) HWP(Θ2)

1 1.0000 0 0 22.50 ◦ 0 ◦

2 0 1.0000 0 0 ◦ 45.00 ◦

3 0 0 1.0000 0 ◦ 0 ◦

4 −0.1840 0.4866 −0.8540 55.32 ◦ 14.56 ◦

5 0.2761 0.4409 −0.8540 47.06 ◦ 13.08 ◦

6 −0.2420 −0.9238 −0.2967 71.67 ◦ −56.26 ◦

7 0.8242 −0.2374 −0.5141 27.06 ◦ −6.87 ◦

8 −0.5932 0.5688 −0.5698 47.87 ◦ 72.67 ◦

9 −0.8922 0.4513 0.0161 74.46 ◦ 13.41 ◦

10 0.2405 −0.8479 0.4726 21.24 ◦ 118.99 ◦

11 −0.5998 0.1537 −0.7852 52.13 ◦ 85.58 ◦

12 −0.8930 0.2191 −0.3931 58.40 ◦ 83.67 ◦

13 −0.5902 0.7942 −0.1445 77.21 ◦ 26.29 ◦

14 −0.4929 0.1832 0.8506 85.12 ◦ 5.28 ◦

15 0.7114 0.1824 −0.6787 30.79 ◦ 84.75 ◦

16 0.2199 0.8453 −0.4870 24.50 ◦ 61.15 ◦

17 −0.3580 −0.2422 −0.9017 46.91 ◦ −7.01 ◦

18 0.5985 0.6802 0.4233 24.40 ◦ 21.43 ◦

19 −0.8941 −0.4051 −0.1909 58.51 ◦ −11.95 ◦

20 0.5607 0.8215 −0.1036 38.92 ◦ 27.62 ◦

21 0.3725 −0.6367 −0.6752 47.66 ◦ 109.77 ◦

22 0.6012 0.6017 −0.5258 42.04 ◦ 18.50 ◦

23 −0.6481 0.6890 0.3244 63.26 ◦ 68.22 ◦

24 0.2087 0.6907 0.6924 15.11 ◦ 21.84 ◦

25 0.2316 −0.9181 −0.3217 19.40 ◦ −33.32 ◦

26 −0.0757 0.3756 0.9237 83.31 ◦ 78.97 ◦

27 0.8968 0.3563 −0.2623 21.36 ◦ 79.56 ◦

28 −0.7470 −0.2677 −0.6085 61.59 ◦ 97.76 ◦

Table A.3.: Optimized measurement settings and angle settings of the cor-
responding wave plates in the polarization analyses for PI tomography of the
state |D(3)

6 〉 .

171



Appendix

172



Publication list

Publications related to this work (ordered by Chapter)

Wies law Laskowski, Daniel Richart, Christian Schwemmer, Tomasz Paterek,
and Harald Weinfurter,
Experimental Schmidt Decomposition and State Independent Entanglement De-
tection,
Phys. Rev. Lett. 108, 240501 (2012).
Contribution: Carried out the experiment together with D.R., analyzed the data
with D.R., and wrote parts of the manuscript.

Wies law Laskowski, Christian Schwemmer, Daniel Richart, Lukas Knips,
Tomasz Paterek, and Harald Weinfurter,
Optimized state-independent entanglement detection based on a geometrical
threshold criterion,
Phys. Rev. A 88, 022327 (2013).
Contribution: Performed the experiment together with D.R., analyzed the data
with D.R. and L.K., and wrote parts of the manuscript.

Christian Schwemmer, Lukas Knips, Minh Cong Tran, Anna de Rosier,
Wies law Laskowski, Tomasz Paterek, and Harald Weinfurter,
Experimental multipartite entanglement without multipartite correlations,
Phys. Rev. Lett. 114, 180501 (2015).
Contribution: Conceived the experiment with W.L, T.P., L.K., and H.W., car-
ried out the experiment with L.K., analyzed the data together with L.K., and
wrote parts of the manuscript.
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[64] Lücke, B., Peise, J., Vitagliano, G., Arlt, J., Santos, L., Tóth, G., and
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