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Z U S A M M E N FA S S U N G / S U M M A RY

zusammenfassung

Es ist in den letzten Jahren immer deutlicher geworden, dass weitere
Forschung zur Untersuchung von quantenmechanischen Systemen durch-
geführt werden muss um die wachsenden Probleme in der heutigen Infor-
mationstechnologie zu adressieren. Insbesondere sticht hier die exponentiell
wachsende Nachfrage nach Computerressourcen und nach sicheren Kom-
munikationsprotokollen mit hoher Bandbreite hervor, um der weiter wach-
senden Datengenerationsrate standzuhalten. Dies stösst auf fundamentale
Grenzen, wie die erforderliche Miniaturisierung von Prozessorstrukturen
(CPUs) auf atomare Dimensionen demonstriert.
Von dieser Perspektive her ist es erforderlich weitere Forschung zur Kontrol-
le und Manipulation von Quantenzuständen durchzuführen, wie sie zum
Beispiel im Feld der Quanteninformation erfolgt ist. Diese Strategie ermög-
licht von weiteren Eigenschaften der Quantenmechanik, wie zum Beispiel
der Präparation von Superpositionszuständen, Gebrauch zu machen. Dies
ist insbesondere relevant, da es ermöglicht NP harte Probleme zu lösen,
die durch klassische Computer nicht effizient gelöst werden können. Al-
lerdings sind bisher experimentell realisierte quantenmechanische Systeme
noch nicht skalierbar genug um den Anforderungen der klassischen Tech-
nologie gerecht zu werden. Ähnlichen Argumenten folgend sind Quanten-
kommunikationssysteme, die die Sicherheit von Kommunikationsprotokol-
le zertifizieren können, noch nicht in der Lage angemessene Bandbreiten zu
gewährleisten.
Diese Doktorarbeit gliedert sich diesen Forschungsprojekten an, mit dem
Ziel die Skalierbarkeit von quantenmechanischen Systemen zu vergrössern
und entsprechend den genannten Anforderungen gerecht zu machen. Die
Strategie die hier verfolgt wird basiert auf die Kodierung von Quantenzu-
ständen in Photonenpaare, die durch den Prozess der Spontanen Parame-
trischen Down-conversion (SPDC) erzeugt werden. Dieses Verfahren bringt
allerdings eine limitierte Skalierbarkeit der Quantensysteme mit sich, da
die Detektionseffizienz von kommerziell erhältlichen Einzelphotonendetek-
toren limitiert ist. Dieses Problem wird in dieser Arbeit umgangen indem
die Quantenzustände in höher dimensionale Hilberträume eines Zweipho-
tonenzustands kodiert werden, was einen deutlichen Vorteil gegenüber der
Kodierung in einen Mehrphotonenzustand darstellt. Darüber hinaus ermög-
licht die Kodierung der Quantenzustände in den Emissionszeit Freiheits-
grad der Photonen intrinsische Vorteile bei ihrer Anwendung auf die Quan-
tenkommunikation. Hier ist insbesondere der Vorteil gegenüber der Kodie-
rung in den Impuls- und Polarisationsfreiheitsgrad gemeint, die durch deut-
liche Einschränkungen bei der Transmission über lange Strecken gekenn-
zeichnet sind.
Mit einem Augenmerk auf diese Ziele wird in dieser Arbeit die experimen-
telle Umsetzbarkeit des beschriebenen Schemas gezeigt. Dies wurde durch
die Anwendung von geeigneten Maßen wie die Verschränkung, Dimensi-
on und Präparationsfidelity auf die generierten Zustände quantifiziert. Ins-
besondere bei der Abschätzung der Fidelity wurde von Forschungsergeb-
nissen rund um Compressed Sensing Gebrauch gemacht und weiter mit
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einem adaptiven Messschema kombiniert, um die effektive Betriebszeit die-
ser Systeme zu verringern. Dies ist für die weitere skalierbare Anwendung
zur Quanteninformationsverarbeitung von Vorteil. Die Ergebnisse verdeut-
lichen, dass eine Skalierbarkeit der Dimension des Systems auf grösser als
2x8 Dimensionen, äquivalent zur Dimension eines 6-Qubit Zustands, in der
Reichweite einer experimentellen Umsetzung liegt.
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summary

Judging by the compelling number of innovations based on taming quan-
tum mechanical effects, such as the development of transistors and lasers,
further research in this field promises to tackle further technological chal-
lenges in the years to come. This statement gains even more importance in
the information processing scenario. Here, the growing data generation and
the correspondingly higher need for more efficient computational resources
and secure high bandwidth networks are central problems which need to be
tackled. In this sense, the required CPU minituarization makes the design
of structures at atomic levels inevitable, as foreseen by Moore’s law.
From these perspectives, it is necessary to concentrate further research ef-
forts into controlling and manipulating quantum mechanical systems. This
enables for example to encode quantum superposition states to tackle pro-
blems which are computationally NP hard and which therefore cannot be
solved efficiently by classical computers. The only limitation affecting these
solutions is the low scalability of existing quantum systems. Similarly, quan-
tum communication schemes are devised to certify the secure transmission
of quantum information, but are still limited by a low transmission band-
width.
This thesis follows the guideline defined by these research projects and aims
to further increase the scalability of the quantum mechanical systems requi-
red to perform these tasks. The method used here is to encode quantum
states into photons generated by spontaneous parametric down-conversion
(SPDC). An intrinsic limitation of photons is that the scalability of quan-
tum information schemes employing them is limited by the low detection
efficiency of commercial single photon detectors. This is addressed by en-
coding higher dimensional quantum states into two photons, increasing the
scalability of the scheme in comparison to multi-photon states. Further on,
the encoding of quantum information into the emission-time degree of free-
dom improves its applicability to long distance quantum communication
schemes. By doing that, the intrinsic limitations of other schemes based on
the encoding into the momentum and polarization degree of freedom are
overcome.
This work presents results on a scalable experimental implementation of
time-energy encoded higher dimensional states, demonstrating the feasibi-
lity of the scheme. Further tools are defined and used to characterize the
properties of the prepared quantum states, such as their entanglement, their
dimension and their preparation fidelity. Finally, the method of quantum
state tomography is used to fully determine the underlying quantum states
at the cost of an increased measurement effort and thus operation time. It is
at this point that results obtained from the research field of compressed sen-
sing help to decrease the necessary number of measurements. This scheme
is compared with an adaptive tomography scheme designed to offer an ad-
ditional reconstruction speedup. These results display the scalability of the
scheme to bipartite dimensions higher than 2x8, equivalent to the encoding
of quantum information into more than 6 qubits.
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Part I

T I M E - E N E R G Y E N C O D I N G O F Q U D I T
E N TA N G L E D S TAT E S





1
I N T R O D U C T I O N

The work presented in this thesis wouldn’t have been possible without the
significant advances in the control and manipulation of quantum mechani-
cal properties of light and matter witnessed during the 20th century. These
advances motivated by a first treatment and taming of quantum mechanical
properties [42]: The development of the theoretical foundations for describ-
ing black-body radiation and the photoelectric effect enabled to tackle the
interaction of light and matter, and to apply them to giving rise to well estab-
lished technologies in today’s economy such as transistors and lasers. With
more relevance to this work, the improvement in the precision of these mea-
surements has enabled to tame further quantum mechanical properties such
as entanglement [149], which are about to further enhance the capabilities
of information technologies or to even implement new ones [125]: Within
the ongoing research, the fields of quantum cryptography [58] and quan-
tum computation [124] have emerged as the most promising candidates. As
most notable applications, the first field has made the secure distribution
of keys [45] possible and the implementation of communication protocols
outperforming classical schemes [24]. In similar terms, quantum computers
were proposed which could in principle outperform the decryption speed
of secret keys of classical computers [154] (Shor’s algorithm) as well as the
best possible classical search algorithm [61] (Grover’s algorithm).
Closely related to these research fields is the field of quantum metrology
[56, 57], promising to improve the shot-noise limited resolution in precision
measurements. Here, the entanglement of photons enables high-precision
interferometric phase measurements [5].
Several quantum information carriers suited for these tasks have been pro-
posed and experimentally tested with regard to their scalability and suscep-
tibility to decoherence: Superconducting qubits [111], trapped ions [35, 67,
66], atoms trapped in optical lattices [17, 33], quantum dots [105], nuclear
spin (NMR) [172], nitrogen vacancy centers in diamonds [102, 123], elec-
trons [69] and finally, and with more relevance to this work, single photons
[84, 85, 137]. First results regarding the successfull implementation of quan-
tum computation tasks were based on trapped ions [64], or on photonic
states encoded into higher Hilbert space dimensions, where the number 21
was factorized via the Shor algorithm [112]. In general, the intrinsic limita-
tion of these systems is given by the high number of independent informa-
tion carriers whose encoded quantum states are to be efficiently controlled,
manipulated and, further on, transmitted. For example, for photonic and
ionic based systems the number of entangled qubits is currently limited to
8 and 17 respectively [186, 66, 119], to 12 for spin encoded qubits based on
molecules [122] and to 3 for superconducting qubits [121].
It will be the purpose of this thesis to enhance the complexity of the en-
tangled quantum states prepared to use them for more complex quantum
information processing tasks, designed to increase the information band-
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introduction

width of quantum information processing and the capabilities of quantum
computation schemes. The approach chosen here consists in increasing
the Hilbert space dimension of the states encoded into a particle from 2,
defining a qubit, to an arbitrary dimension d, generally denoted as a qudit.
This approach is particularly advantageous as it allows to increase the se-
curity thresholds for example for the distribution of keys encoded in qudits
[46, 176]. Additionally, qudits were shown to enhance the quantum informa-
tion bandwidth per single particle [7]. From yet another perspective qudits
are advantageous with respect to other schemes used to enhance the com-
plexity of quantum information tasks, such as photon based multi-qubit
entangled states [82]. Here, the detection efficiency of photonic based en-
tangled 2-qudit states is orders of magnitude higher than for multi-qubit
entangled states. Yet, from another perspective, it could be shown that
qudits enable to lower the requirements for closing the detection loophole
in Bell-type experiments as the critical detection efficiency is reduced with
respect to qubits[174, 114].
Encoding qudits into photons is motivated in part by their intrinsically low
susceptibility to decohere, what makes them more suitable for quantum
communication applications. This is best exemplified by long distances
over which entanglement can be preserved [170, 110]. Nevertheless, due
to their limited ability to interact with each other without much nonlinear
coupling they were not suitable for quantum computation schemes. This
could be shown to be no stringent limitation when considering the one-way
quantum computation scheme applied on a set of entangled photons [84].
Several experimental demonstrations based either on multi-photon entan-
gled [137] or higher dimensional bipartite qudit [171] states encoded into
photons revealed the suitability of this scheme.
This work presents important steps towards the generation and develop-
ment of reliable entanglement and dimension detection schemes for states
encoded in higher dimensional spaces higher than 8. For that purpose, an
efficient scheme for the generation and analysis of bipartite qudit entangle-
ment based on the encoding of photon pairs into the time-energy degree
of freedom [52] will be presented. As will be shown, it is scalable to high
dimensions [81] and well suited for facilitating long distance quantum com-
munication [110] (see chapter 2 for a theoretical description and chapter 3
for an experimental implementation, as well as the publication P1). In order
to make these schemes suitable for further applications a high degree of en-
tanglement as well as a high preparation fidelity has to be ensured, relying
on the efficient determination of corresponding figures of merit. The en-
tanglement detection schemes employed here will concentrate only on the
detection of bipartite 2xd dimensional entanglement [38, 48, 39] (see chapter
4 and publication draft P4) based on a test of 2xd dimensional Bell-type in-
equalities [38]. Further on, this work will present a complete tomographic
characterization of the generated emission time encoded states (see chapter
5). This is a scheme which, even at the cost of an increased experimental ef-
fort, is to be favored as it offers a complete characterization of the generated
quantum states [75, 181, 82] by providing an estimate of corresponding mea-
sures of the entanglement quality. An important question adressed in this
work is whether the corresponding measurement effort in the range of sev-
eral hours for full state tomography can be reduced such as to leverage the
requirements for practical quantum information processing tasks. This can
be adressed by using compressed sensing based reconstruction schemes [29]
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introduction

combined with convex optimization algorithms [22, 151]. This is a method
already successful in a vast range of signal processing applications requir-
ing a speedup in the signal acquisition without reducing the reconstruction
fidelity [108, 1, 76]. Here, it allows the tomographic measurement effort
to scale only logarithmically instead of exponentially with the dimensions
of the encoded quantum states [60]. Further on, this work will study how
other fundamental symmetries of quantum theory, such as correlation com-
plementarity (studied in more detail in publications P2 and P3), can be used
to achieve an even higher reduction of the acquisition time than with com-
pressed sensing based schemes. The work presented here will have as a fig-
ure of merit the achieved reconstruction fidelity. Special discussion will be
given here on the reduction of the fidelity due to an intrinsic bias associated
to the estimators used to reconstruct the states (see related publication P5).
The suitability of the encoded states for quantum information tasks making
use of a higher complexity of the encoded states relies on the knowledge of
the dimension of the entangled states. This motivates to apply reliable mea-
sures on the number of entangled modes for the experimentally generated
states in the last chapter 6.
This work is designed to adress some of the open questions limiting the
widescale applicability of quantum computation and communication schemes
regarding the scalability of the required system sizes.
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2
T I M E - E N E R G Y E N C O D E D Q U D I T E N TA N G L E D S TAT E S

This chapter has as the major aim to provide the theoretical foundations for
the following chapters. It will start with a general description of quantum
states (see 2.1.1) and particularly focus on their representation in higher di-
mensional Hilbert spaces (see 2.1.2). Here, explaining in detail the notions
of separability and entanglement will be central to this work (2.1.3). Fur-
ther on, a special focus will be put on describing the encoding of entangled
states into the time-energy degree of freedom as used in this work (2.3).
Finally, methods suited to expand the Hilbert space dimensionality of quan-
tum states encoded in the time-energy (2.4) or time-bin (2.4.2) degree of
freedom will be discussed.

2.1 elements of quantum theory

2.1.1 Quantum States

Hilbert space is a big place
– Carlton Caves

A central element of quantum theory is that any (pure) quantum state
Ψ can be represented as a vector. In Dirac’s notation a state is denoted as
|Ψ〉 ∈ H (ket) with corresponding dual vector 〈Ψ| (bra), defined in the vector
space commonly referred to as Hilbert spaceH [124]. The basic properties of
this vector space are based on the fulfillment of the inner product function
(·, ·) projecting the two vectors |Ψ〉 and |Φ〉 from H × H to the complex
numbers C. It allows to define the following basic properties of quantum
states:

1. Positive semidefiniteness: (|Ψ〉, |Ψ〉) ≥ 0: The inner product of |Ψ〉
with itself is positive definite.

2. Hermiticity: (|Ψ〉, |Φ〉) = (|Φ〉, |Ψ〉)∗.

3. Sesquilinearity: (|Ψ〉, ∑i λi|Φ〉i) = ∑i λi(|Ψ〉, |Φ〉i): The inner product
is linear in the second and semilinear in the first vector.

They allow to define other fundamental properties of quantum theory.
One of these properties, the requirement that the probability distribution of
any quantum state |Ψ〉 is normalized to 1, is met by defining the norm of
a state as |||Ψ〉|| =

√
〈Ψ|Ψ〉. Correspondingly, the state is described in the

normalized form as |Ψ〉/|||Ψ〉||. Two states |Ψ〉 and |Φ〉 are orthogonal in
their Hilbert spaces if 〈Ψ|Φ〉 = 0 holds.
Note that requirement (3) allows to define the fundamental axiom of quan-
tum theory, the superposition principle:
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time-energy encoded qudit entangled states

• If |Ψ1〉 and |Ψ2〉 are two states of the Hilbert space H, the superposi-
tion of both states α|Ψ1〉+ β|Ψ2〉 is a valid state defined in the same
space H (with |α|2 + |β|2 = 1).

For a 2 dimensional Hilbert space H = C2 a qubit state can be defined
by using the basis |0〉 = (1, 0) and |1〉 = (0, 1). Here, a superposition state
can be expressed as |Ψ〉 = α|0〉 + β|1〉. A generalization of the scheme is
to define states in Hilbert spaces H = Cd of arbitrary dimension dim(H) =
d. These states, commonly denoted as qudit states, are superpositions of
d dimensional basis states |0〉 = (1, 0, ..., 0), |1〉 = (0, 1, ..., 0),...,|d − 1〉 =
(0, 0, ..., 1)

|Ψd〉 =
d−1

∑
k=0

ck|k〉, (1)

with a normalization of the coefficients according to ∑d−1
k |ck|2 = 1.

It is the aim of this work to study the properties of qudit states in more
detail, by applying appropriate measurements on states embedded in d di-
mensional Hilbert spaces Hd. To do so, a generalized framework for de-
scribing the measurement process as an interaction between a macroscopic
measurement device and a quantum system has to be considered. Here, a
central postulate in quantum mechanics, the measurement postulate (here
presented in its simplified form for projection measurements), addresses
this problem by stating:

• A quantum measurement can be represented by a projection operator
Pk = P2

k which is used to acquire the knowledge about the probability
distribution of a given state |Ψ〉 according to pk = 〈Ψ|Pk|Ψ〉 = |ck|2.

• A measurement Pk projects the state |Ψ〉 to |Ψ〉k = Pk|Ψ〉/
√

pk

• The projectors Pk fulfill the completeness relation ∑k Pk = I if Pk corre-
sponds to a (tomographically) complete set.

A straightforward way to describe a general set of projection operators
{Pk} defined on Hd is by decomposing it in the eigenstates {|k〉} it projects
to. For example, as a projector Pk = |k〉〈k| onto the eigenstate |k〉 where
|k〉〈k| denotes the outer product of |k〉. Similarly, any operator on Hd can
be represented by a linear combination Ô = ∑k ckPk with ck corresponding
to the eigenvalues of the decomposition.
The projector formalism describes another fundamental property of quan-
tum physics: The measurement outcomes associated to a specific observ-
able applied on a given quantum state |Ψ〉 are distributed according to a
discrete probability distribution pk = |ck|2: For finite dimensional Hilbert
spaces, such as the ones considered in this work, the finite number of basis
states defines the number of discrete modes contributing to |Ψ〉. It allows
to describe a state by a classical continuum of modes only in the case of an
infinite dimensional Hilbert space.
A set of commonly used projection measurements can be represented by
using projectors defined by using the Pauli-spin basis, which for didactical
purposes are described as

σx = |0〉〈1|+ |1〉〈0|
σy = |0〉〈1| − i|1〉〈0|
σz = |0〉〈0| − |1〉〈1| (2)
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2.1 elements of quantum theory

Figure 1: Representation of the Bloch sphere with a pure state described as
a vector pointing to its surface (from [82]). It is useful to param-
eterize each vector in the eigenbases |0〉/|1〉 of σz, |+〉/|−〉 of σx
and |R〉/|L〉 of σy.

At this point the Bloch representation of pure states (see Fig. 1) demon-
strates to be useful as any point on the sphere corresponds to the pure state
|Ψ〉 and can be described in the two dimensional basis |0〉/|1〉 which is the
eigenbasis of the σz operator, |+〉 = 1/

√
2(|0〉+ |1〉)/|−〉 = 1/

√
2(|0〉− |1〉),

the eigenbasis of σx and |R〉 = 1/
√

2(|0〉+ i|1〉)/|L〉 = 1/
√

2(|0〉 − i|1〉) the
eigenbasis of σy.

The determination of the probabilities pk requires the measurement over
many identically prepared states and identical projection measurements.
The observed frequencies fk correspond exactly to the probabilities only in
the limit of an infinite number of repetitions (Born’s rule [179]), and corre-
spond in average to pk = 〈Ψ|Pk|Ψ〉 = 〈Ψ|P2

k |Ψ〉 = ||Pk|Ψ〉||2 for a projection
measurement Pk applied on |Ψ〉.
So far, quantum states and the measurements applied on them have been
described by using the vector formalism: A state is described as a point on a
unit Bloch sphere, in the case that the states are pure, while a state defined
as a point within the sphere is denoted as mixed.
In order to further clarify the distinction between pure and mixed states the
concept of a density matrix ρ is introduced. Using a set of pure states |Ψk〉
prepared with probabilities pk the density matrix is defined as

ρ = |Ψ〉〈Ψ| = ∑
k

pk|Ψk〉〈Ψk|. (3)

Here, a mixed state is in the state |Ψk〉with probability pk, while for a pure
state the state can be decomposed into only one component ρ = |Ψ〉〈Ψ|with
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time-energy encoded qudit entangled states

probability 1.
An important property of a density operator is that for any ensemble of
states and probabilities {Pk, |Ψk〉} it fulfills the trace condition tr(ρ) = 1.
This formalizes the requirement that the state |Ψ〉 is completely determined
by the probability distribution pk. Further on, the positivity condition
rho ≥ 0 has to hold, stating that all probabilities are positive.
Making use of the definition of a projection measurement, it is easy to ob-
serve that any (projection) measurement operator Pk acting on |Ψ〉 can be
described as a matrix. In this picture, the probability to observe the state
|Ψ〉 in the state projected on by Pk simplifies to the evaluation of the trace
pk = Tr(Pk|Ψ〉) = 〈Ψ|Pk|Ψ〉.
In the case of the Pauli spin operator

σz =

(
1|0〉〈0| 0|0〉〈1|
0|1〉〈0| −1|1〉〈1|

)
(4)

the projector on the eigenvector |0〉 with eigenvalue +1 is given by (1 +
σz)/2. That definition can be generalized to any particular Pauli spin direc-
tion by defining a projector as

|Π〉 =
1
2

(1±~n ·~σ) (5)

along an arbitrary direction ~n with |~n| = 1.
Using this notation allows to simplify the calculation of the probability that
the state |Ψ〉 = 1/

√
2(|0〉+ |1〉) is projected onto |0〉 as

P|0〉 = Tr(ρ0〉〈0|) = Tr(|Ψ〉〈Ψ|0〉〈0|) =
1
2

(6)

(7)

The usefulness of the density matrix formalism comes into play again as
the density matrix ρ of any qubit state can be defined as a linear combination
of a complete set of basis operators (see section 5.1 for a detailed desciption).
One such basis is the Pauli basis, allowing to decompose a one-qubit state ρ
according to

ρ = (1 + ∑
i=x,y,z

riσi)/2 = (1 +~r~σ)/2 (8)

with suited coefficients ri.
Again, in order to generalize the scheme to d dimensional Hilbert spaces a

pure density matrix ρ is described by a d× d dimensional matrix generated
by the outer product |Ψd〉〈Ψd| of a d dimensional state |Ψd〉. Operators act-
ing on these states will be described in the next section. Concrete examples
of density matrices for qudit states will be presented in 5.1.

2.1.2 Bases for d dimensional Hilbert spaces

In order to find a generalized form of operators acting on d dimensional
Hilbert spaces it is useful to consider the Pauli spin operators described be-
fore as the generators of the special unitary Lie algebra SU (d) in the case of
d = 2. For arbitrary dimension d, general properties of the group are that
the d2 generators it consists of fulfill the commutator relation [Ĝij, Ĝkl ] =

δjkĜil − δilĜkj. Similarly, the condition N̂ = ∑d
i Gii fulfilling [N̂, Ĝij] = 0
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2.1 elements of quantum theory

allows to reduce the number of independent generators to d2 − 1. A promi-
nent example of generators are the 8 Gell-Mann generators for 3 dimen-
sional states [54].
Nonetheless, this work will make use of operators whose eigenstates form
maximally unbiased bases (MUB) [183, 184, 185]. Here, the terminology of
unbiased bases refers to the property that any eigenvector |vi〉 of a basis
has a minimal overlap with any other vector |uj〉 of another basis. This
corresponds to the extreme case in which projectors defined in these bases
project onto states which don’t share the other eigenbasis. In the mathe-
matical formalism this can be expressed by the fact that they correspond to
complementary measurements, for which no simultaneous measurement re-
sults can be obtained [156]. Concretely, the overlap for maximally unbiased
bases is |〈vi|uj〉| = 1/

√
d.

Formally, for d> 2 the basis vectors are defined as

|jm〉 =
1√
d

d−1

∑
s=0

ei2π/d(js+s2)|s〉 (9)

and it can be shown that for a given space of dimension d there exist max-
imally up to d+1 mutually unbiased bases.
The usefulness of choosing MUBs comes into play for the tomographic re-
construction of a quantum state ρ [3], for the application of quantum key
distribution schemes [32] or for the observation of higher dimensional EPR-
Bell correlations [188].

It will be shown that the d dimensional states prepared in this work can
be analyzed by using these bases (see 4.2).
The decomposition of a density matrix ρ in MUB operators is possible. In
a similar fashion as in the 2 dimensional case ( 8), any complete operator
basis defined in a d dimensional Hilbert space can be used for that purpose.
It is for example uniquely defined by the full set of d + 1 MUBs, by expand-
ing the density matrix ρ in terms of the corresponding MUB operators Ôi.
Similar representations in an operator basis spanned by MUBs defined in a
2 dimensional Hilbert space will be used in this work (see 5.1).

2.1.3 Composite systems and entanglement

Several features of quantum mechanics, displaying the most striking de-
parture from classical physics, come into play when considering composite
quantum systems. Here, a bipartite maximally entangled state consisting of
two qudits defined in a 2xd dimensional Hilbert spaceHd

1 ⊗Hd
2 can be given

by

|Ψd〉 =
1
d

d−1

∑
k=0
|k〉A|k〉B. (10)

In this notation, |k〉A and |k〉B corresponds to bases in the d dimensional
Hilbert spaces mathcalHd

A and mathcalHd
B corresponding to the two states

distributed to the two parties, Alice and Bob. Then, entanglement refers to
the fact that the composite state |Ψd〉 ∈ Hd

A ⊗Hd
B cannot be written as

|Ψd〉 6= |ΨA〉 ⊗ |ΨB〉, (11)
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while, in contrast, a separable state can be decomposed according to
|Ψd〉 = |ΨA〉 ⊗ |ΨB〉.
This property is generalized for mixed states, i.e. a state ρ is entangled if

ρ 6= ∑
i

piρA,i ⊗ ρB,i, (12)

i.e the composite state cannot be described as the tensor product of both
states it is composed of [178].
It is possible to quantify the entanglement using the von Neumann entropy
of the reduced state ρA:

S = −TrρAlogρA = −∑
n

pA,nlog2 pA,n. (13)

Here, for a probability distribution pA,n with only one term being equal
to 1, i.e the subsystem A is a pure state, the reduced entropy is 0. The state
is fully determined. Similarly, maximal entanglement refers to the case in
which the reduced density matrices of the states are maximally mixed, i.e.
the probabilities have the same value pA/B,n = 1/d. Equivalently the en-
tropy of the reduced states is maximal SA/B = log(d) if the entangled state
|Ψd〉 is pure.
At this point, the striking features of quantum entanglement already lead to
intrepretations not possible to reconcile with a classical description of a the
world:
The results obtained from the von Neumann entropy lead to the interpreta-
tion that, prior to the measurement only the composite maximally entangled
state encoded in d dimensions is determined. In contrast, the reduced states
|ΨA〉 and |ΨB〉 are maximally undetermined. Making use again of the mea-
surement postulate of quantum mechanics, a projection measurement on
Alice’s state |k〉 will project the bipartite state |Ψ〉 onto |Ψk〉 = |k〉A|k〉B.
This corresponds to the projection onto a pure state with full knowledge
about Alice’s and Bob’s respective locally defined states. A usual interpre-
tation of this mathematical property of quantum mechanics is based on the
collapse of the two-photon wavefunction describing the two-particle state
[20].
That a measurement performed on the first subystem’s state would allow
to determine the state of the second party, independently of the distance
between both systems has propelled the research on this striking feature
called entanglement.

2.1.4 EPR paradox, Bell inequality and entanglement

It was Einstein, together with Podolski and Rosen [44] who conceived a fun-
damental discrepancy between the properties of composite quantum states
and of classical systems (denoted as the EPR paradoxon). They devised a
Gedankenexperiment with two particles sharing the same entangled quan-
tum state and each particle distributed to two distinct parties. Further, they
devised that these parties can perform a measurement on the momentum
and the position of their respective particles. Due to momentum conserva-
tion, it is possible for each party to predict the momentum of the other party.
It is here, that a discrepancy between the prediction of a classical theory and
quantum theory was devised. This arises once the observed measurement
outcomes are to be described by an element of reality allowing to predict
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them with full certainty. Nevertheless, this requirement is in contradiction
to the postulates of quantum mechanics such as the Heisenberg uncertainty
relation applied on non-commuting observables, such as the position and
momentum. If, for example the position of a particle can be determined
exactly, its corresponding non-commuting observable, the momentum, will
be maximally undetermined, i.e. both properties are assumed to have no
simultaneous reality. In this scenario, they devised a paradoxon between
two assertions made by quantum theory: That the underlying wavefunc-
tion offers a complete description of the state and that two physical results
corresponding to non-commuting observables cannot have simultaneous re-
ality. Concretely, in the example of a two-particle state, the first assumption
would lead to the determination of the second particles position (momen-
tum) once the position (momentum) of the first particle was determined
precisely. Both observables would have simultaneous reality, a contradic-
tion with the statements of quantum theory.
It was 30 years later that this question of declared philosophical relevance
could be be put under experimental scrutiny. It was the seminal work by J.S.
Bell which allowed to devise experiments able to discard specific models
describing the properties of quantum systems cited previously [13]. Con-
cretely, he devised an inequality, in literature coined as Bell inequality, able
to determine the bounds any local and realistic theory can fulfill. These
are theories where measurement outcomes obtained at space-like separated
distances from each other are determined by hidden variables. The require-
ment of locality was needed to be in accordance with the predictions of
special relativity: A measurement outcome observed at one site should be
independent of the transformations applied at the other site. Bell showed
that these predictions were in contradiction with the ones given when ob-
serving entangled states. In this case a violation of the inequality would
be possible and would allow to disvalidate local hidden variable theories to
explain the physical phenomena associated to these states. The balance was
finally inclined towards quantum theory, as demonstrated first by Freed-
man et al. [53] and later on by Aspect et al. [9, 10] based on Bell inequalities
developed by Clauser et al. [37, 36]. In consequence, many fundamental
epistemological questions were raised about nature [116, 14].
The main source for these interpretational problems lies in the definition of
the wavefunction describing entangled states. Concretely, the wavefunction
is required to have a correspondence to a physical quantity as specified by
a realistic theory: The measurement of the respective photon’s state will
instantly determine the state of the paired photon, apparently violating the
condition of locality. This seemingly unsolvable paradox has lead to differ-
ent interpretations. To mention only the most prominent ones, the Copen-
hagen version rejects the realistic interpretation of the wavefunction, in favor
of a local description. In full contrast to this program, the theory presented
by Bohm aims at offering a realistic interpretation of the wavefunction, while
explicitly stating that quantum theory is required to be intrinsically nonlocal
[18, 19].

2.2 encoding of entanglement into different photonic de-
grees of freedom

A photon can be described as a wave packet with a transverse oscillation
direction ~p (polarization), wave vector~k (momentum) and frequency ν (en-
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ergy). Futhermore, it is a necessary condition for preparing photonic entan-
gled states that at least two photons are created and that the quantities corre-
sponding to these degrees of freedom are conserved during the two-photon
emission process. The process of spontaneous parametric downconversion
(SPDC) [168] has proven to be a reliable and efficient source for the emission
of correlated (multi-) photonic states: Momentum and energy conservation
warrants that during the nonlinear conversion of n photons, the created 2n
photons are intrinsically correlated in these degrees of freedom. And, with
more relevance for this work, also in the respective emission times.

For the purpose of encoding quantum states in high dimensional Hilbert
spaces one can make use of the spatial distribution of the photon’s momen-
tum, concretely the orbital angular momentum (OAM) [48, 133, 109] or the
linear momentum of SPDC photon pairs [31].
In general, the encoding of quantum states in several degrees of freedom al-
lowed to prepare photon pairs in higher dimensional product Hilbert spaces
denoted as hyperentangled [12]: Here, the state space is composed of the
tensor product of entangled states encoded in the different degrees of free-
dom. Furthermore, it is possible to entangle the states between the degrees
of freedom by suited entangling operations [31].
Nevertheless, it could be shown that practical implementations of these
states in the field of quantum cryptography were restricted. Particularly,
when they require the transmission of the physical information carriers over
large distances. For a free space transmission the encoded quantum states
could be affected by variations in the refractive index of the air [135, 170].
Active compensation schemes for a rotation of the quantum states encoded
in the polarization or angular momentum degree of freedom are required
when the free space transmission is chosen. Similar limitations apply to
the transmission over optical fibers, for which the transmission of only one
spatial mode makes it unsuitable for OAM states.

2.3 time-energy entanglement

Franson experiment— A suitable alternative not affected by the limitations
listed previously is to encode quantum states into the emission time degree
of freedom of photon pairs: This scheme was originally proposed by Fran-
son [52] by using the properties of atomic cascade sources emitting emission
time correlated photons, i.e. photons emitted within the emission time un-
certainty defined by the linewidth of an atomic transition. The properties
required for the generation of these states are fulfilled by SPDC processes
(see 3.1 for a detailed description): The simultaneous emission of both pho-
tons of a pair guarantees the photons to be correlated in their emission
times.
As pointed out by Franson, it is now possible to devise the situation in which
the emission times of the two-photon pairs are undetermined up to an un-
certainty ∆t predicted by the (Heisenberg uncertainty)relation ∆E ·∆t ≥ h̄/2
1. This emission time uncertainty ∆t is large in the case the energy uncer-
tainty ∆E of the incoming pump photon is small.
The emission time uncertainty ∆t can be described in terms of the coherence

1 It is to note that no operator can be associated to the time variable, therefore the uncertainty
relation cannot be derived from the commutation relation neither associate a time eigenstate
to it. Furthermore, the uncertainty is motivated by phenomological observations regarding the
linewidth limited emission time uncertainty for an atomic process.
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Figure 2: Scheme for the setup encoding 2 time-energy entangled qubits.
The emission of a time-energy correlated photon pair is possible
at any of two emission times 0 and 1 separated by a time delay
∆T. The choice of a time delay orders of magnitude smaller than
the coherence time of the pump process allows to ensure the co-
herence of the photon pairs emitted. Next, each photon of a pair is
distributed to one of the two separated interferometers at the dis-
posal of both parties, Alice and Bob. They are used to project each
photon’s state onto the interferometer eigenstates |0〉A + eiαA |1〉A
and |0〉B + eiβB |1〉B. Subsequently, a coincidence measurement (at
time delay 0) allows them to analyze the time-energy entangled
Bell state |Ψ〉 = 1/

√
2(|0〉A|0〉B + ei(αA+βB)|1〉A|1〉B).

time tc,Pump of a light source (see inset of Fig. 2), which is a measure on the
time the different spectral components of a wave still remain in phase. Us-
ing a monochromatic light source, with a tight distribution of the incoming
frequency modes [103], a large emission time uncertainty is achieved, as
described by the large coherence time tc,Pump.

Under these conditions and by resorting to a suited two-photon source,
a continuous range of two-photon modes can be coherently emitted, i.e.
photon pairs emitted at different times |t〉, superposing to the state

|Ψ〉S ∝
∫ ∞

−∞
c(t)|t〉A|t〉Bdt (14)

with the weights described by the emission time distribution function
c(t).
Time-energy Entanglement between photon pairs— First, as described in
Fig. 2, a pump photon can undergo the process of spontaneous parametric
downconversion (described in further detail in 3.1), such that a pair of entan-
gled photons is emitted at any of the emission times constrained within the
coherence time tc,Pump of the source. The two photons are now distributed
to 2 different parties, Alice and Bob.

Each party is provided with appropriate analysis devices measuring the
coherence between photon pairs emitted at only 2 emission time modes 0
and 1 (denoted by times t0 and t0 + ∆T with a time difference of ∆T) se-
lected out of the full range of emission time modes prepared in the source.
The coherence between them can be tested if each party applies a delay
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∆T on each photon, respectively. For that purpose, they analyze each pho-
ton’s state in the interferometer mode eigenbasis of two unbalanced two-
path interferometers: |0〉A/B = |0∆T〉A/B for the undelayed and |1〉A/B =
|1∆T〉A/B for the delayed path in units of the time delay ∆T present between
the two emitted two-photon fields. For a 50/50 splitting ratio configuration
of the interferometer beamsplitters, the photons will be projected to the su-
perposition states (|0〉A + eiαA |1〉A)/

√
2 and (|0〉B + eiβB |1〉B)/

√
2 (see Fig.

2). These have well defined relative phases αA and βB acquired between the
delayed and undelayed paths. Additionally, each party projects the respec-
tive photon onto the interferometer output modes |+〉 and |−〉 depending
on the interferometer output the photon has chosen, where finally the pho-
tons are detected.
It is important to choose a time delay ∆T orders of magnitude larger than
the coherence times of the SPDC photons as this will allow to sort out first
order interference effects: Both parties would observe a variation of their
single photon detection rates as measured at the outputs of the interferome-
ters depending on the relative phases αA1 or βB1 acquired between the single
photon fields taking the short and long interferometer path.
Next, both parties are required to measure the detection times of the pho-
tons at the outputs of their interferometers. If additionally a coincidence
analysis is performed (for the moment only a coincidence detection at out-
put modes |+〉A|+〉B will be considered) the state is projected onto the a su-
perposition state spanned by the two-photon eigenbasis |0〉A|0〉B, |0〉A|1〉B,
|1〉A|0〉B and |1〉A|1〉B states:

(|0〉A + eiαA |1〉A)⊗ (|0〉B + eiβB |1〉B) =

1
2

(|0〉A|0〉B + eiβB |0〉A|1〉B + eiαA |1〉A|0〉B + ei(αA+βB)|1〉A|1〉B) (15)

In ( 15) 3 states can be discriminated by the relative delay in the detection:
For a coincidence measurement at delay ∆T the emitted two-photon state is
projected onto |1〉A|0〉B, for a delay of −∆T to |0〉A|1〉B. More interestingly,
for a delay of 0 the terms |0〉A|0〉B attributed to both shortest arms and
|1〉A|1〉B corresponding to the long arms in the respective interferometers
superpose to

|Ψ〉 =
1√
2

(|0〉A|0〉B + ei(αA+βB)|1〉A|1〉B). (16)

Here, the coherence between only two two-photon states delayed (i.e. tak-
ing the respective paths |0〉A|0〉B and undelayed (i.e. taking the respective
paths |1〉A|1〉B with respect to each other, is tested.
Different approaches exist in order to avoid the required postselection of
two-photon coincidence probabilities, either by the transformation of the
contributing time modes into polarization modes [160] or by using a setup
allowing to detect Alice’s delayed (undelayed) photon together with Bob’s
undelayed (delayed) photon in the same detector, perfoming the postselec-
tion of unwanted events already locally [104]. The significance of the post-
selection procedure regarding the question if any local realistic model can
describe the correlations observed will be discussed in section 4.2.2.

Coincidence function and visibility— If both parties agree to measure
only in the detection time window ∆T = 0, a variation of their coincidence
count rates as a function of the respective phase settings αA and βB will be
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observed.In order to evaluate the concrete coincidence function, it is neces-
sary to resort again to describing the distribution of the incoming entangled
emission time modes.
For the used analysis only the coherence between 2 emission-time modes
with mode amplitudes c(t0) and c(t0 + ∆T) at the respective emission times
t0 and t0 + ∆T is tested. The coincidence probability is now evaluated as

P(αA, βB) = |〈Ψ|ΨS〉|2 ∝ (1 + V cos(αA + βB)). (17)

Alice and Bob observe a variation of the coincidence count rates with the
two-photon interference visibility V. Here, it is useful to choose the inter-
ferometric visibility as a figure of merit. For that purpose the two-photon
intensities of either delayed I|0〉A |0〉B = |c(t0)|2 and undelayed I|1〉A |1〉B =

|c(t0 + ∆T)|2 probability amplitudes enter via

V = 2

√
I|0〉A |0〉B I|1〉A |1〉B

I|0〉A |0〉B + I|1〉A |1〉B
. (18)

As will be shown in 4.1.2 the visibility can be used to describe the gener-
ated entanglement quality. For maximally entangled states as aimed to be
prepared in this work, the visibility is maximal for an equal amplitude of
the respective two-photon fields.
Note, that the entanglement quality of the postselected state (Eq. 16) de-
pends on the precision at setting the time delays ∆T = ∆TA = ∆TB chosen
by each party. If they differ, the additional which-path information would
enable both parties to distinguish between both superposing two-photon
states |0〉A|0〉B and |1〉A|1〉B.
Both parties can as well detect their respective photons at other outputs
of their interferometers. For example for a detection at the |+〉A|+〉B and
|−〉A|−〉B the state is projected into |Ψ〉+,+ = |Ψ〉−,− = 1√

2
(|0〉A|0〉B +

ei(αA+βB)|1〉A|1〉B) while for different outputs |+〉A|−〉B and |−〉A|+〉B it
is projected to |Ψ〉+,− = |Ψ〉−,+ = 1√

2
(|0〉A|0〉B − ei(αA+βB)|1〉A|1〉B). Here,

the sign change −1 is attributed to the phase a two-photon state acquires by
the reflection at the output beamsplitters of their respective interferometers:
(eiπ/2)2 = −1.
Correlation measurements— For a choice αA = βB = 0, the two-photon
observables (after postselection) project onto the eigenstates of the σx ⊗ σx
basis {1/

√
2(|0〉+ |1〉); 1/

√
2(|0〉 − |1〉)}. For a choice of αA = βB = π/4

the eigenstates correspond to the ones defined for the σy basis {1/
√

2(|0〉+

i|1〉); 1/
√

2(|0〉 − i|1〉)}. Accordingly, it is possible to describe the projection
measurements performed by both parties in the operator basis, as measure-
ments constrained along the plane spanned by the σx and σy operators (in
analogy for Bob’s operator):

1
2

(|0〉+ eiαA |1〉)(〈0|+ eiαA〈1|) =
1
2

(1 + cos αAσx + sin αAσy) =
1
2

(1 + σ(αA)).
(19)

This description is useful as it will enable to describe the correlations
observed between both parties as a measurement [82] of

C(αA, βB) = Tr[(σ(αA)⊗ σ(βB))|Ψ〉S〈ΨS|] = cos(αA + βB). (20)

As will be shown in 5.1, the evaluation of correlations enables to recon-
struct tomographically the underlying quantum states.
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2.4 time-energy entanglement in high dimensional hilbert

spaces

Proposals for analyzing high dimensional emission time entangled states—
It is the aim of this work to enhance the number of entangled two-photon
modes, and, correspondingly, the dimension of the Hilbert space spanned
by the quantum states. For this purpose, time-energy encoded states of-
fer an intrinsic potential: Theoretical simulations could show that a high
number of time-energy modes are available in typical SPDC sources (up to
≈ 106) [7]. The task to prepare entangled qudit states with an as high as
possible number of modes is therefore reduced to the problem of finding a
suited interferometric system. This is required to test the coherence of the
emitted time modes with respect to each other.
Different approaches for making use of this scheme have been proposed.
One of them is based on the scheme of multiport interferometers allow-
ing to encode d dimensional maximally entangled states by using couplers
equally distributing the incoming d modes into d output modes. Neverthe-
less, their scalability is restricted to low dimensional systems as each of the
d interferometer arms needs to be interferometrically stable [163].
The scheme offers the advantage that the quantum states are directly pre-
pared in d dimensional MUB bases (see 2.1.2) as the output state is de-
fined according to |Ψ′〉 = ∑d−1

j=0 cj|j〉 with coefficients cj = ∑k 1/
√

dei2π jk/dbk

(compare with the MUB bases of Eq. ( 9) for a d-mode input state |Ψ〉 =

∑d−1
k=0 bk|k〉 [188, 23].

Scheme of this work— In this work an alternative approach offering a better
scaling of the dimensionality of the quantum states analyzed with the num-
ber of interferometer arms is presented and experimentally demonstrated
(See Fig. 3).
Concretely, an interferometer scheme is used for exponentially, instead of
linearly (as for the multiport scheme), multiplexing the number of time
modes analyzed with the number of each additional interferometer arm.
It is based on the consecutive application of 2x2 interferometer arm trans-
formations onto the incoming d time modes. The resulting analyzed state
is embedded within a Hilbert space which is increased by a factor of 2 with
each additional interferometer arm. For the choice of up to 3 interferometer
arms as performed in this work, the interferometers analyze up to 8 modes
|0〉, |1〉, ..., |7〉 (log2(8) = 3 bits). The states spanned by each interferometer
arm can be described as 1/

√
2(|0〉i + eαi |1〉i) with αi corresponding to the

relative phases acquired between the respective undelayed |0〉i and delayed
|1〉i paths. The consecutive application of these transformations lead to the
encoding of an 8 dimensional state

|Ψ8〉 =
1√
2

(|0〉1 + eα1 |1〉1)⊗ 1√
2

(|0〉2 + eα2 |1〉2)⊗ 1√
2

(|0〉3 + eα3 |1〉3) =

1
2
√

2
(|0〉1|0〉2|0〉3 + eα1 |1〉1|0〉2|0〉3 + eα2 |0〉1|1〉2|0〉3+

e(α1+α2)|0〉1|1〉2|0〉3 + ... + e(α1+α2+α3)|1〉1|1〉2|1〉3) =

1
2
√

2
(|0〉+ eα1 |1〉+

eα2 |2〉+ e(α1+α2)|3〉+ ... + e(α1+α2+α3)|7〉). (21)
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For simplification, at the last step the notation describing the 8 dimen-
sional eigenstates has been abbreviated by the total number of delays ac-
quired by a photon after traversing the corresponding interferometer paths.
As the respective states |0〉,|1〉,...|7〉 are required to correspond to different
modes, the time delays chosen for each interferometer arm have to be differ-
ent by at least the coherence time of each photon. Only in this case single
photon interference of the incoming photons can be avoided. Furthermore,
the time delays have to be chosen such that they are multiples of a minimum
time delay ∆T in order to enable the experimental discrimination of the en-
coded two-photon states (see 3.2). Interferometer arms are chosen here with
time delays subsequently doubling the time delays acquired at the previous
interferometers: ∆T, 2∆T and 4∆T.
Alice and Bob are provided each with one multiarm interferometer used to
analyze an 2x8 dimensional emission time entangled state. In order to en-
sure the coherence of the emitted two-photon modes, the coherence time of
the pump source is chosen such that it surpasses the maximal time delay of
7∆T present between the 8 analyzed modes by many orders of magnitude.
If both parties use the interferometer systems they project the generated
emission time correlated states onto |Ψ8〉A ⊗ |Ψ8〉B, a superposition of up
to 64 two-photon states. As these two-photon states are distinguishable
by their relative detection times, Alice and Bob can detect entanglement if
they project the 64 possible two-photon emission probabilities into 15 dif-
ferent time windows, defined for a specific relative delay between Alice’s
and Bob’s detection times (see Fig. 4). The time delay associated to these
detection time windows ranges from −7∆T to 7∆T.
For example for a choice of a time delay of ∆T = 0 (and for a detection of the
coincidence count rates at the +A+B interferometer outputs corresponding
to a projection onto |+〉A|+〉B) they will project their entangled two-photon
state ΨS〉 defined in Eq.( 2.3) into the 2x8 dimensional state

|Ψ8〉+,+ =
1

2
√

2
(|0〉A|0〉B + e(αA1

+βB1 )|1〉A|1〉B + e(αA2 +βB2 )|2〉A|2〉B+

e(αA1
+βB1 +αA2 +βB2 )|3〉A|3〉B + ... + e(αA1

+βB1 +αA2 +βB2 +αA3 +βB3 )|7〉A|7〉B). (22)

Evaluation of coincidence probability— The coincidence probability is
evaluated for a projection onto the interferometer output modes |+〉A|+〉B
and |−〉A|−〉B. It varies as a function of the 6 phase settings acquired by
both photons according to

P(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )+,+ = |〈ΨS|Ψ8〉+,+|2 =

|〈ΨC|Ψ8〉−,−|2 = cos
(αA1 + βB1 )

2

2

cos
(αA2 + βA2 )

2

2

cos
(αA3 + βB3 )

2

2

. (23)

For a detection at the output combinations |+〉A|−〉B and |−〉A|+〉B this
results into an additional phase shift of π in the last term:

C(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )+,−;−,+ =

cos
(αA1 + βB1 )

2

2

cos
(αA2 + βA2 )

2

2

sin
(αA3 + βB3 )

2

2

, (24)
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Figure 3: Scheme for the setup analyzing up to 2x8 dimensional time-energy
entangled qudits. The setup can be used to test the coherence be-
tween up to 8 different two-photon emission time modes present
within the continuous range of two-photon emission times. They
are coherent as long as the maximal time delay between them
doesn’t surpass the coherence time tc,Pump of the pump source.
Under these conditions, both parties, Alice and Bob can make use
of a 3 arm interferometer setup analyzing each photon of a pair in
the 8 dimensional computational basis |0〉,|1〉,...|7〉 in units of the
time delay ∆T acquired at any of the different paths through their
respective interferometers. Finally, a measurement of coincidence
count rates at time delay 0 allows both parties to analyze a 2x8
dimensional two-photon state |ΨS〉 = ∑7

k=0 |k〉|k〉.

Here, the dichotomic measurements onto two different interferometer out-
puts |+〉 and |−〉 correspond only to 2 different projections of the 8 di-
mensional photon state encoded into each party’s photon. This number of
projections is insufficient to provide the full analysis of a 2xd dimensional
two-photon state as this requires the projection of each photon onto at least
8 different basis states (see 2.1.2). Different approaches suited for overcom-
ing this limitation will be described in 4.2.
A major advantage of the scheme is that it is possible to analyze the encoded
states in specific subspaces spanned by the 2x8 dimensional full computa-
tional basis defined by the analysis. For that purpose it is necessary to resort
to coincidence detections at time delays different than 0, as will be shown
subsequently.
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Figure 4: Typical coincidence time distribution observed for a 2x8 dimen-
sional analysis of a two-photon time-energy entangled photon pair.
The coincidences are distributed along 15 different time windows,
allowing the analysis of time-energy entangled states with a di-
mensionality of up to 2x8.

2.4.1 Time-energy entanglement in d<8 dimensional Hilbert spaces

It is possible to discriminate between up to 15 coincidence time distributions
for the 2x8 dimensional analysis chosen by both parties as depicted for a
typical measurement run in Fig. 4.

The coincidences are probabilistically distributed by the interferometer
setup used by both parties such that the number of contributing two-photon
amplitudes varies between 1 to 8 for time delays ranging from ±7∆T to
0∆T. The time separation between coincidences distributed between dif-
ferent windows corresponds to the time delay ∆T. The measurement of
coincidence count rates at different time delays equals to the projection of
the emitted two-photon pairs onto lower dimensional states. These corre-
spond to states with dimensions ranging from 2x1 to 2x8 encoded within
the computational basis spanned by the 2x8 dimensional two-photon analy-
sis. Concretely, for time delays ∆T (the discussion for negative time delays
is equivalent) a 2x7 dimensional state is encoded as

|Ψ〉1∆T
7 =

1√
7

(eαA1 |1〉A|0〉B + e(αA2 +βB1 )|2〉A|1〉B + e(αA1
+αA2 +βB2 +π)|3〉A|2〉B+

e(αA3 +βB1 +βB2 )|4〉A|3〉B + ... + e(αA1
+αA2 +αA3 +βB2 +βB3 +π)|7〉A|6〉B). (25)

In comparison, for delays 2∆T and 3∆T the analysis projects onto the 2x6
and 2x5 dimensional states
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|Ψ〉2∆T
6 =

1√
6

(eαA2 |2〉A|0〉B + e(αA1
+αA2 +βB1 +π)|3〉A|1〉B + e(αA3 +βB2 )|4〉A|2〉B+

e(αA1
+αA3 +βB1 +βB2 +π)|5〉A|3〉B + ... + e(αA1

+αA2 +αA3 +βB1 +βB3 )|7〉A|5〉B) (26)

and

|Ψ〉2∆T
5 =

1√
5

(e(αA1
+αA2 +π)|3〉A|0〉B +

e(αA3 +βB1 )|4〉A|1〉B + e(αA1
+αA3 +βB2 +π)|5〉A|2〉B+

e(αA1
+αA3 +βB1 +βB2 +π)|6〉A|3〉B + e(αA1

+αA2 +αA3 +βB3 +π)|7〉A|4〉B. (27)

For 4 contributing two-photon modes, as registered for a time delay of
4∆T the analyzed 2x4d state is

|Ψ〉4∆T
4 =

1
2

e(αA3 +βB3 )(|4〉A|0〉B + e(αA1
+βB1 )|5〉A|1〉B + e(αA2 +βB2 +π)|6〉A|2〉B+

e(αA1
+αA2 +βB1 +βB2 +π)|7〉A|3〉B) (28)

where a change in the phase αA3 performed on Alice’s 3rd interferom-
eter arm doesn’t influence the analysis. This is also the case for the 2x3
dimensional state analyzed at a delay of 5∆T:

|Ψ〉5∆T
3 =

1√
3

eαA3 (eαA1 |5〉A|0〉B + e(αA2 +βB1 +π)|6〉A|1〉B + e(αA2 +βB2 +π)|7〉A|2〉B). (29)

Finally, the 2x2d dimensional state analysis is restricted to measurements
performed on Alice’s and Bob’s 1st interferometer arms:

|Ψ〉6∆T
2 =

1√
2

e(αA2 +αA3 )(|6〉A|0〉B + e(αA1
+βB1 )|7〉A|1〉B). (30)

The 2x1 dimensional state postselected at a time delay of 7∆T is of no in-
terest here, as it is intrinsically separable: |Ψ〉7∆T

1 = 1√
2

e(αA1
+αA2 +αA3 )|7〉A ⊗

|0〉B.
The presented scheme for encoding qudit states offers a simple procedure to
increase the complexity of the encoded quantum states. Only by agreeing
on a different delay between their registered coincidence count rates, Alice
and Bob can apply a projection measurement on states of varying dimen-
sionality ranging up to 2x8.

2.4.2 Time bin entanglement of Qudits

Full analysis of qudit states— Of crucial importance for the optimal detec-
tion of entanglement is that the analysis described in the previous section is
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able to access the full Hilbert space of the prepared emission time entangled
modes. For example, for the analysis of the 2x8 dimensional state of Eq.( 22)
each party is provided with 3 independent relative phase settings, inferior
to the number of 8 emission time modes between which the coherence is
tested. For example, the 2x8 dimensional state can be analyzed fully if the
analysis projects it onto

|Ψ〉8 =
7

∑
k=0

ei(αAk
+βBk

)λk|k〉A|k〉B (31)

with the 7 independent phase settings αAk and βBk .
Further on, the present setup doesn’t allow to arbitrarily manipulate the
coupling coefficients γk = |λAk |2 = |λBk |2. These are given by the respec-
tive weights λAk and λBk describing the weights with which the different
emission time modes are superposed to each other. Here, a change in the
coupling strength would require the beamsplitters building up the interfer-
ometers to provide variable splitting ratios.
A manipulation of all qudit states amplitudes and phases can be achieved
by making use of time-bin entanglement based on pulsed sources:
Time bin entanglement— Following similar arguments as the ones used to
describe time-energy correlated states, it is experimentally challenging to
analyze time-energy entanglement for pulsed instead of continuous wave
sources: The coherence time of the emission process is intrinsically restricted
to the pulse duration tP, limiting the time delays of the interferometers to lie
within tP. This is a challenging task in view of the limited timing resolution
of typical photonic detection devices.
An alternative has been devised by resorting to additional interferometer
systems placed before the two-photon source. These allow to prepare a
pump pulse emitted by the source in a coherent superposition of two or
more pulses [110]. In the concrete case of an 2x8 dimensional state analysis
as described in the previous section, the coherent preparation of up to 8
pulses pumping a SPDC source is required (Fig. 5).

A more elaborate treatment for this process is given in [142] and restricted
here to the example of 2x8 dimensional systems:
For the purpose of preparing time bin correlated states it is possible to use
unbalanced interferometer systems with the same construction as used for
the analysis of 2x8 dimensional time-energy entangled states. A pump pulse
is split into 8 pump pulses delayed by ∆T with respect to each other by
making use of the interferometer system depicted in Fig. 5. They are used
the prepare a pump photon state in the eigenbasis |0〉P, |1〉P,...,|7〉P as a
function of the time delays tk acquired:

|Ψ〉P8 =
1

2
√

2

7

∑
k=0
|tk〉P (32)

Any of the 8 resulting pulses can trigger the downconversion of a pump
pulse photon into a photon pair. As the process maintains the coherence
present before a time bin entangled two-photon state is emitted:

|Ψ〉AB
8 =

1
2
√

2

7

∑
k=0
|tk〉A|tk′〉B. (33)

In contrast to a source with a coherence time surpassing the total time de-
lay acquired between all 8 two-photon emission time modes, no correlations
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Figure 5: Scheme for the preparation of time-bin entangled two-photon
states in dimensions up to 2x8. The source consists of a series
of up to 8 pump laser pulses described by |Ψ〉P8 = 1/

√
8 ∑7

k=0 |k〉P
into which the pump pulse is split up by making use of a series
of unbalanced interferometer arms. Each pulse can be used to
prepare a SPDC photon pair, which is analyzed by sending each
photon to two parties, Alice and Bob, provided with an interfer-
ometer system used to analyze each photon separately. In order
to obtain an entangled state in 2x8 dimensions, both parties are re-
quired to trigger their respective coincidence count rates to the
emission time of a pump pulse and to further on discriminate
photons with a relative time delay of 0. The resulting time bin
state is described in terms of the paths a pump photon has tra-
versed through the pump interferometer and, subsequently, the
paths a photon pair has traversed through the analysis according
to |Ψ〉P,A/B

8 = ∑7
k=0 |d− 1− k〉P|k〉A|k〉B.
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2.4 time-energy entanglement in high dimensional hilbert spaces

can be observed between detectors placed at their respective outputs when
each photon is distributed to each party’s 8 path interferometer systems:
The two-photon states registered within any coincidence time window can
be distinguished with respect to the relative detection time between Alice’s
and Bob’s detectors tA and tB. This violates the condition for the observa-
tion of interference as stated by the quantum superposition principle.
They can resolve this problem by additionally triggering their registered
coincidences to the emission time tP of the pump pulse. Concretely, trigger-
ing the total acquired time delay on 7∆T will lead to a projection onto the
two-photon state

|Ψ〉8 =

1
2
√

2
(ei(αA1

+βB1 )|0〉P|7〉AB + ei(αA2 +βB2 )|1〉P|6〉AB + ei(αA3 +βB3 )|2〉P|5〉AB +

ei(αA4
+βB4 )|3〉P|4〉AB + ei(αA5 +βB5 )|4〉P|3〉AB + ei(αA6 +βB6 )|5〉P|2〉AB +

ei(αA7 +βB7 )|6〉P|1〉AB + |7〉P|0〉AB). (34)

Here, the respective two-photon states of each photon traversing a spe-
cific path in the respective analysis interferometers is represented as |k〉AB =
|k〉A|k〉B with k = 0, .., 7.
The state Eq.( 34) onto which the prepared time bin entangled state is pro-
jected to is the superposition of all two-photon states defined by the possible
paths an emitted photon pair could have traversed before being detected.
Relevant for the preceding discussions is the fact that the emission time
of each photon pair state |k〉A|k〉B is well defined. This allows to trigger
fast phase and amplitude devices placed before the analysis. They enable
to manipulate the independent phase and amplitude settings necessary to
prepare the states |k〉A and |k〉B in different bases.
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E X P E R I M E N TA L I M P L E M E N TAT I O N O F Q U D I T S TAT E S

Quantum phenomena do not occur in a Hilbert space, they occur in a
laboratory— Asher Peres

This chapter will present a detailed description of the experimental setup
used for analyzing entangled two-photon states of up to 2x8 dimensions in
the emission time degree of freedom. It will start with a description of the
source based on spontaneous parametric downconversion (SPDC) employed
to generate the entangled photon pairs (3.1). The setup used to analyze the
created time-energy correlated qudit states will be described in detail in (3.2).
Special emphasis will be put on describing the used stabilization scheme
warranting the stability of the setup (3.3) and it will be complemented by
further details about the adjustment and calibration of the setup (3.4). The
suitability of the experimental scheme for analyzing entangled states in high
dimensional Hilbert spaces will be tested in the last section 3.5.

3.1 spontaneous parametric downconversion source

Photon sources— The main requirement when performing quantum infor-
mation tasks is to rely on a stable source of particles into which quantum
states are encoded. Desirable for implementations of for example photonic
based quantum computation tasks is the possibility to emit photons deter-
ministically [84]. Solid state based sources such as nitrogen vacancy centers
in nanodiamonds [90], molecules [106] and quantum dots [118] stand up
to this demand. Nevertheless, they still suffer from low emission rates and
the intrinsic limitations for their experimental implementation, such as their
operation at cryogenic temperatures.
Spontaneous parametric downconversion process— For the purpose of gen-
erating qudit entangled states with a high emission efficiency it is sufficient
to use sources emitting photons probabilistically like the ones based on
spontaneous parametric downconversion. Here, the nonlinear χ2coupling
process in the medium of non inversion-symmetric crystals is responsible
for the coupling of n high energy photons to 2n low energy photons. This
phenomenon is best described by the induced polarization in the medium of
the crystal when it is traversed by the electric field E of an incoming photon
(See [168]).
The crystals used are required to have a high as well as an anisotropic dielec-
tric susceptibility, i.e their susceptibility is described as a (symmetric) tensor.
In this case, the induced polarizations can be described independently in all
three spatial orientations i, j, k, l ∈ x, y, z [144, 180] as

Pi(E) = ε0(∑
j

χ
1,j
i E1

j + ∑
j,k

χ
2,j,k
i E1

j E2
k + ∑

j,k,l
χ

3,j,k,l
i E1

j E2
k E3

l + ...). (35)
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Here, the higher order coupling strengths to the photon fields E1
j , E2

k and

E3
l are described via the nonlinear susceptibilities χ2

i and χ3
i with an order

limited by 3. These are tensors, describing the coupling strength between
the contributing fields in dependence of their orientations with respect to
the optical axes of the crystal. For this work only the second order term χ2

i
will be relevant as it describes the three-wave mixing between one pump
field and two downconversion photon fields denoted as the spontaneous
parametric downconversion process (SPDC). It can as well be used to de-
scribe the reverse process of upconversion of two photons of low energy
into one high energy photon (e.g. second harmonic frequency generation
[51]). The term coupling to χ3

i describes the process described in literature
as the Spontaneous Four Wave Mixing (SFWM) of 4 different electrical fields
[161].
Typical coupling strengths of up to χ2 ≈ 10−6 [47] suffice to generate pho-
ton pairs with an efficiency high enough to implement tasks in quantum
cryptography and computation [177]. The high relevance for further appli-
cations in quantum information processing [126] and quantum metrology
[56] lies in the exploitation of multiple emission processes described by a
multiple coupling of pump fields with 2 SPDC fields with χ2, respectively.
Phase matching— In the process of downconversion [168, 180] momentum
and energy of the involved waves have to be conserved. Thus the relations

h̄~kp = h̄~ks + h̄~ki (36)

h̄ωp = h̄ωs + h̄ωi (37)

hold between the pump (p) and the emitted signal (s) and idler (i) waves.
Here, the frequencies are described by ωp,s,i and the wave vectors by ~kp,s,i

with absolute values |~kp,s,i| = ωp,s,in(ωp,s,i)/c depending on the refractive
index n(ωp,s,i) of the respective photons in the optical medium of the crystal.
The fact that the exchanged momentum depends on the respective refrac-
tive indices n(ωp,s,i) of the different waves and that this depends linearly
on the frequency of the corresponding photons, makes it difficult to achieve
phase matching in most materials: The lower energy downconverted pho-
tons would observe a lower refractive index and correspondingly the sum
of their momenta would be lower than for the photon which emitted them.
For that reason, birefringent optical materials have to be used in order to
fulfill the phase matching conditions.
Studies on the birefringence of a crystal will be restricted here on uniaxial
crystals, i.e. crystals for which the refractive index is equal for 2 spatial di-
rections and different to these along the 3rd direction. The refractive index
can be represented by its spatial distribution along the surface of an ellip-
soid, where the major axis is commonly denoted as the optical axis. In this
scenario, input light polarized along the plane containing the optical axis
and the input vector ~k is denoted as extraordinarily polarized with refrac-
tive index ne, while if it is polarized perpendicular to the plane it is called
ordinarily polarized with refractive index no.
The phase matching condition ( 36) can now be fulfilled if the polarizations
of the input and output waves fulfill specific conditions. For example, for
negative uniaxial crystals as used here, i.e. crystals for which ne < no holds,
the pump photon is required to have the polarization with the lower refrac-
tive index. It is therefore required to be extraordinarily polarized, while at

38
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least one of the downconverted photons has to be orthogonally polarized.
Two different types of phase matching fulfilling this condition, denoted in
literature as Type I and Type II are defined. The first one describes the case
where both signal and idler photons are ordinarily polarized, while the sec-
ond one describes the situation where the signal photon is ordinarily and
the idler photon extraordinarily polarized.
In order to tune the refractive indices to fulfill these phase matching condi-
tions, it is useful to define the relative angle between the input wave vector
~kp and the optical axis θ. While for ordinarily polarized light its refractive
index is independent of θ, the refractive index of an extraordinarily polar-
ized wave shows a dependency ne(θ). It is this last relation which allows
to fulfill the phase matching condition by changing the angle θ for a given
input wave ~kp, as at least one wave traversing the crystal is extraordinarily
polarized.
Further on, a variation of the same angle θ can be used to vary the relative
orientation of the respective wave vectors of the different photons in the
downconversion process. In the type I configuration the photons are emit-
ted along cones which are concentric to each other, with ring radii depend-
ing on θ, while in the type II case the cones are additionally symmetrically
shifted with respect to each other with a variation of θ [168]. One can dif-
ferentiate between the collinear and the non-collinear configuration, where
the first case describes that all wave vectors ~kp,~ks,~ki are parallel while in
the second case, these are oriented along arbitrary directions fulfilling the
phase matching conditions. Further on, depending on the energies of the
emitted photons one distinguishes the degenerate, where both energies are
equal, and the non-degenerate case, where these are different to each other.
Generation of entangled photon pairs and limitations— The process of
SPDC offers high potential for the generation of entangled photon pairs.
Polarization entangled states have both been implemented by using type II
[94] and type I [95] phase matching, while in this work they are used to
emit photon pairs entangled in their emission times [166]. Common to all
these schemes is that the generation of photon pairs with a high entangle-
ment quality relies on their spectral, spatial and timing indistinguishability.
Particularly for pulsed type II downconversion where the central frequen-
cies of the emitted photons differ from each other, spectral filtering offers
the best solution for reducing their spectral distinguishability. The second
requirement can be met by coupling the signal and idler photons into single
mode fibers, such that both photons share the same TEM00 mode distribu-
tion. Nevertheless, with increasing crystal length, ensuring the second and
third condition is difficulted by an increasing transversal and longitudinal
walkoff between the emitted photons:
The different refractive indices in the birefringent material of the crystal
lead to different group velocity distributions associated to different polar-
izations of the wave packets. In analogy, the different emission direction of
the extraordinarily polarized photon leads to a transverse shift with respect
to the ordinarily polarized photon. Unless compensation schemes based
on letting the photons traverse additional birefringent crystals, the effective
crystal length L and correspondingly the efficiency with which entangled
photon pairs can be emitted is limited for these sources [168].
Similar limitations concerning the photon pair emission efficiency of con-
ventional nonlinear crystals such as BBO (β − Ba2B2O4) are based on the
following property: The fulfillment of the phase matching conditions using
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Figure 6: Schematic description of the emission directions of a pump pho-
ton into a signal and idler photon in the type II crystal configura-
tion by using the spontaneous parameteric downconversion pro-
cess (SPDC) [82]. Here, an extraordinarily polarized pump photon
is downconverted in a suited crystal offering a high second order
susceptibility χ2

i,j with i, j ∈ x, y, z. Each photon’s wavevector ~ko

for an ordinarily polarized signal photon and ~ke for an extraordi-
narily polarized idler photon is oriented on the surface of a cone,
which can be made to intersect at one point (collinear case) as
depicted here. This corresponds to the type of source used in
this work, where the generated photon pairs are coupled into the
same spatial mode and separated by making use of a polarization
beamsplitter.

only the birefringence of the material restricts the coupling waves to couple
with a strength defined only by some specific components of the electric sus-
ceptibility tensor χ2

i,j with i, j ∈ x, y, z. These are not necessarily the maximal
achievable for the specified material. Therefore, alternative schemes based
on using periodically poled crystals, have been developed:

3.1.1 Photon pair source based on periodically poled crystal

Quasi-phasematching— An alternative backed by recent successful imple-
mentations of high efficiency down-conversion sources [47, 157, 128] is to
use quasi-phasematching in a crystal medium whose effective nonlinearity
is periodically inverted. Here, the periodic poling leads to the addition of
a term allowing to fulfill the phase matching conditions for a new combina-
tion of pump~kp, signal~ks and idler~ki wave vectors according to

~kp(ωp, n(ωp)) =~ks(ωs, n(ωs)) +~ki(ωi, n(ωi)) +
2π

Λ(T)
(38)
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Figure 7: Single and coincidence counts as a function of the input pump
power (from [49]). A linear increase in both single (red and green
curve) and coincidence (blue curve) count rates (per second) is
observed, leading to maximal coincidence count rates of 6 · 105 ·
s−1. The two-photon emission efficiency of the source is evaluated
as the ratio of the coincidence count rates per mW of pump power,
which remains at a constant value of ≈ 4.9 · 104(s · mW)−1 for a
broad range of pump powers. The observed single to coincidence
count ratio remains nearly constant at a value of ≈ 24%.

with the temperature dependent poling period Λ(T).
A major advantage of these sources, is that the tuning of the temperature
by the coupling term Λ(T) effectively warrants the phase matching of the
emitted photon pairs over a broader range of directions i, j ∈ x, y, z, even for
those directions for which the susceptibility tensor elements are maximal.
This allows to increase the efficiency (≈ 10−6 for periodically poled lithium
niobate materials [157]) of these sources by 4− 5 orders of magnitude with
respect to bulk crystal sources [180]. Similarly, the periodic poling allows to
offer an intrinsic compensation of the transverse walk off observed for type
II crystals, as the sign of the shift is reversed with each subsequent period,
allowing to increase the crystal lengths L to more than 3cm. In comparison,
for bulk crystals such as BBO the effects are noticeable already for lengths
larger than 1mm.
Application to this work— It is for these reasons that a periodically poled
potassium titanyl phosphate (PPKTP) crystal 1 fulfilling the type II phase
matching criteria is used [128]. Type II crystals are chosen as the spectral
bandwidth of the emitted photons is lower than for the type I case, avoid-
ing the usage of filters. These would be required in order to effectively
diminish dispersion effects at the optical components. Here, the collinear
configuration simplifies the experimental effort by coupling the emitted H
and V photons into the same single mode fiber.

In this work an external grating stabilized laser diode with a wavelength
of 402.8± 0.4nm is used as the pump source. Residual light emitted in the

1 Produced by Raicol
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near infrared wavelength regime is filtered before coupling the laser inten-
sity into a single mode fiber. The spatial distribution of the outcoupled
intensity is a symmetric Gaussian well suited to match the spatial mode dis-
tribution of the emitted photons with the single mode of the fiber collecting
the photons. The laser intensity is focused onto a spot with a FWHM beam
waist size of wp ≈ 25µm, delivering the highest photon pair collection effi-
ciencies in close correspondence to similar studies [47]. Calculations show
that for the chosen poling period of 9.675µm and for a length of 1cm de-
generate phase matching can be achieved for a temperature of 45.75◦ set up
at the used oven 2. Nevertheless, measurements show that the degenerate
phase matching temperature is 26.0± 0.2◦ corresponding to a poling period
of 9.724µm [49]. The expected value for the non-degeneracy wavelength of
805.6± 0.4nm is close to the experimentally evaluated value of 805.9± 1.1nm.
Here, the measured bandwidth is limited by the resolution of 1.1nm of the
single photon spectrometer employed [49]. Reasons for the deviation from
the predicted degeneracy temperature can be attributed to the fact that the
poling period was ensured with a fabrication accuracy of 0.25µm.

3.1.2 Photon pair generation efficiency

To characterize the efficiency of the source, the detected single count rates
observed at the respective outputs of the polarizing beamsplitter are plotted
together with the coincidence count rates as a function of the CW pump
intensity present at the crystal. The efficiency of the source is characterized
by the coincidence count rate normalized to the incoming pump power and
remains constant at ≈ 4.9 · 104(s ·mW)−1 for a broad range of input powers
(see 7). Maximal count rates of up to 6 · 105 · s−1 are observed for the maxi-
mal laser output power for which a stable operation of the laser is observed.
The observed ratio in the range of ≈ 24% between the single count rates and
the coincidence count rates is lower than identity, what can be attributed to
the limited detection efficiency in the range of ≈ 60% of the single photon
detectors used 3 at a wavelength of ≈ 800nm. In this measurement, resid-
ual reflection losses at the (non-antireflection coated) end faces of the used
single mode fiber contribute to an additional decrease in the efficiency in
the range of up to ≈ 8%, while residual losses on the rest of the optical
components is conservatively assumed to lie in the range of ≈ 3%. These
factors reduces the maximal observable ratio to the range of ≈ 0.492 = 0.24,
corresponding to the experimentally observed values. Here, the quadratic
scaling with the efficiency is due to the fact that the loss of one of the pho-
tons will lead to not registering a corresponding coincidence event for the
respective paired photon, too.
Similar sources based on a type I configuration of two crossed PPKTP crys-
tals [158] have been used to improve the emission efficiency to a regime of
up to 0.64 · 106 · (s ·mW)−1, an increase of the efficiency by a factor of more
than 10 as compared to the source used here. Nevertheless, the increased
spectral bandwidth makes them less suitable for the dispersive optical ma-
terials used in this setup.
High photon emission efficiencies are relevant for the detection of entangle-
ment in the time degree of freedom with a high signal to noise ratio. Here,
the analysis of these modes is provided by an interferometer system, prob-

2 Oven by GWU Lasertechnik
3 Perkin Elmer SPCM-AQ4C
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abilistically distributing the different emission time modes into different
coincidence time windows, what reduces the effective rates of coincidences
observed within them. Similarly, accidental coincidences, resulting either
from photon pair emission processes for which one of the photons was lost
and from a detector dark count, contribute to a constant background count
rate. This rate is required to remain low with respect to the true coincidence
count rate in order to detect a high entanglement quality.

3.2 experimental setup

This section’s purpose is to clarify from the standpoint of current technolog-
ical limitations why and how the following experimental setup was chosen
for the task of increasing the complexity of the encoded quantum states.
Further details will be presented regarding the particular design of the in-
terferometer arms used to analyze the correlations between the different
emission times. The motivation for choosing this setup will be based on
the actual technological constraints limiting the scalability of the scheme to
arbitrarily high dimensional systems:

• High preparation efficiency (section 3.2.1)— Applications for quantum
communication schemes require a sufficiently high emission and de-
tection rate of the photons.

• Detection time resolution (3.2.2)— A crucial requirement for demonstrat-
ing the entanglement of a high number of two-photon emission times
is the detector timing resolution enabling to distinguish between dif-
ferent time modes.

• High fidelity (3.2.3)— The interferometer systems used are required to
test the coherence between different emission time modes. For that
purpose the acquired which-path information due to polarization and
frequency mode dispersion and due to spatial mode mismatch are to
be compensated.

• Stability (3.3)— In order to enable the analysis of the prepared states
and further application for quantum information processing tasks, a
reliable stabilization scheme has to be applied over the required mea-
surement times.

3.2.1 High preparation efficiency

Several schemes were proposed and experimentally realized in order to en-
hance the Hilbert space dimension of the quantum states encoded into a
set of photons. Here, the encoding of qudit states into two photons offers
a significant advantage with respect to the encoding of qubits into multiple
photon pairs [82, 181, 186]: For a probabilistic detection scheme, the latter
schemes requires a high single photon detection efficiency in order to detect
the encoded multi-qubit states with high count rates.
This disadvantage is closely related to current technical limitations on the
detection of photons: The direct detection of multiphoton events by resort-
ing to detectors sensitive to a multiphoton absorption process are still in the
experimental testbed [6]. Schemes based on the probabilistic distribution of
the photons using a linear state analysis [181] and the posterior detection
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of the photons at separate single photon detectors suffer from the limited
detection efficiency of current state of the art Si-based detectors. Here, quan-
tum efficiencies of commercially available detectors of up to η = 70% [55] in
the visible wavelength regime severely limits the state detection efficiency of
a N qubit state as count rates are reduced by a factor ∝ ηN . In order to over-
come these limitations high power sources in the UV wavelength regime
can be applied [88]. Conversely, this scheme suffers from the admixture of
higher order multi-photon events due to the generation of multiple pairs of
photons.
An important alternative to these schemes, based on superconducting nanowire
detectors [143, 129] with reported detection efficiencies > 91% still suffers
from the important drawback to require cooling below 1K.
These problems are circumvented when distributing quantum states embed-
ded within the Hilbert space of N qubits equally to two parties, as done for
the states prepared in this and similar [31] work. Here, the limited detec-
tion efficiency contributes to a decrease of the count rates only proportional
to η2, as only two detectors are required. Overall observed count rates of
up to 1kc/s (within a time window of 1.64ns) for 2x8 dimensional states
for pump powers in the mW pump power regime are sufficient to ensure
the manipulation and analysis of the generated states with high statistical
relevance.

3.2.2 Detection time resolution

The detection time resolution puts a lower limit on the time delays ∆T imple-
mented by the interferometer systems used to test the coherence between a
high number of emission time modes. This is so as a low resolution disables
to discriminate between coincidences distributed between different coinci-
dence windows (2.3). In this work detectors with a single photon detection
resolution of ≈ 500ps are chosen due to their higher single photon detection
efficiency of up to 50%in the infrared wavelength regime of 800nm. Further
reductions down to 40ps [159] in the timing resolution of CMOS based de-
tector circuits could be achieved, with recent research aimed at increasing
the detection efficiency4.
For the detectors used in this setup a typically observed value for a two-
photon coincidence time resolution is ∆Tres ≈ 2ns (determined at the back-
ground level). This leads to a choice of the interferometer time delays of
∆T > 2.4ns surpassing the observed resolution, corresponding to typical
path length differences of ∆L ≈ 0.72m.
Similarly, an upper bound restricting the maximum number of delays intro-
duced is the coherence time of the laser source. This is so as it has to be
longer than the maximal time delay between all two-photon emission times.
In order to ensure a high coherence of the pump laser a diffraction grat-
ing stabilization scheme [139] is applied on a blue laser diode emitting at
402.8nm. The enhancement in the coherence time allows to surpass the
required specifications by many orders of magnitude: 2.58µs >> ∆T (meth-
ods described in detail in [142]). The choice of a laser diode at this wave-
length enables to emit SPDC photon pairs at 806nm, which is still within
the high efficiency detection range of the used single photon detectors.

4 Micro Photonic Devices
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3.2.3 High fidelity

Bulk/Fibred configuration— The timing constraints described before impose
limitations regarding the design of the interferometers. Specially for a large
unbalance of the two arms, usual Mach-Zehnder interferometer configura-
tions based on bulk optics suffer from a limited spatial mode overlap of
the two superposed modes at the output beamsplitters. Thus fused fiber
couplers have been used for which the spatial mode distribution of the two
modes is exactly the same at their overlap.
Still, an important drawback for this implementation, specially for unbal-
anced interferometers, is the frequency mode dispersion in the silica based
core material of optical fibers (see Chapter 2.6. in [142]): A photon with
FWHM frequency bandwidth ∆ν encoded in the |0〉 and |1〉 eigenbasis of a
two-path interferometer, will acquire a frequency mode spread proportional
to the time delay implemented: A photon transmitted through the long in-
terferometer arm implementing a time delay ∆T will acquire a spread of its
photon time distribution higher than the one of the shorter path. This path
dependent delay can be parameterized as

∆tMax
S,L = tλ0+ ∆λ

2
− tλ0− ∆λ

2
= ∆L(

1
vλ0+ ∆λ

2

− 1
vλ0− ∆λ

2

) (39)

leading to a FWHM time delay between the frequency modes for the short
and long path of |∆tMax

S | = 0.1951ps and |∆tMax
L | = 0.3902ps, respectively.

These values are calculated for a FWHM wavelength bandwidth of 3nm and
a path length difference of ∆L = 0.6m. The resulting difference in the max-
imal frequency mode spread of ∆tMax

L − ∆tMax
S = 195fs is comparable to

typical coherence times of SPDC photons. The associated increased which-
path information effectively leads to a reduction in the interference quality.
Additionally, interferometers based on full fibred paths have the important
drawback that thermal drifts at the fibers can arbitrarily change the phase
encoded. Closely related to this problem, they induce a transformation of
the polarization mode detrimental for warranting a good indistinguisha-
bility of the interfering modes. These factors require a high temperature
stability for similar applications [165] or, when renouncing to maintain a
constant temperature, even to the inability to analyze the encoded states for
longer measurement times [138].
Interferometer configuration used here— A compromise between the advan-
tages of a bulk interferometer setup and a fibred configuration is achieved
here by constructing an interferometer consisting of both systems (see 9

describing the scheme). This system is particularly suited to construct un-
balanced interferometers, with an interferometer arm being orders of mag-
nitude longer than the other one. For this configuration it is advantageous
to use fused fibre couplers to split and further on to overlap both interfering
modes as this ensures their high spatial mode overlap. Here, it is important
to choose the optical path length of the fibers to be equal along both interfer-
ometer arms and to introduce the required delay by transmitting one mode
through an additional free space path. In this case, the frequency mode
dispersion acquired by a photon traversing any of both paths is equalized.
Residual dispersion effects at the other optical components placed at the
interferometers path are negligible here.
The time delay is introduced into each interferometer loop by coupling the
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light out of the single mode fibers5 and transmitting them over a free space
path. A retro reflection of the light at a 90◦ prism6 allows to couple the light
back into the input fiber of the next fused fiber coupler. In addition, for
longer interferometer paths, an optical delay line consisting of two 50.4mm
mirrors allows to introduce an additional path difference of 12cm with each
reflection. This doubles and quadruples the time delays implemented by the
2 longer interferometer arms. Here, stainless steel is chosen as the material
of the cylindrical structure holding both mirrors together at the required
distance, as the material offers reduced thermal expansion coefficients with
regards to other metals. In order to construct the undelayed interferometer
arms, the other output fibers of each fiber coupler are directly coupled to
the input fibers of the next fiber coupler.
Using the hybrid interferometer configuration losses in the range of up to
8% have been observed for the longest interferometer paths (limited mainly
by mode deformations by the reflections in the optical delay lines and resid-
ual reflection losses of 1− 2% at the AR coated fiber ends). These are only
slightly higher than the losses accumulated at the short arms of 4− 5%. In
order to compensate for the difference in the losses, enabling to equalize
the interferometer mode strengths, it is possible to increase the losses in the
short paths of the respective arms. This is achieved by reducing the cou-
pling between the fibers of subsequent fiber couplers.
An advantage of the scheme is that the interferometer delay can be pre-
cisely adjusted by placing the retro-reflection prisms on translation stages
provided with piezo actuators driven by a proportional-integral feedback
loop (see 3.3). These allow to control the interferometer delays with a nm
precision and up to an overall translation of up to ≈ 6µm.

Alternative experimental implementations— The most promising alter-
native to employing bulk and fibre optics, as implemented in the current
experimental setup, is to resort to integrated optics circuits, as they offer
intrinsic advantages with respect to their stability. A reason for this is that
they warrant a high preparation fidelity as already demonstrated experi-
mentally [147, 132].
However, for the encoding of time-energy emission modes in high dimen-
sional states, these schemes are still limited by current detection time reso-
lutions in the range of down to 40ps for CMOS based avalanche photode-
tectors (APDs) corresponding to path lengths of ≈ 1.5cm [159]. These are
well above typical structure sizes of integrated optics waveguides in the
range of 200µm. An interesting alternative to overcome these limitations
can be based on the usage of upconversion photodetectors: As the name
indicates, they are based on applying a frequency upconversion process on
the two-photons emitted by a downconversion source [92]. As an upconver-
sion process is possible only if both photons are detected with a time delay
restricted by each photon’s coherence time, it is possible to detect the con-
version of a photon pair very precisely. A major drawback of the method
is the inefficiency of the process, requiring higher pump powers in the W
regime in order to compensate for the low generation rates of the photons.

5 Fiber couplers made by Schäfter Kirchhoff
6 Bernhard Halle
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3.3 stabilization setup

The interaction of the created quantum states with the environment will
lead to a reduction in the reconstruction fidelity of the prepared states. Ef-
fectively, this diminishes the ability of both parties, Alice and Bob, to use
the prepared quantum states for further applications. A major limitation to
be faced with when designing unbalanced interferometers is their increased
sensitivity to drifts in the refractive index of air and of the used fibers with
a change in the ambient temperature. Additionally, mechanical vibrations
with an amplitude exceeding the photon wavelength cannot be suppressed
completely even for ideal laboratory conditions.
Fluctuations in the pump laser frequency of ∆νp contribute to a variation
in the photon’s phase acquired in the interferometer. This is enhanced by
the factor N corresponding to the difference in the number of wavelengths
fitting in the short and in the long interferometer arm: ∆φ ∝ π∆L/λ ·
∆νp/νp = πN · ∆νp/νp. In order to reduce this contribution it is necessary
to reduce the pump laser frequency fluctuation ∆νp as much as possible
[142, 140].

3.3.1 Polarization multiplexing scheme

Current stabilization techniques— Standard interferometer stabilization tech-
niques designed for stabilizing the phase acquired by single photons require
the use of an additional reference laser. This laser is used to extract sufficient
information on the phase fluctuations acquired in the respective interferom-
eter arm.
An optimal compensation can be achieved for interferometer configurations
for which the downconversion photons and the stabilization laser share the
same spatial mode distribution and correspondingly acquire almost identi-
cal phase shifts (the difference is dependent only on the different refractive
indices for the two different wavelengths). This is an inherent property of
the used hybrid interferometers, for which both wavelengths are guided
through the same single mode fibers. Similarly, the wavelengths have to
be chosen to allow the spectral discrimination between them by using stan-
dard filters (bandwidth typically limited to ≈ 1nm). Their difference has
to remain within definite boundaries defined by the fiber cutoff wavelength,
as otherwise no single mode transmission for both wavelengths could be
warranted. It is for these reasons that a grating stabilized stabilization laser
at 781.6nm is used, a wavelength differing sufficiently from the 805.9nm
photon wavelengths. The particular wavelength can be very well referenced
to extensively studied atomic transitions in Rubidium [11] or to modes of
commercially available frequency comb lasers [70], as used in this work (see
3.3.3).
Standard stabilization schemes are based on extracting a suitable error sig-
nal ideally depending only on the relative interferometer phase φ to be stabi-
lized. These are the basic recipients required to design a feedback loop com-
pensating for the deviation ∆φ the error signal is proportional to. The devia-
tion is compensated by driving a piezoactuator with an amplitude of exactly
the opposite sign and the same frequency bandwidth as the deviation [77].
For this purpose, standard proportional- integral feedback electronics cou-
pled to piezoactuators offering a sub-nm accuracy in the frequency range of
up to 100 Hz are sufficient for compensating for mechanical vibrations and
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Figure 8: Polarization multiplexing technique used for stabilizing an inter-
ferometer arm. The phase acquired by the photons coupled into
all interferometer arms is stabilized and controlled over arbitrary
periods. In order to achieve this, a reference laser polarized along
the R/L and P/M plane is rotated to two orthogonal polariza-
tions during the traversal through both arms and fully analyzed
at the output in the polarization degree of freedom. The signals
measured at the outputs of the polarization analyzer can be used
to extract the required error signal, used to drive a piezoactua-
tor compensating for the acquired fluctuations in the phase φSL.
Further on, the stabilized phase can be arbitrarily manipulated by
rotating the polarization before the polarization analysis by φ λ

2
.

temperature drifts. For the used devices, the bandwidth suffices as well to
offer a proper compensation of low time scale fluctuations due to changes
in the refractive indices of air and the optical fibers used.
The method for extracting a suitable error signal is based on fringe lock-
ing [150]. Here, the intensities I|a〉 ∝ (1 + V cos (φ + ∆φ)/2) and I|b〉 ∝
(1 + V sin (φ + ∆φ)/2) of a reference laser with a coherence length surpass-
ing the path length difference are measured at both output modes |a〉 and
|b〉. Under this condition it is possible to observe interference fringes with
a sufficiently high visibility V = 2

√
I|a〉 I|b〉/(I|a〉 + I|b〉) as a function of the

encoded phase φ and the additional phase fluctuation ∆φ. Finally, the dif-
ference of both signals I|a〉 − I|b〉 ∝ V cos (φ + ∆φ) offers the required char-
acteristics of the searched error signal with a sign change at φ + ∆φ = π/2.
Stabilization scheme used in this work— The previously described scheme
cannot be directly applied to a construction of interferometer arms as pur-
sued in this work, as each interferometer output is coupled into the next
interferometer arm. This doesn’t allow to extract the stabilization laser in-
tensities at both outputs of the respective interferometers (See Fig. 8). For
that purpose it is more appropriate to consider a scheme based on polariza-
tion multiplexing, as illustrated in Fig. 8:

Birefringence of the optical fibers of the fused fiber couplers leads to the
fact that the polarization rotation in both arms is different, even if the input
polarization for both arms is the same, in this case H (step 1 in Fig. 8). Nev-
ertheless, one can make use of polarization controllers at both arms to rotate
the polarization of the incoming H polarized photon such as to remain H

48



3.3 stabilization setup

polarized in the short and long interferometer arm by using fiber polariza-
tion controllers (step 2). This requirement has to be met in order to reduce
the which path-information of the transmitted single photons.
In order to extract a suitable error signal from the intensity of the stabi-
lization laser, the following scheme is followed: Making use of the other
input fiber of the fused fiber coupler, the intensity of the stabilization laser
is inserted into the interferometer (step 3). Here, it is made sure that the
intensity is polarized along 1/

√
2(HSL + eiφSL VSL) as this simplifies the ad-

justments required. Subsequently, it has to made sure that the rotation of
the stabilization laser is different in each arm, ideally that they are polarized
orthogonally at their overlap. In the example considered here, the polariza-
tion transformation in the short arm rotates the polarization state by an
unknown phase φSL along the P/M and R/L plane (1/

√
2(HSL + eiφSL VSL)).

In order to ensure a rotation of the polarization with phase −φSL along the
long arm a birefringent crystal, such as Yttrium Vanadate YVO4, is used
(step 4). It allows to rotate the phase in the long arm such that the polariza-
tion state reads as 1/

√
2(HSL − eiφSL VSL). It is to note that the optical axis

of the crystal is oriented in parallel to H, in order to ensure that the polar-
ization of the H polarized photons at 806nm are not rotated, while allowing
the rotation of the phase of the laser polarization. This is possible as the
polarization of the stabilization laser is oriented along the P/M and R/L
basis with respect to the crystal axis.
After exiting the output fibers the actual analysis of the phase acquired by
the stabilization laser is made (step 5). Here, the stabilization laser inten-
sity at the output of the interferometer is rotated by an additional YVO4
crystal ensuring it to be linearly polarized as the output fibers perform an
additional transformation of the polarization. Further on, the polarization
is rotated by using a λ/2 waveplate with a phase φλ/2. Finally, splitting up
the intensities on a polarizing beamsplitter allows to compare the intensities
for H and V polarized light measured at two photodiodes. The difference
of both intensities are now used to extract a suitable error signal E. The
error signal extracted is suitable for applying a stabilization scheme as it
depends on the relative phase φSL acquired in the interferometer and on the
additional polarization rotation φλ/2: E(φSL, φλ/2) ∝ cos (φSL + φλ/2).
Finally, a P-I feedback loop coupled to the piezoactuatoris applied to change
the path length of the long interferometer arm and allows to lock the phase
φSL + φλ/2 to a constant value of π/2 (step 6). The residual variations in the
phase are normally distributed with a standard distribution in the range
of ∆φSD ≤ 0.03π during closed loop operation. This value cannot be in-
terpreted as the actual residual phase fluctuations in the interferometer, as
fluctuations in the amplitude of the stabilization intensity and a non-optimal
compensation of all fluctuations can contribute to it as well. Therefore the
observed fluctuation ∆φSD = 0.025π can be only used as a rough upper
bound describing the fluctuations.
A major advantage of the scheme is that during closed loop operation any
change in the phase φλ/2 performed by rotating the λ/2 waveplate mounted
on a motor7 is compensated by introducing a relative phase shift with with
opposite phase −φλ/2 while ensuring the phase to be stable. This effectively
leads to a manipulation of the relative phase acquired by the photons. In
contrast to similar schemes as used in [150], allowing to apply fringe stabi-
lization only for a limited number of periods, the phase can be manipulated

7 OWIS DRTM 40 rotation motor
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Figure 9: Time multiplexing and demultiplexing of the stabilization laser
intensities allowing to stabilize each arm of a two-path interferom-
eter configuration independently. The scheme is straightforwardly
expanded to 3, as used in this work, or more interferometer arms.
An optical chopper is used to time-multiplex the stabilization sig-
nals introduced into each interferometer arm into 3 different time
windows. The signals are extracted at the respective interferome-
ter output of each arm and electronically time-demultiplexed such
as to gain the error signals corresponding to each interferometer
arm.

arbitrarily with a speed limited only by the actuation time intrinsic to the
actuators used of about ms. More significantly, no optical component apply-
ing these transformations is required to be placed within the interferometer,
minimizing the influence of potential additional noise sources, while avoid-
ing additional losses in the photon transmission.
This will be the method chosen to control and manipulate each of the differ-
ent phase settings at each interferometer loop. Nevertheless, the reliability
and independence of these adjustments can only be warranted if the stabi-
lization intensities associated to each interferometer arm can be effectively
distinguished from each other. A spatial discrimination is not possible, as
the SPDC photons and the stabilization laser share the same spatial modes
over all arms. Besides spectral multiplexing of the signals time multiplexing
offers an effective strategy for this purpose:

3.3.2 Time multiplexing scheme

For the purpose of stabilizing and manipulating all 3 different interferome-
ter loops of an interferometer system independently, the hybrid interferom-
eter configuration offers an advantage: The required laser light for the sta-
bilization of the longer interferometer loops are coupled into the free space
path of the previous arms with the help of dichroic beamsplitters. These
are designed with a polarization independent transmission/reflection ratio
of 70%/30% for 780nm and a transmission > 98% for 806nm (see 9). Here,
the choice of an asymmetric splitting ratio is necessary as the laser light
introduced in the previous arm is required to be transmitted with enough
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Figure 10: Design of the chopper blades used to time-modulate the stabiliza-
tion laser intensities. The notation "O" denotes an open, while "B"
denotes a closed surface of the chopper blades. The different sta-
bilization laser modes are transmitted through the open chopper
blades, such that they share ≈ 25% of the total measurement time.
In parallel, the SPDC photons are transmitted through the outer
open blades over ≈ 75% of the time. The spatial locations of the
different stabilization laser modes (SL 1, SL 2 and SL 3) and of
the photons are depicted in the same figure.

efficiency to interfere with the short arm laser light. Losses in the regime
of 30% are low enough for a sufficiently high visibility above 90%. This
enables a reliable stabilization as the difference between maxima and min-
ima of the error signal is well above the range of the electronic device’s noise
(provided that the total signal amplitude is orders of magnitude higher than
the noise amplitude). A further reduction of the noise can be achieved by se-
rially connecting the photodiode resistance with a suited capacitance. This
implements a low pass filter (<kHz regime) on higher frequent noise with a
cut-off frequency well above the noise frequencies to be compensated.

As the laser light coupled into each short and long interferometer arms
share the same spatial mode, it can, in the worst case, interfere and lead to
the dependence of the extracted error signals on all interferometer phases
acquired at each loop. In order to overcome this problem the laser light is
split up into three spatial modes and time multiplexed with respect to each
other by transmitting them through the (inner) alternating blades of an opti-
cal chopper (See Fig. 10 for the design of the blades used). The inner blades
are distributed to offer an equivalent transmission time for each stabiliza-
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tion laser. Additionally, these alternate with outer blades through which
the SPDC photons are transmitted after traversing the whole interferometer
system. This enables to detect the photons at times for which the stabiliza-
tion laser is not coupled into the interferometers. Otherwise the stabilization
laser would lead to additional photon count rates difficult to be completely
suppressed by optical filtering. The openings of the outer blades are chosen
to correspond to ≈ 75%, while the inner blades used for the stabilization
laser share ≈ 25%. This allows a compromise between photon loss and a
higher integration time available for the stabilization.
The respective intensities of the stabilization laser are analyzed at the out-
put of each interferometer arm according to the polarization multiplexing
scheme described before. Here it is ensured that the polarization along the
short arm is in the P/M and R/L plane. The polarization state along the
long arm can be independently addressed by an YVO4 crystal. Another
crystal placed at the output of each interferometer loop adjusts the overall
polarization transformation of both modes before being analyzed at the re-
spective polarization analysis, used to apply the polarization multiplexing
scheme described in 3.3.1. The time demultiplexing of the required laser
signals is performed electronically by additional sample-and-hold circuits
in front of the P-I-stabilization setup. This allows to trigger a closed feed-
back loop only at the times for which the corresponding laser intensities are
detected. This enables to stabilize the interferometers referencing them only
on the respective error signals E(φSL,i, φλ/2,i) ∝ cos (φSL,i + 2φλ/2,i). These
depend only on the respective phases φSL,i acquired by the stabilization
laser and on the phases φλ/2,i manipulated at each arm (i = 1, 2, 3). Closing
the feedback loop on the time-demultiplexed signal separately allows to sta-
bilize the respective phases φSL,i + 2φλ/2,i to 0 and set each relative phase
acquired by a SPDC photon to the chosen value of −2φλ/2,i.
The stabilization scheme is scalable to more interferometer systems, as for
each subsequent arm the polarization state along each short and long arm
can be adjusted to be orthogonal. In addition, the time multiplexing scheme
only requires a proper design of chopper blades enabling to time-multiplex
more stabilization laser intensities.

3.3.3 Laser frequency stabilization

Standard path length stabilization techniques— Instabilities in the pump
and stabilization laser frequencies can lead to an additional fluctuation of
the interferometer phases and therefore they have to be compensated over
long measurement times as well.
These phase shifts can clearly surpass a full period for typical frequency vari-
ations ∆νp in the range of several hundreds of MHz and for total path length
differences ∆L of up to 4.9m (corresponding to the longest path along the
3 interferometer arms) as implemented in this work. For example, in order
to achieve phase fluctuations down to ∆φ ≤ 0.03π, a typical laser frequency
stability of down to ∆νp < 5Mhz is required.
The same requirements have to hold for the stabilization laser diode, which
serves as a reference for each independent interferometer arm phase. Dur-
ing closed loop operation the phase drifts associated to a change in the
stabilization laser frequency ∆νs would be also compensated even if these
fluctuations are independent of the intrinsic interferometer noise for which
the stabilization scheme was applied.
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This problem can be routinely addressed by standard stabilization tech-
niques, allowing to achieve absolute frequency stabilizations down to≈ 1Hz
in the laser bandwidth. For example, by using current technology based on
the coupling of the laser mode to an ultrastable cavity mode [8].
Alternatively, it is sufficient to use stable cavity systems based on materials
not standing up to the high precision requirements described before. For
example, by stabilizing its resonance frequency to a stable reference, such
like a stable frequency reference.

Frequency Comb Stabilization— Besides references based on atomic tran-
sition frequencies, frequency combs have risen in the last 10 years as one
reliable source of reference frequencies with an absolute precision down
to 10−16 [136, 187]. A frequency comb consists of a pulsed mode train of
equally distributed frequencies, which can be fully characterized by the rep-
etition frequency fRep and the carrier envelope offset frequency fCEO. Only
recent developments in the spectral broadening of ultrashort pulses by us-
ing photonic crystal fibers have allowed to preserve the coherence of the
pulses8. These advances have been central for enabling the referencing of
both frequencies fCEO and fRep to a stable source in the microwave regime
(Hydrogen Maser). This, in summary, enabling to transfer the precision to
be achieved for microwave references to the regime of optical frequencies.
The method used to transfer the optical frequency comb stability onto one
laser mode as in this work, is as follows:
A maser referenced frequency comb centered at a wavelength of 780nm 9

with a repetition rate of 250Mhz is used to stabilize the laser frequency
of the laser diode mode centered at λ = 781.6 ± 0.4nm. The laser mode
bandwidth is narrowed to ≤ 400kHz by a diffraction grating [139] (grating
with 1800 lines/mm by Edmond Optics and laser diode by Thorlabs model
DL7140-201S). Furthermore, this method allows to manipulate and stabilize
the central frequency to the desired frequency by tilting the grating.
In order to stabilize its frequency, a portion of the laser light is split up and
overlapped with the frequency comb light at a beamsplitter with balanced
splitting ratio at 780nm. The overlap between both modes is maximized
with respect to their polarization state and spatial mode distribution such
that the beat note frequency ν = νs − νFC between the laser νs and one fre-
quency comb frequency νFC can be detected at a Si PIN photodiode. No
strict requirements for the photodiode bandwidth have to be met, as a low
pass filter with cutoff frequency of 10MHz10 is used to electronically filter
out only one possible beat note frequency at frequencies below 10MHz. It is
placed between two amplifiers11 used to enhance the beat note signal with
an amplitude in the µV to the mV regime as required to drive a PLL com-
parator. Finally, this device delivers an output signal with an amplitude
depending on the phase difference between the beat note frequency and
an external reference frequency in the MHz regime. The PLL comparator
output signal drives a piezoelectric actuator placed at the external cavity
grating of the stabilization laser diode. If it is operated in a closed loop
configuration, the laser can be locked to a stable frequency. Here, the figure
of merit is that the observed beat note frequency has a FWHM bandwidth
of 255.03± 10.55kHz centered at 7.43± 0.05MHz. This offset frequency is
given by a signal generator (see Fig. 11). The maximally achievable preci-

8 Considered were PCFs manufactured by Crystal Fibre
9 Menlo Systems

10 Mini Circuits BLP10+
11 Mini Circuits ZFL-500-LN 0.1-500MHz
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Figure 11: Measured beat note frequency between the stabilization laser and
one frequency comb mode during closed loop operation and ref-
erenced to a stable frequency signal generated by a signal gen-
erator. A Gaussian fit allows to determine the beat note cen-
tral frequency at 7.43 ± 0.05MHz with a FWHM bandwidth of
255.03± 10.55kHz characterizing the achieved stability.

sion is limited by the linewidth of the frequency comb and of the laser diode
mode. Higher frequent technical noise in the kHz regime affecting the laser
diode mode is not actively compensated, as the observed frequency stability
fulfills the requirements for this work. Previous passive compensation of a
portion of the technical noise is achieved by electronically filtering these fre-
quency components from the laser diode driving current (leading otherwise
to a significant broadening of the observed beat note bandwidth up to the
MHz regime).

Referencing of the Pump Laser Frequency— The application of similar sta-
bilization schemes for the pump laser frequency at 402.8nm is limited by
the fact that no frequency combs at a wavelength regime of 400nm are com-
mercially available. Before resorting to atomic transitions in Potassium pro-
viding a stable clock at this wavelength regime [65] it is experimentally less
demanding to stabilize it on a transfer cavity whose resonance frequency
is stabilized to the referenced 781.6nm laser diode. The Hänsch Couillaud
locking scheme is used for that purpose. Finally, the blue laser diode fre-
quency mode can be referenced to the transfer cavity by making use of the
same stabilization technique. In this way, effectively the pump laser and sta-
bilization laser central frequency is synchronized. This permits to stabilize
the pump laser with the same precision as for the stabilization laser, too.
Concave mirrors (r=-200mm) specified with a polarization independent re-
flectivity of up to > 98% for wavelengths between 395− 410nm and between
770− 800nm are used for a confocal cavity configuration with a 200mm mir-
ror separation. In order to offer a passive reduction of mechanical vibration
both mirrors are placed at the end of a cylindrical aluminium structure.
In order to apply the stabilization scheme, a portion of the blue 402.8nm and
infrared laser 781.6nm diode light are polarized at 45◦ and overlapped at a
beamsplitter with 50/50 splitting ratio. The intensities in one output mode
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Figure 12: The Hänsch Couillaud locking scheme is used to extract a suit-
able error signal both for the stabilization laser at 781.6nm (a))
and for the pump laser at 402.8nm (c)) when coupled onto a
Fabry-Perot cavity. These signals are displayed together with the
transmission signals observed at the output of the cavity for a
periodic variation of the cavity length. During closed loop opera-
tion the resonance frequency of the cavity is adjusted to observe
maximal transmission for the IR light (b)). At the same time,
the frequency of the blue laser diode mode is adjusted to be in
resonance with the same cavity (d)), as depicted for typical mea-
surement times of up to 10 minutes.

are coupled into the input of the confocal Fabry-Perot cavity and detected
at its output after dichroically splitting up the intensities and distributing
them into two separate photodiodes. A glass plate is placed at the centre
of the cavity at the Brewster angle to enable the suppression of the verti-
cal polarization components for both wavelengths (due to slightly different
optimal angles for both wavelengths, the setting is optimized for the blue
laser light, which suffer from an intrinsic higher absorption loss at the glass
plate).

IH − IV =
I0T1R sin φ

(1− R)24R sin φ/22 . (40)

The light reflected at the input of the cavity is overlapped with the hori-
zontal polarization component coming out of the cavity. It carries the phase
information acquired during the traversal of the optical cavity. In order to
extract that phase information, the laser light is split up dichroically and
analyzed by a λ/4 waveplate allowing to project the resulting circularly
polarized light into linear polarized components to be analyzed at two po-
larization beamsplitters designed for the different wavelengths.
Comparing the output intensities for H and V polarized light at an opera-

55



experimental implementation of qudit states

tion amplifier allows to extract the error signal
Here, T1 denotes the transmission of the input mirror and R the reflectivity
of the mirrors, while φ corresponds to the phase acquired in the cavity. The
experimentally observed error functions for both wavelengths are plotted
during a periodic scan of the cavity using a piezoactuator onto which one
of the cavity mirrors is mounted (Figs. 12 a) and c)) together with the trans-
mission signals observed at the output. A closed feedback loop between the
cavity piezoactuator and the error signal is driven for the IR light. Similarly,
another closed loop between a piezo driving the external diffraction grat-
ing of the blue laser diode and the corresponding error signal for blue light
(Figs. 12 b) and d)) is operated. Both closed loops can be maintained stable
over measurement times of up to several days.

3.4 adjustments and calibration of the setup

The stabilization enables to run the experiment reliably over the required
measurement times. Nevertheless, in order to ensure the high fidelity de-
tection of entangled states, the equalization of the respective interferometer
path length differences to each other is required. Similarly, the analysis of
the entangled states requires to apply a reliable calibration scheme of the
phase settings set at the respective interferometer arms.

3.4.1 Adjustment of polarization and time delay

Compensation of polarization rotations— The photons transmitted along
the short and long interferometer arms of each interferometer are required
to be indistinguishable with respect to the polarization degree of freedom.
Here, it is necessary to compensate for a polarization rotation due to the
birefringence of the optical fibers. Moreover, as only H or V polarized down-
conversion photons are fed into each interferometer system, the transforma-
tion applied along the fibre paths of the interferometers are compensated by
manual polarization controllers such that at the outputs the photons are H
and V polarized. No simultaneous compensation of the photon polarization
along the P/M basis is required, as no input photon is polarized along that
direction. All short and long interferometer arms of both partie’s interfer-
ometers are adjusted such as to apply the same polarization transformation
on the transmitted photons. Thus, a photon pair detected at the output of
the interferometers cannot be distinguished by its polarization.
Adjustment of path length differences— A last requirement to be met in or-
der to observe the time-energy entanglement of the created photons is that
the time delays implemented by one parties interferometer arms matches
the time delays of the other partie’s interferometers. First, the equalization
of the longer paths |1〉A1 and |1〉B1 of the first interferometer arms at Al-
ice’s and Bob’s side is undertaken. For that purpose both interferometers
are connected serially to each other and the intensity of a pulsed laser is
coupled through them (here, a 780nm pulsed fs-laser signal with repetition
rate of 82MHz). Measuring the output signal on a high speed photodiode
coupled to a 10GHz resolution oscilloscope allows to determine the time
delay up to a precision of down to ≈ 100ps corresponding to ≈ 3cm. A
fine adjustment of the time delay is performed by coupling downconver-
sion photons at 806nm into the same system and scanning the path length
difference of one interferometer with a change in the retroreflection prism
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Figure 13: Observed variation of the photodiode signal of a pulsed laser sig-
nal at 780nm measured at the output of a serial interferometer
construction consisting of Alice’s first interferometer arm with
delay ∆T and Bob’s first and second interferometer arms with de-
lays ∆T and 2∆T, respectively. The intensity fluctuations due to
the interference between photons traversing the short interferom-
eter arms contributes to a small additional modulation of the sig-
nal. In contrast, the interference between the path combinations
of Alice’s and Bob’s first interferometers and the path of Bob’s
second interferometer leads to maximal interference fringes for
a translation stage position of 16.15mm. Setting the translation
stage to this position allows to adjust the time delay 2∆ of Bob’s
second arm to be exactly the double as for his first arm.

position (see Fig. 9). Choosing directly SPDC photons allows to discard pos-
sible mismatches from the adjustments made at 781.6nm due to the different
refractive indices observed at both wavelengths. Here, we make use of the
reduced SPDC photon coherence length bounded from below as ≥ 1.79mm
as evaluated from the (measurement resolution limited) photon bandwidth
of below ∆λ ≤ 1nm:
Only for an overlap of both time delays within the specified coherence
length, interference of both traversed path configurations |1〉A1 |0〉B1 (Alice’s
long arm of first IF and Bob’s short arm of his first IF) and |0〉A1 |1〉B1 (Al-
ice’s short arm of first IF and Bob’s long arm of his first IF) will lead to the
observation of an interference pattern. Here, the maximal interference visi-
bility to be observed is limited to 50% due to the contribution of the terms
|0〉A1 |0〉B1 and |1〉A1 |1〉B1 which cannot interfere with each other. Even for
unequal polarization transformations in both paths, interference fringes are
detected with a sufficiently high visibility to be clearly discriminated from
the background noise. The motorized scan over many periods leads to the
observation of interference fringes at arbitrary phases over the range defined
by the coherence length. Finally, choosing the translation stage position at
which a maximum interference signal was observed allows to equalize both
interferometer arms.
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The same procedure can be applied to adjust Bob’s 2∆T arm to the double
time delay as acquired by his shorter arm with delay ∆T. For that purpose,
the short interferometers at Alice’s and Bob’s site are further serially con-
nected with Bob’s 2∆T interferometer arm. A time delay measurement with
the pulsed laser allows to perform rough readjustments in the time delay of
this arm. The additional difficulty at the next step is to discriminate between
interference fringes resulting from an interference between both shorter in-
terferometer paths |0〉A1 |1〉B1 |0〉B2 and |1〉A1 |0〉B1 |0〉B2 and the fringes be-
tween the paths encoded by |0〉A1 |0〉B1 |1〉B2 and |1〉A1 |1〉B1 |0〉B2 . Only in-
terference fringes obtained for the second case will be useful for adjusting
Bob’s long interferometer arm. This problem can be solved by ensuring that
the polarization transformations for the paths |0〉A1 |1〉B1 and |1〉A1 |0〉B1 are
orthogonal to each other, disabling them to interfere. For this configuration
a fine adjustment of the path length for |1〉B2 allows again to find the op-
timal position (see Fig. 13 for an adjustment performed with the pulsed
laser).
Subsequently, the time delay for |1〉B2 is equalized to the corresponding de-
lay for |1〉A2 by resorting to the same method as used for balancing |1〉A1
and |1〉B1 . Finally, the path |1〉B3 is adjusted to perform exactly the double
time delay of |1〉A2 and |1〉B2 , by applying the same method as described
before for adjusting Bob’s 2∆T interferometer arm to have the double path
length difference as |1〉A1 and |1〉B1 . Finally, the length difference encoded
in |1〉B3 is equalized to |1〉A3 .

3.4.2 Calibration of the interferometer phases

Calibration requirements— As a final step before performing further mea-
surements it is required to calibrate the relative phase settings implemented
in the respective arms. Ideally, the calibration should be performed locally,
in order to allow each party to adjust their relative analyzer directions in
scenarios where both analysis devices are situated at long distances from
each other.
A direct measurement of the relative phases by an external high coherence
laser source sharing the central wavelength as the SPDC photons can be
used for that purpose: The resulting interference fringes can be used to de-
termine the actually encoded relative phases. But this would require a differ-
ent design of the chopper blades used to implement the time-multiplexing
scheme: The laser intensity would have to be coupled through an additional
time slot different from the ones chosen for the SPDC downconversion pho-
tons (see 3.3.2). This would avoid the saturation of the detectors.
The method chosen in this work is based on their direct adjustment by ref-
erencing on the coincidence count rates detected at the different time win-
dows:
Calibration scheme used in this work— Here, the calibration scheme starts
with a closer look at the coincidence functions associated to the 2x2, 2x3 and
2x4 dimensional states encoded in the 6∆T, 5∆T and 4∆T time windows of
Eqs. ( 30),( 29) and ( 28) as registered at the detector outputs +A+B (the
same calibration procedure can as well be applied when using coincidence
functions at other coincidence time windows with negative time delays and
for the detection at other output modes):

C(αA1 , βB1 )2d
+,+ = sin

(αA1 + βB1 )

2

2

(41)
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Figure 14: Theoretical coincidence probabilities corresponding to the 2x2,
2x3 and 2x4 dimensional states for a variation of the phase αA2

at Alice’s second (a)) and to the 2x5, 2x6, 2x7 and 2x8 dimen-
sional states as a function of the αA3 phase (b)) at Alice’s third
interferometer arm. The observation of coincidence count rates
with the depicted behavior can be used to calibrate the respective
phases αAi and βBj encoded in each parties 3 interferometer arms
denoted with i, j = 1, 2, 3. The variation observed corresponds to
the case in which the phases not being scanned are calibrated to
a constant value of αAi = βBj = 0.

C(αA1 , αA2 , βB1 , βB2 )3d
+,+ =

1
9

(3 + 2 cos (αA1 − αA2 − βB1 )

−2 cos (αA2 + βB2 )− 2 cos (αA1 − βB1 + βB2 )) (42)

C(αA1 , αA2 , βB1 , βB2 )4d
+,+ = cos

(αA1 + βB1 )

2

2

sin
(αA2 + βB2 )

2

2

(43)

Detecting a minimum in the 2d coincidence function can be attributed to
any combination of phases αA1 and βB1 satisfying the condition αA1 + βB1 =
0, i.e. each phase can either be 0 or have the same absolute value with op-
posite sign.
In order to set these phases to zero it is necessary to register the 3d coin-
cidence count rates as a function of αA2 (see Fig. 14 (a))). This phase can
be changed by φλ/2 by rotating the λ/2 waveplate used at the polarization
analysis of the corresponding stabilization setup. Here, if αA1 = βB1 = 0 is
filfilled the coincidence count rate remains constant at 1/9 of the maximal
observed amplitude, and varies sinusoidially if this condition is not fulfilled.
For that purpose αA1 and βA1 are alternatingly varied during a scan of αA2

until a minimum interference visibility is observed.
As a function of αA2 and for the adjusted phase settings αA1 = βB1 = 0
a variation of the coincidence count rates for the 4d state is observed with
maximal visibility. If a minimum in the coincidence probability is observed
the condition αA2 + βB2 = 0 has to hold, again not excluding the possibility
that both phases are equal but with the opposite sign.

A further calibration step is required in order to fulfill the condition αA2 =
βB2 = 0. For that purpose, one has to take a closer look at the coincidence
functions for the 2x5d, 2x6d and 2x7d state:
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C(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )5d
+,+ =

1
25

(5 + 2 cos (αA1 − αA2 − βB1 )

−2 cos (αA1 + αA2 − αA3 − βB1 )− 2 cos (αA2 − αA3 − βB2 )

−2 cos (αA1 − αA3 − βB1 − βB2 ) + 2 cos (αA2 + βB2 )

+2 cos (αA1 − βB1 + βB2 )− 2 cos (αA3 + βB3 )

+2 cos (αA1 + αA2 − βB1 + βB3 ) + 2 cos (αA2 − βB2 + βB3 )

+2 cos (αA1 − βB1 − βB2 + βB3 )) (44)

C(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )6d
+,+ =

1
9

(3− 2 cos (αA2 − αA3 − βB2 )

−2 cos (αA3 + βB3 ) + 2 cos (αA2 − βB2 + βB3 )

· sin (αA1 + βB1 )2 (45)

C(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )7d
+,+ =

1
49

(7− 2 cos (αA1 + αA2 − αA3 − βB1 )

+2 cos (αA2 − αA3 − βB2 ) + 2 cos (αA1 − αA3 − βB1 − βB2 )

−4 cos (αA2 + βB2 ) + 2 cos (αA1 − αA2 − αA3 + βB2 − βB3 )

+2 cos (αA2 − αA3 + βB2 − βB3 )− 2 cos (αA1 − αA3 + βB1 + βB2 − βB3 )

+2 cos (αA3 + βB3 ) + 2 cos (αA1 + αA2 − βB1 + βB3 )

+2 cos (αA1 − αA2 + αA3 − βB1 + βB3 ) + 2 cos (αA2 − βB2 + βB3 )

+2 cos (αA1 − βB1 − βB2 + βB3 )− 2 cos (αA2 + αA3 + βB2 + βB3 )

−2 cos (αA1 + αA3 − βB1 + βB2 + βB3 )) (46)

Here, scanning the relative phase adjusted at Alice’s third interferometer
arm αA3 leads to a variation of the predicted coincidence count rates for the
different states as depicted in Fig. 14 b). It suffices to take a closer look at
the coincidence function for the 2x7d state and iteratively adjust the phases
αA,2 and βB,2 until the coincidence count rates remain constant, while the
coincidences for the 2x5d state vary with maximal visibility. Only in this
case, the condition αA,2 = βB,2 = αA,3 = 0 is fulfilled. Subsequently, the
phase βB3 is scanned until the coincidence count rate corresponding to the
2x8 dimensional state

C(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )8d
+,+ = cos (

αA1 + βB1

2
)

2
cos (

αA2 + βB2

2
)

2

cos (
αA3 + βB3

2
)

2
(47)

reaches a maximal value. In this case the condition αA3 = βB3 = 0 is
fulfilled.

In order to implement the calibration scheme on experimentally observed
coincidence count rates typical integration times of up to 3s suffice to apply
a fitting scheme on the observed coincidence curves and from these to ex-
tract the corresponding motor position for which the corresponding phase
is set to 0.
After applying this calibration method a first characterization of the perfor-
mance of the used experimental setup for analyzing qudit entangled states
is made.
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Figure 15: Variation of the coincidence count rates detected within the time
windows associated to the encoded 2x8 to 2x2 dimensional states
as a function of the rotation angle of the λ/2 waveplate at Alice’s
first interferometer arm. For each coincidence curve a sinusoidal
function f (φ) = A(1 + V cos 2π(φ− φ0)/λ) is fitted, defined by
the visibility V, the amplitude A, the rotation angle offset phi0
and by the period of the fringes λ.

3.5 performance of experimental scheme

The ability of both parties to detect entanglement and to further use this
resource for its application on quantum information tasks can be character-
ized by the interference visibility observed and the reproducibility of the
results. For that purpose a scan of the respective interferometer phases will
lead to the observation of interference fringes displaying intrinsic proper-
ties of the state studied: The measured interference visibilities for different
states will be the figures of merit for the characterization of the quality of
the generated entanglement.
Interference visibility— For a scan of the phase αA1 at Alice’s first interfer-
ometer arm the interference fringes vary sinusoidially as depicted in Fig.
15 for a coincidence time window of 1.15ns and an integration time for
each data point of 3s. The phases are calibrated to fulfill the conditions
αA2 + βB2 = 0 and αA3 + βB3 = 0 ensuring to observe maximal coincidence
counts for the 2x8d, 2x4d and 2x2d dimensional states (Eq. 47). Here,
observing maximal interference visibilities doesn’t depend on the concrete
values of αA2 , βB2 , αA3 and αB3 and are thus explicitly chosen to not be-
ing equal to 0. This enables to observe interference fringes for states with
dimensions 2x7, 2x6, 2x5 and 2x3 simultaneously, too. Otherwise some of
these count rates would remain constant as a function of the scanned phase,
as described in the calibration section (See 3.4.2).

A fitting algorithm is applied on the observed coincidence counts with a
function parameterized by f (φ) = A(1 + V cos 2π(φ− φ0)/λ) with V de-
noting the interference visibility, A the amplitude, φ0 the phase offset and
λ the period of the fringes. For this parameterization, the data for the 2x8
dimensional state corresponds to a (two-photon) interference visibility of
VA1

8d = 0.958± 0.017. For lower dimensional states such as 7d, 6d, 5d and
3d the visibilities cannot simultaneously approach unity due to the different
dependence on the scanned phases (see Eqs.( 46), ( 45), ( 44) and ( 42)). This,
in a simplified picture, is due to the fact, that observing maximal interfer-
ence fringes as a function of a specific phase requires the remaining phases
to acquire specific multiples of 2π/d with d denoting the specific dimension
of the state. Accordingly, the coincidence functions offer reduced visibili-
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Figure 16: Variation of the coincidence count rates associated to each state
of different dimensionality between 2x8 to 2x2 as a function of
the rotation angle of the λ/2 waveplate at Alice’s second interfer-
ometer. Each coincidence count rate is plotted together with the
corresponding optimal fitted curve.

ties. That these are high enough for further applications is directly tested by
applying the corresponding entanglement (see 4.2.1) and dimension entan-
glement schemes (see 6.1).
Negligible interference fringes are observed for the 2x4d state, as predicted
for the condition αA2 + βB2 = 0 (Eq. 43). Finally the interference visibility
for the 2x2 state is only limited by the decreasing signal to noise ratio in-
trinsic to the probabilistic splitting of the coincidences into different time
windows: Only 2 out of the possible terms contributing to a coincidence
are distributed to this time window. Here, the typically observed value is
in the range of VA1

2d = 0.751± 0.036 (Eq. 41). This parameter can be further
increased by choosing a smaller coincidence time window and therefore a
better signal to noise ratio as for the coincidence curves depicted in Fig. 18.
As predicted by theory, the coincidence count rates of the 2x8 dimensional
state vary proportional to cos2 (αA1 + βB1 )/2. In contrast, this functional de-
pendence is described as sin2 (αA1 + βB1 )/2 for the 2x2 state. A shift in the
rotation angle, corresponding closely to a phase shift of π of 0.949± 0.055 ·π
is observed, close to the predicted value of π between both curves.
In contrast, as a function of αA2 and for fixed phase relations αA1 + βB1 = 0
and αA3 + βB3 = 0 (again, with the values for each individual phase un-
equal 0) one can observe different interference visibilities for the different
states. A similar high visibility of VA2

8d = 0.961 ± 0.029 is observed. The
coincidence count rates for the 2x6d as well as for the 2x2d state are mini-
mal as predicted for a phase relation αA1 + βB1 = 0, while for the 2x7, 2x5
2x4 states now the interference visibilities are higher: VA2

7d = 0.774± 0.020,
V5d = 0.585± 0.021 and VA2

4d = 0.847± 0.024.
Here, the phase relation between the 8d and 4d coincidence count rates cor-
responds closely to 1.064± 0.075 · π. This is expected for a variation of the
8d count rates ∝ cos2 (αA2 + βB2 )/2, while for the 4d state these are pre-
dicted to vary ∝ sin2 (αA2 + βB2 )/2, i.e. with a π phase shift between each
other.

Finally, a scan of the coincidence count rates as a function of αA3 is pre-
sented in Fig. 17, here for a fixed phase relationship αA1 + βB1 = 0 and
αA2 + βB2 = 0. As expected, no variation of the coincidence count rates
are observed for the 4, 3 and 2 dimensional states, whose coincidence count
rates show no dependence on the phase αA3 nor on αB3 . In contrast, the 8d
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Figure 17: Variation of the coincidence count rates associated to each state
of different dimensionality between 2x8 to 2x2 as a function of
the rotation angle of the λ/2 waveplate at Alice’s longest interfer-
ometer. Each coincidence count rate is plotted together with the
corresponding optimal fitting curve.

state presents interference fringes with a visibility of VA3
8d = 0.945± 0.021,

while again those for the 7 to 5 dimensional states are low for the individual
choice of the other phases.
For a scan of the phases as described here, the observed period of the fringes
deviates within the standard deviation by up to λ/λ0 = (375.12◦/360◦ ±
11.34◦/360◦) = 1.042± 0.032 from the expected range of η ≈ 805.9/781.6 =
1.031 (with λPhoton = 805.9nm and λSL = 781.6nm corresponding to the
wavelengths of the photons and the stabilization laser, respectively). The
last value is given by the quotient of the SPDC photon to the stabilization
laser wavelength. This factor is expected as the phase at each interferom-
eter loop is varied over optical path lengths multiple of the stabilization
laser wavelength. It differs by this factor from the optical path lengths ob-
served by the SPDC photons: A phase change of 360◦ as determined from
the variation of the stabilization laser signal corresponds to a phase change
of 360◦ · η for the SPDC photons (in Figs. 15,16,17 only the actual motor
rotation angles multiplied by 2 are depicted. Thus the actual phase scanned
by the photons can be approximated by making the described conversion.)

Reduction of the width of the coincidence time window— The observed
signal to noise ratio can be further improved by reducing the width of the
coincidence time windows over which the coincidence count rates are inte-
grated. This can be attributed to the fact that the coincidence count rates are
typically distributed according to a Gaussian distribution as a function of
the integration time window δtint. In contrast, the detected background
count rates increase linearly with the time window. Calculations reveal
that the signal to noise ratio decreases to a first approximation according
to ∝ 1/δtint as a function of the time window width δtint. This leads ef-
fectively to observing the best signal to noise ratios for the minimal timing
resolution, in this work of ≈ 164 ps specified for the used time-to-digital
converter 12. As the coincidence time distributions detected are spread over
time windows with a FWHM distribution of typically ≈ 1ns, effectively co-
incidence count rates are discarded by reducing the time window.
For the reduced time window of ≈ 164ps the coincidence count rates ob-
served for the 2x8, 2x4 and 2x8 dimensional states (Fig. 18) are again pre-

12 The resolution of the Acam TDC GPX is specified to be 82ps, but coincidence count rates have
to be averaged over two subsequent time bins in order to reduce additional time scattering
intrinsic to the card electronics.
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Figure 18: Observation of coincidence count rates for the 2x8, 2x4 and 2x2
dimensional states as a function of αA1 (a)), αA2 (b)) and αA3

(c)) for a reduction of the coincidence time window down to
164ps. The improved signal to noise ratio leads to an improve-
ment of the observed two-photon interference visibilities of the
2x8 dimensional states to V > 97%: V8d,A1 = 0.973± 0.012 (a)),
V8d,A2 = 0.989± 0.029 (b)) and V8d,A3 = 0.974± 0.013 (c)). Similar
improvements in the visibilities are observed for the 2x4 and 2x2
dimensional states. Here, a visibility of up to VA2

4d = 0.962± 0.037
and V2d,A1 = 0.822± 0.042 as a function of αA1 are reached.

sented as a function of the respective phases αA1 , αA2 and αA3 of Alice’s
first to third interferometer arm, while constraining the other phases not
being scanned to αAi + βBi = 0. The fitted visibilities for the 8 dimen-
sional states are VA1

8d = 0.973 ± 0.012 (a)), VA2
8d = 0.989 ± 0.029 (b)) and

VA3
8d = 0.974± 0.013 (c)). Again, for a variation of αA2 and respectively αA1

the 2 and 4 dimensional states display a variation of the coincidence count
rates with visibilities VA2

4d = 0.962± 0.037 (b)) and VA1
2d = 0.822± 0.042 (a)).

Similarly, for the phase relation αA1 + βB1 = π, the coincidence count rates
for the 4d state display interference fringes with VA1

4d = 0.945± 0.039 as a
function of αA1 (Not plotted). The observed visibilities serve as a figure of
merit to characterize the capability of the analysis to detect entanglement
in higher dimensional states. As will be seen in the next chapter, these are
above the critical visibilities required for the observation of entanglement.
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4

Q U D I T E N TA N G L E M E N T D E T E C T I O N

In this chapter the basic foundations for the detection and finally the exper-
imental demonstration of entanglement for the prepared qudit entangled
states will be presented. Here, a general review of the entanglement crite-
ria suited for detecting the entanglement present in qudit entangled states
is presented (see sections 4.1 and 4.3). These criteria enable the detection
of bipartite qudit entangled states based on the evaluation of Bell type in-
equalities (section 4.1.2), the analysis of the created states in mutually un-
biased bases (section 4.3.2), on the determination of their Schmidt number
(section 4.3.1) and finally on the evaluation of an entanglement witness (sec-
tion 4.3.3). Finally, we present the experimental results on the evaluation of
a Bell-type inequality (section 4.2) suited for detecting the entanglement of
the emission time correlated two-photon qudit states generated in this work.

Out of the broad range of entanglement criteria [62, 72], we will concen-
trate here only on the ones suited for the entanglement detection of qudit
entangled states as prepared in this work.

4.1 bell-type inequalities

Since the first proposal of a Bell-type inequality [13] able to describe the in-
compatibility of quantum theory with a local realistic theory, a broad range
of inequalities have been developed:

4.1.1 CHSH inequality

As introduced in 2.1.4, theories satisfying both axioms of realism and lo-
cality are called local realistic hidden variable theories. Based on this
theory a Bell inequality could be derived [13], used for showing that quan-
tum theory cannot be reconciled with both axioms of realism and locality
at the same time. A reformulation of the inequality lead to the derivation
of the Clauser-Horne (CH) [37] and Clauser-Horne-Shimony-Holt (CHSH)
[36] inequalities. Out of these, the second one is most widely used for the
experimental verification of two-qubit entanglement of a quantum state en-
coded into two particles. It considers a scenario in which both particles are
distributed to two parties, Alice and Bob, whose analysis devices are de-
scribed by observables A(a, λ) and B(b, λ). The observables are dichotomic,
defining that for any measurement settings a and b only two possible results
+1 and −1 are to be observed. These depend on hidden variables λ deter-
mining the correlation between the outcomes based on the description by a
hidden variable distribution function p(λ) according to

E(~a,~b) =
∫

p(λ)A(a, λ)B(b, λ)dλ, (48)
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where
∫ ∞
−∞ p(λ)dλ = 1.

The locality condition is ensured if the measurement setting and outcome
on the observable A(a, λ) on the first particle cannot be communicated at
maximum with the speed of light to the local analyzer where the observable
B(b, λ) is applied on the second particle.
Finally, the CHSH inequality is based on the measurement of 4 correlation
values leading to the bound

ILR
CHSH = |E(~a,~b)− E(~a,~b′) + E(~a′,~b) + E(~a′,~b′)| ≤ 2 (49)

with each correlation measurement E for 4 different settings {a, b}, {a, b′},
{a′, b} and {a′, b′}.
Two-qubit entangled states encoded into a pair or particles could be used to
violate the Bell inequality experimentally (first by Freedman et al. [53] and
followed by Aspect et al. [9, 10]) with values for the Bell inequality param-
eter close to the maximal expected value of ICHSH,QM = 2

√
2 > 2. These

results clearly displayed that quantum states do not fulfill the description
given by a local realistic hidden variable model (LHVT).
The violation of a Bell inequality can be used to detect entanglement, as, in
contrast, no separable state can be used as a resource for violating it. This
will be used in this work, with special emphasis put onto the application
of Bell-type inequalities suited to determine the entanglement of bipartite
qudit entangled states.

4.1.2 CGLMP inequality

Entanglement detection schemes, suited to be applied on bipartite d dimen-
sional states can be based on Bell-type inequalities such as the one derived
by Collins, Gisin, Linden, Massar and Popescu (CGLMP) [38]. Bell-type in-
equalities on quantum states encoded in higher dimensions could be shown
to display a higher violation of local realism [80, 78, 79]. As this inequality
will be applied on quantum states as prepared in this work (see 4.1.2), a
short derivation will be given based on [155]. It starts with the definition
of a bipartite qudit state with each qudit state embedded in a d dimensional
Hilbert space HA = Cd and HB = Cd. Each party, Alice and Bob, has at its
disposal an analysis device with which it can obtain up to d different results
for the qudit local state they are analyzing. The main requirement of a real-
istic theory is that the coincidence probabilities are distributed according to
a well defined probability function

P(A1 = j, A2 = k, B1 = l, B2 = m) (50)

to be obtained for the different measurement results j, k, l, m ∈ {0, 1, ..., d−
1}. In full equivalence to the 2 dimensional case defined by the CHSH
inequality, both parties can choose between two different analysis settings
A1/A2 and B1/B2.
Here, the probabilities obtained for the different measurement outcomes to
add up to unity according to

∑
j,k,l,m

P(A1 = j, A2 = k, B1 = l, B2 = m) = 1. (51)
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In order to simplify the notation, the probability notation is simplified
according to

P(Aa = Bb + k) =
d−1

∑
j=0

P(Aa = (j + k)mod(d), Bb = j), (52)

describing the situation in which the measurement outcome on Alice’s
analysis device differs from the one obtained on Bob’s state by k.
Under these constraints, an inequality can be derived with the following
general form for an arbitrary dimension of each qudit:

Id =
mod[d/2]−1

∑
k=0

(1− 2k
d− 1

)

{[P(A1 = B1 + k) + P(B1 = A2 + k + 1) + P(A2 = B2 + k)+

P(B2 = A1 + k)]−
[P(A1 = B1 − k− 1) + P(B1 = A2 − k) + P(A2 = B2 − k− 1)+

P(B2 = A1 − k− 1)]}. (53)

For the purpose of detecting entanglement the bound Id = 2, valid for
arbitrary dimensions d, has to be surpassed as it restricts the studied states
to be described by a local realistic model. Accordingly, a violation of these
bounds can be used to detect entanglement.
Indeed, a violation of the inequality can be calculated for example for the
maximally entangled states of arbitrary dimension d

|Ψ〉d =
1√
d

d−1

∑
k=0
|k〉A|k〉B. (54)

Both parties define their analysis as a projection on

|k〉Aa =
1√
d

d−1

∑
k=0

e( 2πi
d s(k+αa))|s〉A (55)

and

|l〉Bb =
1√
d

d−1

∑
k=0

e( 2πi
d s(−l+βb))|s〉B, (56)

where the analyzer phase settings are αa and βb.
Here, an optimal choice of the analyzer phase settings of α1 = 0, α2 =
1/2, β1 = 1/4 and β2 = −1/4 will lead to variation of the coincidence
probabilities according to

P(Aa = k, Bb = l) = Tr(|Ψ〉d〈Ψ|d|k〉Aa〈k|Aa ⊗ |l〉Bb〈l|Bb ) =

1
2d3 sin2(π(k− l + αa + βb)/d)

. (57)

Inserted into the inequality this leads to its generalized form:

Id =
2
d2

mod[d/2]−1

∑
k=0

(1− 2k
d− 1

)(
1

sin2( π
d (k + 1

4 ))
− 1

sin2(−π
d (k + 3

4 ))
). (58)
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The evaluation of the CGLMP inequality terms for the set of maximally
entangled states introduced before enables to observe an increase of the
violation with increasing dimension, leading to a maximal parameter of
I∞ = 2.9698 > 2 for infinite dimensional maximally entangled states. This
value is higher than the violation I2 = 2.8284 to be obtained when testing
the CHSH inequality (equivalent to CGLMP for d = 2) on a bipartite 2
dimensional state. It is useful to characterize the higher violation of local
realism for high dimensional states by an admixture of (white) noise α. A
state is parameterized here as |Ψ〉 = α1/

√
d ∑d−1

k=0 |k〉|k〉+ (1− α)1/d. For
a state defined in a d → ∞ dimensional Hilbert space the critical noise
admixture still allowing to detect entanglement is decreased from α2

crit =

0.707 to αd→∞
crit = 0.6734 [155].

The violation of CGLMP inequalities can be shown to be necessary and
sufficient conditions for the observation of entanglement [113].

4.2 application of cglmp inequality on the prepared states

In order to apply the CGLMP inequalities on the states studied in this work,
a suitable measurement basis consisting of up to d projection measurements
is required in order to obtain d different results for each qudit analyzed by
the respective parties Alice and Bob. For that purpose, the analysis per-
formed by both partie’s interferometer systems is described in more detail.
Definition of projection measurements— At this point we want to take a
closer look at the observables required for testing a 2 dimensional CGLMP
inequality (equivalent to CHSH) on a 2x2 dimensional entangled state. Here,
two dichotomic measurements on each qubit encoded into a different parti-
cle are made. For example, for polarization entangled states encoded into a
pair of photons these would correspond to projections onto the two orthog-
onal states |H〉 and V〉.
For this experimental configuration, the dichotomic measurements can be
either performed by choosing devices, such as λ/2 waveplates combined
with polarization beamsplitters, allowing to project the incoming state onto
both states |H〉 and |V〉 or as polarizers, transmitting only one linear polar-
ization component. In the second case, H or V polarized light is transmitted
by setting appropriate settings of the polarizer itself. In order to apply the
former scheme for the analysis of d dimensional time-energy encoded states
multiport beamsplitters are suited [188]. In this case each qudit is projected
into d different orthogonal states at each of the d different output modes,
in equivalence to the projection onto 2 modes for a polarization beamsplit-
ter. It is not possible to use this scheme in this experiment, as due to the
series configuration of the interferometers only dichotomic projection mea-
surements can be performed at the output modes of the last interferometer
arm. This is due to the fact that the output modes of each interferometer
arm are directly fed into the input modes of the subsequent arm. This last
interferometer arm applies 2 orthogonal projections on the studied state, ei-
ther a projection onto the + or on the − output of the interferometer. It
is therefore necessary to use additional (offset) phases to set the required d
different projection measurements, in full analogy to choosing 2 polarizer
settings as required for the 2 dimensional case:
These can be defined by appropriate choices of the respective phase settings
αO,s

Ai
and βO,t

Bj
encoded in each interferometer arm with indices i, j = 1, 2, 3.

Here, the notation s and t refers to the full set of offset phases required
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to span a basis using Alice’s and Bob’s interferometer phases. Further on,
both parties are required to choose between two different analysis settings
A1/A2 and B1/B2.
Nevertheless, each interferometer arm is able to manipulate only one phase
α′kAi

and β′lBj
for indices k, l = 1, 2 and i, j = 1, 2, 3. Therefore, it is useful to

decompose the phases set at the respective interferometer arms by choos-
ing the decomposition into analysis and measurement phases according to
α′k,s

Ai
= αk

Ai
+ αO,s

Ai
and β′l,tBj

= βl
Bj

+ βO,t
Bj

. In this picture, a general projection
measurement is defined for each party according to

|as〉A =
1√
d

d−1

∑
m=0

ei(αk
Ai

+αO,s
Ai

)|m〉A (59)

|bt〉B =
1√
d

d−1

∑
n=0

e
i(βl

Bj
+βO,t

Bj
)|n〉B. (60)

Finally, the expectation value for a coincidence measurement can be ex-
pressed as

Pk,l,s,t = Tr[ρ(|as〉 ⊗ |bt〉)(〈as| ⊗ 〈bt|)] (61)

for the states ρ = |Ψd〉〈Ψd|. Here, |Ψd〉 = 1/
√

d ∑d−1
k=0,k′=m |k〉|k′〉 corre-

sponds to the states obtained by postselection of the analyzed states at time
delays (k− k′) = m∆T in units of ∆T. Correspondingly, the number of two-
photon emission time modes analyzed is varied as a function of the time
delays both parties agree to place their postselection window on.
Accordingly, the phase settings required for analyzing the different states of
different dimension vary. As described in sect. 3.4.2, for a 2 dimensional
state postselected at a time delay ±6∆T, only phases αk

A1
and βl

A1
are re-

quired such as to analyze the state. Additional phase settings αk
A2

and βl
A2

are required to analyze the 2x4 dimensional states postselected at delays
±4∆T, as well as the 2x3 dimensional states at ±5∆T. In contrast, the anal-
ysis of the bipartite 8, 7, 6 and 5 dimensional states depends on all 6 phases
available to both parties.

Choice of optimal measurement basis based on MUBs— In order to eval-
uate the maximal possible value for Id for the respective state analysis
used, the coincidence probability functions described in full detail in 3.4.2
are used with each phase replaced according to αAi → αk

Ai
+ αO,s

Ai
and

βBj → βl
Bj

+ βO,t
Bj

. Here, k, l = 1, 2 denotes the analysis settings and the
index i, j = 1, 2, 3 denotes the relative phase settings manipulated at each of
Alice’s and Bob’s interferometer arms.
Starting from the definition of Eq. 62 and choosing d = 2, it is necessary to
parameterize Alice’s measurement basis (and correspondingly Bob’s basis)

1√
2

(|0〉+ eiαO,s
A1 |1〉) (62)

as a function of the offset phase αO,s
A1

in order to define a 2d basis at
appropriate phase settings. For a 4d analysis it is expressed as

1
2

(|0〉+ eiαO,s
A1 |1〉+ eiαO,s

A2 |2〉+ ei(αO,s
A1

+αO,s
A2

)|3〉) (63)

and for a 8d analysis as
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1
2
√

2
(|0〉+ eiαO,s

A1 |1〉+ eiαO,s
A2 |2〉+ ei(αO,s

A1
+αO,s

A2
)|3〉+

eiαO,s
A3 |4〉+ ei(αO,s

A1
+αO,s

A3
)|5〉+ ei(αO,s

A2
+αO,s

A3
)|6〉+ ei(αO,s

A1
+αO,s

A2
+αO,s

A3
)|7〉) (64)

A measurement basis can be defined now by choosing concrete values of the
(offset) phase settings set at the respective interferometer arms. For example,
it is advantageous to make use of bases encoded in mutually unbiased bases
(see 2.1.2 and appendix of [183]) for that purpose, as they allow to optimally
span the respective d dimensional Hilbert spaces. In the case of 2x2, 2x4 and
2x8 dimensional states the following product bases

MUB2 =
1√
2

(
(|0〉+ |1〉)
(|0〉 − |1〉)

)
(65)

MUB4 =
1
2




(|0〉+ |1〉+ |2〉+ |3〉)
(|0〉 − |1〉+ |2〉 − |3〉)
(|0〉+ |1〉 − |2〉 − |3〉)
(|0〉 − |1〉 − |2〉+ |3〉)


 (66)

MUB8 =
1

2
√

2




(|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |7〉)
(|0〉 − |1〉+ |2〉 − |3〉+ |4〉 − |5〉+ |6〉 − |7〉)
(|0〉+ |1〉 − |2〉 − |3〉+ |4〉+ |5〉 − |6〉 − |7〉)
(|0〉+ |1〉+ |2〉+ |3〉 − |4〉 − |5〉 − |6〉 − |7〉)
(|0〉 − |1〉 − |2〉+ |3〉+ |4〉 − |5〉 − |6〉+ |7〉)
(|0〉 − |1〉+ |2〉 − |3〉 − |4〉+ |5〉 − |6〉+ |7〉)
(|0〉+ |1〉 − |2〉 − |3〉 − |4〉 − |5〉+ |6〉+ |7〉)
(|0〉 − |1〉 − |2〉+ |3〉 − |4〉+ |5〉+ |6〉 − |7〉)




(67)

can be used. Here, for example choosing different values for the (offset)
phase settings αO,s

A1
, αO,s

A2
, αO,s

A3
∈ [0, π/2], enables to define the measurements

in MUB bases.
A similar description is used for the definition of the 3, 5 and 7 dimensional
measurement bases

MUB3 =
1√
3




(|0〉+ |1〉+ |2〉)
(|0〉+ ei2π/3|1〉+ ei4π/3|2〉)
(|0〉+ ei4π/3|1〉+ ei2π/3|2〉)


 , (68)

MUB5 =
1√
5




(|0〉+ |1〉+ |2〉+ |3〉+ |4〉)
(|0〉+ ei2π/5|1〉+ ei4π/5|2〉+ ei6π/5|3〉+ ei8π/5|4〉)
(|0〉+ ei4π/5|1〉+ ei8π/5|2〉+ ei2π/5|3〉+ ei6π/5|4〉)
(|0〉+ ei6π/5|1〉+ ei2π/5|2〉+ ei8π/5|3〉+ ei4π/5|4〉)
(|0〉+ ei8π/5|1〉+ ei6π/5|2〉+ ei4π/5|3〉+ ei2π/5|4〉)




(69)

and
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MUB7
8 =

1√
7




1 1 1 1 1 1 1 1
1 e−i2π/7 e−i4π/7 e−i6π/7 ei6π/7 ei4π/7 ei2π/7 1
1 e−i4π/7 ei6π/7 ei2π/7 e−i2π/7 e−i6π/7 ei4π/7 1
1 e−i6π/7 ei2π/7 e−i4π/7 ei4π/7 e−i2π/7 ei6π/7 1
1 ei6π/7 e−i2π/7 ei4π/7 e−i4π/7 ei2π/7 e−i6π/7 1
1 ei4π/7 e−i6π/7 e−i2π/7 ei2π/7 ei6π/7 e−i4π/7 1
1 ei2π/7 ei4π/7 ei6π/7 e−i6π/7 e−i4π/7 e−i2π/7 1
1 1 1 1 1 1 1 1







|0〉
|1〉
|2〉
|3〉
|4〉
|5〉
|6〉
|7〉




(70)

which again are generated by choosing appropriate phase settings at Al-
ice’s and Bob’s analyzers.
Optimization of Bell inequality terms Id— With these definitions it is now
possible to find the optimal value for the parameters Id characterizing the
strength of the violation of the inequalities by the respective states, as a func-
tion of Alice’s and Bob’s analysis phase settings αk

Ai
and βl

A2
with indices

k, l = 1, 2.
A numerical optimization (NMaximize function in Mathematica, allowing
to determine the global maximum of an unconstrained function as derived
for Id), reveals that the maximal values to be observed for the used state
analysis ISetup

d compared to values when using an optimal analysis Imax
d cor-

respond to:

State 2x2 2x3 2x4 2x5 2x6 2x7 2x8
I2 2.823 — — — — — —
I3 — 2.873 — — — — —
I4 — — 2.552 — — — —
I5 — — — 2.620 — — —
I6 — — — — 1.524 — —
I7 — — — — — 1.895 —
I8 — — — — 1.572 2.712 2.497
IMax 2.823 2.873 2.896 2.920 2.911 2.927 2.932

In this table the maximally achievable values ISetup
d are compared for the

different states and for the application of a d dimensional inequality on the
prepared states of differing dimension. Surpassing the bound Id ≤ 2 allows
to describe the bipartite states according to a local realistic model, allows
to detect their entanglement. In all cases they are equal or lower than the
maximal predicted values Imax

d to be obtained for an optimal analysis of
the maximally entangled states (included in the lowest row). More impor-
tantly, the application of a 6 and 7 dimensional inequality on 2x6 and 2x7
dimensional states doesn’t allow to surpass the bound Id ≤ 2, therefore not
allowing to proove their entanglement (see subsequent discussion). Never-
theless, a violation of inequality I7 is observed when it is applied on the
2x8 state, postselected at a time delay 0∆T1. Due to these reasons only the
values of the bounds ISetup

d marked in red will be considered for their experi-
mental evaluation. A list of the analysis angles optimizing these inequalities
are given in the Appendix 8.1.

1 This is possible as the state space of the used 2x8 dimensional state analysis encompasses the
state space of a lower dimensional state as well
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1.6

1.4

6

Figure 19: Comparison of the experimentally obtained values IExp
d with the

theoretically predicted maximal values ISetup
d for the bipartite

time-energy encoded states of varying dimension 2xd analyzed
in this setup. These values are shown to surpass the bounds
predicted for a local realistic model ILR

d = 2 for dimensions 2xd
between 2x2 and 2x8 except for 2x6, where the analysis is not
sufficient to display a violation. The violation of the bounds thus
allows to detect entanglement between the two local qudits.

Non-optimal violation of inequalities— The fact that a lower maximal
bound ISetup

d than the one expected for a maximally entangled state Imax
d is

observed (except for the 2x2 and 2x3 dimensional states) can be attributed to
the limited state space to be accessed by the respective analyzers. This is due
to the fact that they provide an insufficient number of independent phase
settings for that purpose. From a geometrical point of view it can be argued
that the facet of the correlation polytope defined by the CGLMP inequality,
constraining the set of separable states, is closer to the state analyzed with
the current setup than to a state observed by the full 2xd dimensional state
analysis (see [131] and [49]). The same argument can be used to explain that
no violation of the inequalities I7 < 2 and I6 < 2 is observed when using
the state analysis for a postselection at time delays 1∆T and 2∆T. Here, it
can be argued that for the used analysis the states cannot be shown to lie
outside the correlation polytope for any of its facets, thus not allowing to
detect its entanglement.

It can be argued that the non-violation of I7 and I6 and the observation
of lower values of ISetup

d than maximally possible is due to the fact that no
optimal choice of the measurement basis could be found (so far restricted to
using MUBs). This possibility can be excluded as no violation is observed
as well if the respective measurement phase settings αO,s

Ai
and βO,t

Bj
are used

as independent parameters in the optimization problem. It can be shown,
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nevertheless, that the optimization of Id as a function of these additional
measurement phase settings reveals maximal values at most equal to the
ones observed for the choice of MUBs as the measurement basis. This mo-
tivates to further use the inequalities whose measurement basis is based on
MUBs.

4.2.1 Experimental violation of CGLMP inequalities

It is now possible to determine Iexp
d for the experimentally realized time en-

coded states. For that purpose the experimentally determined counts Ck,l,s,t
are used to evaluate the probabilities Pk,l,s,t. For each combination of anal-
ysis angles {α1

Ai
/α2

Ai
} and {β1

Bj
/β2

Bj
} with i, j = 1, 2, 3 denoting the phases

chosen in the respective interferometer arm, d2 coincidence count rates cor-
responding to the d2 possible combinations of projection measurements are
evaluated. For each set of measurement settings defined in Appendix A1

it holds that ∑d−1
s,t=0 Ck,l,s,t = CTot defines the total count rates CTot for fixed

analysis settings k, l. Now, the respective probabilities are evaluated by nor-
malizing the respective count rates to the total count rates observed accord-
ing to

Pk,l,s,t =
Ck,l,s,t

∑d−1
s,t=0 Ck,l,s,t

. (71)

The probabilities obtained are used to evaluate the values IExp
8 = 2.191±

0.020, IExp
7 = 2.28 ± 0.015, IExp

5 = 2.072 ± 0.037, IExp
4 = 2.244 ± 0.042,

IExp
3 = 2.29± 0.028 and I2 = 2.448± 0.055 (see Fig. 19). All values clearly

surpass the bounds ILR
d = 2 as defined for any local realistic model within

the statistical uncertainty obtained by assuming that the observed count
rates fluctuate according to Poissonian statistics. This allows to verify exper-
imentally that the detected states with the specified dimensions are entan-
gled.

4.2.2 Franson loophole

Subtle care has to be taken when a local realistic model is tested in the cur-
rent experimental setup testing the coherence in the emission time degree
of freedom: A postselection of coincidence counts has to be undertaken in
order to test the coherence between the entangled two-photon states, and
discard those which don’t contribute to the entangled state (see 2.3).
In the most simple example of a 2 qubit entangled time-energy state [52],
the postselected events correspond to 50% of the events to be detected. The
related problem could in principle be addressed by resorting to the fair sam-
pling assumption: The detected set of events is assumed to correspond to a
set representing the whole sample of events. Here, displaying the complete-
ness of quantum mechanics according to the definition stated in the EPR
paper [44] (see 2.1.3) relies on closing the associated detection loophole.
Moreover, the loophole associated to the specific construction of unbalanced
interferometers is more intricate. Here, the path information in the respec-
tive interferometer arms depends on the relative phase settings chosen. This
information could be carried by a postselected photon. Additionally, this in-
formation could be associated to an hidden variable determining the chosen
path. This scenario was developed in detail in [4], where it could be shown
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that a local realistic model could be found in full correspondence to the
quantum mechanical predictions. Therefore, for this particular configura-
tion quantum mechanics cannot be used as the model offering a complete
description of the underlying physical properties.
A more detailed discussion of the problem, as offered in [98], could be based
on an argumentation used in the EPR paper. Indeed, depending on which
studied properties are associated to a realistic description, different scenar-
ios apply: If the paths traversed in the respective interferometer arms are
considered as the elements of reality, indeed no violation of local realism
could be shown with the used setup. In contrast, if the emission times of the
photons are associated with realistic properties, a violation of local realism
could be predicted by using the 2x2 dimensional interferometer setup. In
this configuration a fast change in the interferometer’s phase with a rate sur-
passing the traversal time of the photon through the interferometer would
have to be undertaken. Additionally, the required critical two-photon vis-
ibilities would be considerably higher: 94.6%. Only then no local hidden
variable theory would be able to predict the outcomes of the experiment.
None of these considerations (restricted so far to a 2x2 dimensional state)
are applied in the current work, disabling it from displaying the departure
of the observed correlations from a local realistic model.
From the viewpoint of practical implementations, the Franson loophole dis-
ables to use the present setup in a device independent configuration: In
quantum communication scenarios where the transmission of a secure key
relies on the violation of a Bell inequality it is desirable to show that no
eavesdropper could manipulate the analysis device such as to obtain in-
formation about the encoded key. Moreover, this is exactly the case in the
Franson configuration: Having access to the respective phase settings would
enable him to predict the measurement outcomes and to extract the key.

4.3 further entanglement criteria for qudits

4.3.1 Schmidt number witness

Schmidt decomposition and witness— An efficient way to detect entangle-
ment is to represent a bipartite state defined in a 2xd dimensional Hilbert
space in the Schmidt decomposed form [148]. For that purpose, a bipartite
qudit entangled state of dimension d is described as |ΨS

d〉 = ∑d−1
i=0 λi|is

A〉|is
A〉

with {|is
A〉} ∈ Hd

A (and similar for Bob) representing the (Schmidt) basis of
each parties qudits. The Schmidt coefficients λi = |cisA

|2 = |cisB
|2 depend on

the mode strengths cisA
and cisB

of the respective qudit states encoded in each
photon.
Moreover, this particular decomposition represents a singular value decom-
position of pure states of the form |Ψd〉 = ∑d−1

i=0,j=0 λi|i〉|j〉 (see 6.2 for a
particular expansion of the scheme to mixed states), such that both local
basis systems {|i〉}, {|j〉} are unitarily transformed to the Schmidt bases
{|is

A〉} and {|is
B〉}, respectively. After performing this transformation, the

two-particle state is called the Schmidt decomposed state. The Schmidt
number KA,B, corresponding to the minimum number of terms required to
describe the state, is finally evaluated by making use of the partial trace over
the entangled state ρ = |ΨS

d〉〈ΨS
d | according to
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KA,B = TrA[ρ] = TrB[ρ] = 1/ ∑
i

λ2
i . (72)

Entanglement can be detected by showing that the Schmidt number KA,B
surpasses 1. Moreover, if all contributing coefficients λi = 1/d are equal, a
state is maximally entangled with a Schmidt number KA/B = d correspond-
ing to the number of entangled modes. Therefore, the main potential of a
Schmidt number witness is that it enables the detection of the number of
modes contributing to an entangled state, therefore allowing to bound the
dimensionality of a two-particle state (see 6.2).
Applications— Schemes for the direct evaluation of the Schmidt number of
states encoded in the orbital angular momentum degree of freedom of pho-
tons could be evaluated for a SPDC photon pair source [101]. Representing
states in the Schmidt decomposed form can be used to identify the correla-
tion more likely to be big. Therefore this scheme can be used to increase the
entanglement detection efficiency, as could be demonstrated experimentally
for 2x2 dimensional polarization encoded quantum states [99, 100]. The
Schmidt number for a selection of states encoded in this work is evaluated
by the application of a Schmidt number witness in 6.2.

4.3.2 Entanglement detection by using mutually unbiased bases (MUBs)

Mutually unbiased bases and applications— It is also possible to apply en-
tanglement detection schemes based on using specific sets of d dimensional
observables spanned by MUBs. The characteristic used here is that once the
correlation obtained for a measurement along one MUB for a given state ρ
is maximal (i.e. equal ±1), the correlation results obtained for a measure-
ment along other uncorrelated bases are unbiased to each other, i.e. they
are equal and non-zero. Hence, once a high correlation was detected, the
measurement of only one additional correlation will suffice to detect the en-
tanglement of ρ. This is described in more detail in [156] and below.
Additionally, these properties are advantageous for the tomographic recon-
struction of quantum states [184, 3], as thus a full tomographic set consists of
fewer measurements than for standard tomography schemes (see 5.1). Sim-
ilarly, it is possible to make use of the increased security thresholds when
using states encoded in MUBs for quantum key distribution [32]. There,
scenarios with different attack strategies were studied. For example, the
figure of merit used is the critical disturbance still allowing both parties to
distill an entangled state. It could be shown that for the concrete case of
an eavesdropper applying coherent attacks, the critical admixture can be
parametrized as p = (d− 1)/2d, i.e. the critical noise still enabling the de-
tection of an eavesdropper is increased from 1/4 for the 2 dimensional case
to 1/2 for d→ ∞.

Entanglement Detection— Following the scheme presented in [156] it is
possible to derive bounds for efficient entanglement detection by analyzing
a state in a basis spanned by MUBs {Bk} with each basis Bk = {|ik〉} =
{|0k〉, ..., |d− 1k〉} fulfilling the relation |〈ik|jl〉|2 = 1/d.
Here, a two-qudit state is prepared with two parties, Alice and Bob, an-
alyzing each one qudit. Each party’s measurement is described by ob-
servables A and B encoded in the MUB basis Bk and for which d dif-
ferent outcomes {0, ..., d − 1} can be obtained. They can parametrize the
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correlations observed in their measurement results by the joint probabil-
ity PA,B(i, i) = 〈iA| ⊗ 〈iB|ρ|iA〉 ⊗ |iB〉 for a measurement along the bases
|iA〉 and |iB〉 applied on the state ρ. A correlation function of the form
CA,B = ∑d−1

i=0 PA,B(i, i) is maximized to CA,B = 1 if the studied state is cor-
related for a measurement along the bases |iA〉 and |iB〉. In contrast, if
the state is uncorrelated an unbiased correlation measurement outcome of
CA,B = 1/d is observed.
Measuring one correlation is not sufficient to detect entanglement for one
particular pair of directions. This is due to the reason that for separable
states, such as ρS = ∑r

i=0 |λi|2|is
A〉〈is

A| ⊗ |is
B〉〈is

B| the correlation measure-
ment reveals a maximal value, in the same way as for an entangled state
|Ψ〉E = ∑r

i=0 λi|is
A〉|is

B〉 with 1 ≤ r ≤ d− 1.
Measurements along at least two different directions within an MUB have to
be performed in order to discriminate an entangled from a separable state
as only then the condition I2 > CA1,B1 + CA2,A2 = 1 + 1/d is fulfilled. More-
over, for a separable state only values I2 ≤ CA1,A1 + CA2,A2 = 1 + 1/d are
possible. The violation of the bound can be enhanced if further measure-
ments along all m different MUB directions are performed leading to the
bound

Im =
m

∑
i=1

CAi ,Bi > 1 +
m− 1

d
, (73)

which is limited to Im ≤ 1 + m−1
d for separable states. In contrast, for an

entangled state a measurement along all MUBs leads to the maximal value
of Imax

m ≤ 2.
Here, it is possible to study the robustness of the entanglement measure
with regard to the admixture of (white) noise. For general d dimensional
entangled states defined as |Ψ〉d = 1/

√
d ∑d−1

i=0 |i〉|i〉 the admixture of white
noise can be parameterized as

ρI = α|Ψd〉〈Ψd|+
1− α

d2 1. (74)

For this type of states entanglement can be detected once the critical ad-
mixture parameter αCrit = 1/(d + 1) is surpassed, leading to a value of
αCrit = 0 for d → ∞. Therefore, the robustness of entanglement criteria
based on MUBs is decreased with respect to the criteria derived from the
violation of the CGLMP inequality (see 4.1.2), where for d → ∞ the critical
admixture is αCrit = 0.6734.

Application in this work— A full set of d + 1 MUBs consists of product
bases, i.e. bases which can be described as the tensor product of lower
dimensional bases and entangled bases, which cannot be represented as a
tensor product (see [183]). For states encoded into non-prime dimensional
Hilbert spaces (d = d1 · d2 · · · dn) partitioned into di dimensional states it
can be shown that the maximal number of separable MUBs corresponds to
the minimal dimension of all partitions.
For maximally entangled states with dimensions 2x8 as prepared in this
work the used analysis can only project onto two dimensional separable
bases as the Hilbert space dimension factorizes according to 8 = 2 · 2 · 2.
Similarly, for 2x4 dimensional states the analysis Hilbert space dimension
factorizes according to 4 = 2 · 2. Moreover, for the state analysis of the
2x8 dimensional state used in this setup the state cannot be analyzed by
using the 6 entangled MUBs out of the full set of 9 MUBs (see Appendix F
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of [183] for an example of MUBs in 8 dimensions). This limitation can be
attributed to the fact that the state analysis provides a maximum of up to
3 independent relative phases. In contrast, a minimum number of 7 phases
would be required in order to analyze the state along all bases. Similar
limitations apply to the bipartite states with dimensionality between 2x4 to
2x7 analyzed at the different postselection time windows, in the case of the
2x6 and 2x7 dimensional states no MUBs could be used to analyze them.
Therefore, an entanglement detection scheme based on MUBs will not be
used, as its entanglement detection efficiency is not optimal for the 2xd
dimensional state analysis employed in this work.

4.3.3 Entanglement witness for qudit states

Entanglement witnesses— Detection of entanglement of quantum states can
also be based on strictly geometrical arguments. Here, the detection of en-
tanglement by using entanglement witnesses is one of the most prominent
examples. It is based on the theorem that due to the convexity of the sub-
space of separable states an hermitian operator Ŵ can be found for any
entangled state ρent ∈ H such that

Tr[ρentŴ ] < 0 (75)

is fulfilled.
Optimization of witnesses— An analytical description of the problem is
used: Using convex (closed) sets of quantum states embedded within a
state space, such as the separable states, it is possible to identify Hermitian
operators separating a state ρ from these separable states. These operators
are denoted as entanglement witnesses.
The advantage of entanglement witnesses is that they allow to parametrize
the entanglement of a state by its distance from the set of separable states.
A well studied criteria suited for the detection of entanglement is based on
the partial transposition Ŵ = 1⊗ T first proposed by Horodecki et al. [71]:
It can be shown that once the partial transposition is applied onto an entan-
gled state ρent

Ŵρent = (1⊗ T)ρent < 0 (76)

holds, i.e. the resulting state is negative semidefinite. The criteria has
been termed as the positive partial transpose criteria (PPT) and provides a
necessary and sufficient for the detection of entanglement of mixed states
restricted to 2× 2 and 2× 3 dimensions.

Entanglement witness for maximally entangled d dimensional states—
Further work on the identification of entanglement in general d dimensions
was based on similar geometric arguments. A summary of these studies,
evaluated in a broader context as for example in [86], will be presented
here.
Different approaches, based on a different parameterization of the d dimen-
sional Bloch vectors of each locally encoded state, have been developed in
order to display the entanglement of two-qudit entangled states as studied
in this work. The generalized Gell-Mann matrices [34, 15, 175], the polar-
ization operator basis [15] as well as the Weyl operator basis [15] have been
used in order to provide a description of the studied state. Based on these,
schemes have been derived aiming to expand the PPT entanglement crite-
rion to 2xd dimensional states and to derive bounds displaying their entan-
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glement ([34, 74]). Similarly, generalized Bell operators Bent defined by the
criteria Tr[σsep,Bent] = 0 enable to distinguish between a separable state σsep
and an entangled state ρent. Therefore, they can be used as entanglement
witnesses [15]. Following the terminology used to define entanglement wit-
nesses, Bell operators correspond to witnesses, optimized to detect the en-
tanglement of at least one entangled state [15].
In order to apply these entanglement detection criteria on higher dimen-
sional states, the geometric description of each local state defined in a d
dimensional Hilbert space Hd [16] is based on its representation in a suited
basis system {Γi}. It allows to parameterize any 2xd dimensional quantum
state according to

ρ =
1
d

1⊗ 1 + niΓi ⊗ 1 + mj1⊗ Γj + cijΓi ⊗ Γj (77)

for complex coefficients ni, mj ∈ C describing the respective local states.
Further on, ci,j ∈ C denote the correlations to be observed between the bi-
partite 2xd dimensional state along this basis. It is to note that for a Schmidt
decomposed state, the correlation tensor elements cij vanish expect for the
diagonal elements. For example, the decomposition can be applied on a
Schmidt decomposed state such as |Ψ〉d = 1/

√
d ∑d−1

k=0 |is〉|is〉 with a white
noise admixture α as

ρd = α|Ψ〉d〈Ψd|+
1− α

d2 1 (78)

for −1/(d2 − 1) ≤ α ≤ 1. In this case, the local correlations ni and mj
vanish as well, allowing to describe the two-qudit state by d different terms.
This fact greatly simplifies the entanglement detection as the required num-
ber of correlation measurements is reduced accordingly. This corresponds
to the same number of measurements required to describe the density ma-
trix of a one-qudit quantum state.
Here, the maximization over the Hilbert Schmidt measure can be further
used to determine the optimal witness detecting the maximal possible en-
tanglement of these states (see [16] for a detailed derivation). Concretely,
the optimal witness is described as

Ŵ(ρd) =
1
d

√
d− 1
d + 1

1⊗ 1− 1

2
√

d2 − 1
Λ (79)

when using the generalized Gell-Mann basis (GGB) expansion for arbi-
trary dimension d

Λ := ∑
i<j

Λjk
s ⊗Λjk

s −∑
i<j

Λjk
a ⊗Λjk

a +
d−1

∑
m=1

Λm ⊗Λm. (80)

Here, a maximal bound of the Hilbert-Schmidt measure, and correspond-
ingly a maximal violation of a generalized Bell inequality B corresponds
to

B(ρd
ent) = −Tr[ρd

ent, Ŵ(ρd)] =

√
d2 − 1

d
(α− 1

d + 1
) (81)

allowing to reveal entanglement for a critical admixture of αcrit = 1/(d +
1) (obtained by setting B(ρd

ent) = 0). This result shows that for states em-
bedded within an infinite dimensional Hilbert, two-qudit entangled states
are entangled for any admixture of noise α. This is the same result to be
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obtained for a 2xd dimensional state analyzed by using MUBs (see 4.3.2).
This entanglement detection scheme was not experimentally evaluated in
this work.
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T O M O G R A P H I C R E C O N S T R U C T I O N O F Q U D I T
E N TA N G L E D S TAT E S

This chapter will offer a description of tomographic schemes used to re-
construct the density matrix of an experimentally prepared time-energy en-
tangled two-qudit state. It will start with a short introduction into the de-
tails of tomographic reconstruction methods (see section 5.1). Further on,
it will continue with a detailed description of tomographically complete
quantum tomography schemes based on the evaluation of a full set of pro-
jection measurements (section 5.2) and on the evaluation of the full corre-
lation tensor (section 5.2.2). Subsequently, it will adress the problem that
with a high probability the reconstructed density matrices are unphysical
and will present strategies solving it, by resorting to convex optimization
methods (section 5.3). It will be shown how this scheme allows to provide
an unique reconstruction based only on an tomographically incomplete set
of measurements. The first method is based on Compressed Sensing (sec-
tion 5.4) while the second one makes use of the principle of Correlation
Complementarity defining an Adaptive state tomography method (section
5.5). Finally, additional deviations in the figures of merit due to the use of
constrained optimization schemes will be discussed in 5.6.

5.1 quantum state tomography

One of the fundamental problems faced with when using quantum states
for applications in the field of quantum computation or cryptography is to
obtain a reliable knowledge about the properties of the experimentally pre-
pared state [127]. For that purpose a reliable knowledge about the under-
lying quantum states has to be acquired. Here, the application of quantum
state tomography enables to fulfill this requirement. It provides an evalua-
tion of the density matrix describing the state and can be used to estimate
other measures certifying the preparation quality. For example, the entan-
glement of the state can be evaluated by measures such as the Uhlmann
fidelity [169], the negativity [71] and the Schmidt number [145]. Similarly,
its usability for quantum metrology tasks can be evaluated by correspond-
ing measures, such as the Quantum Fischer information [87, 130].
Before describing these schemes it is important to stress out which are the
limitations imposed by quantum theory for obtaining the data, based on the
interaction of the ensemble of quantum particles with a measurement de-
vice: In contrast to quantum theory, classical state reconstruction (for exam-
ple for the reconstruction of geological, medical or archeological structures)
is simplified due to the fact that the system under study remains unchanged
and can therefore be probed for different projections. This requirement does
not hold in the quantum regime as the quantum state will be perturbed af-
ter applying a measurement on it. Therefore, the quantum state has to be
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repeatedly prepared in order to apply the same measurement on it.
It is at this point that Born’s rule [179] defines the probability P(Πi, ρ) =
Tr[Πiρ] with which the outcome of a given projection measurement per-
formed on a quantum state will be obtained. Here, Πi denotes a general
projection measurement and ρ the input state density matrix. It states that
the probability P(Πi, ρ) can be determined by applying identical measure-
ments on the ensemble of repeatedly prepared states. In this case, the result-
ing frequencies ci/N normalized over the total count rate N of the ensemble
allow to give an approximation of P(Πi, ρ) as an average over the measure-
ment results obtained by applying the operators Πi. Moreover, the error
with which the probability P(Πi, ρ) is to be determined is ultimately lim-
ited by the number of measurement runs performed.
At this point, the intrinsic linearity of quantum theory allows to define the
density matrix ρ as a linear combination of the measurement operators per-
formed on it. In the most simple case, a qubit density matrix is decomposed
into

ρ =
1
2

3

∑
i=0

Pi
P0

σ̂i, (82)

where the Pauli operator-basis σ̂i along the 3 directions x, y, z is chosen.
Here, a qubit is reconstructed by performing 4 different Stokes (projec-
tion) measurements [115] P0 = N (〈R|ρ|R〉 + 〈L|ρ|L〉), P1 = N (〈R|ρ|L〉 +
〈L|ρ|R〉), P2 = N i(〈R|ρ|L〉 − 〈L|ρ|R〉) and P3 = N (〈R|ρ|R〉 − 〈L|ρ|L〉) de-
fined by using the |0〉/|1〉 and |R〉 = 1/

√
2(|0〉+ i|1〉)/|L〉 = 1/

√
2(|0〉 −

i|1〉) measurement bases. Here, |0〉 = (1, 0) and |1〉 = (0, 1) corresponds to
a 2 dimensional basis.
A general reconstruction scheme is based on expressing the density matrix
as a linear combination of an operator basis acting on the Hilbert space
the quantum states are encoded into. Here, depending on the states re-
constructed, either multi-qubit or d dimensional entangled states, different
bases are chosen. For example, a full tomographic reconstruction of quan-
tum states can be based on using a 2 dimensional Pauli-spin basis [75, 82] or
using the generators of the SU (d) group for d dimensional Hilbert spaces
[164] as well as MUB bases [3].

5.2 full tomography

Two quantum state tomography methods based on a linear evaluation of
the density matrix as a function of the obtained probabilities are treated in
this work. They allow to describe the quantum states encoded into multiple
qubits or into qudits defined in d dimensional Hilbert spaces. The first
method, based on the application of the Stokes parameterization [75] on
each qubit (see 5.2.1), will be applied on the experimental data obtained
from the measurement setup. The second one, based on the determination
of the full correlation tensor T̂ [82] can be used to obtain an estimation of
the state with increased statistics (see 5.2.2).

5.2.1 James tomography

Decomposition of density matrix— The scheme proposed by James et al.
[75] allows to reconstruct the density matrix of a multi-qubit quantum state
directly as a function of probabilities pi1,i2,...,iN which are obtained for suit-
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able projection measurements Pi1,i2,...,iN . The set of projector measurements
considered here, applied on each qubit’s state the studied state consists of,
are Jij = {|R〉〈R|, |L〉〈L|, |0〉〈0|, |P〉〈P|} where j denotes the index of the lo-
cal qubit the projection is applied on. Trace unity is ensured by requiring
trace normalization, with N corresponding to the normalization constant.
This last requirement is fulfilled by summing up over the probabilities corre-
sponding to the projection measurements |R〉〈R| (index 0) and |L〉〈L| (index
1) such that

1

∑
i1,...,iN=0

pi1,i2,...,iN = N (83)

is fulfilled.
In general, a density matrix is represented in an operator basis. Never-
theless, only the outcomes of projection measurements are experimentally
accessible, so that the operator basis has to be expressed as a function of
the projection measurements Pi = |Ψi〉〈Ψi| defined previously. Here, a
general operator can be decomposed as Âi = ∑i λi|Ψi〉〈Ψi| what is possi-
ble as the corresponding eigenvalues λi are well defined due to the spec-
tral decomposition theorem [124]. In this scenario, each qubit’s projec-
tion measurement can be represented as an element of the operator basis
{(1 + σ̂y), (1 − σ̂y), (1 + σ̂z), (1 + σ̂x)}. Accordingly, the N qubit operator
basis used to analyze an N qubit state can be expressed as

ÔJT
i1,i2,...,iN

= (1 + (−1)si1 σ̂i1 )/2⊗ (1 + (−1)si2 σ̂i2 )/2⊗ · · ·
⊗(1 + (−1)siN σ̂iN )/2. (84)

where the coefficients {si1 , ..., siN} ∈ {0, 1} are the indices for the specific
choice of the projection measurement applied on the respective qubit.
Using this decomposition the coincidence probabilities pi = Tr[ÔJT

i1,i2,...,iN
ρ]

are obtained by applying the projection measurements on the multi-qubit
state ρ.
Nevertheless, it is useful to express any density matrix in a more general-
ized basis. For example Γj can be chosen with the characteristic that any

density matrix ρ is decomposed into ρ = ∑4N

j=1 Γjrj with corresponding coef-
ficients rj = Tr[Γjρ]. Here, for example the Γj matrices can be chosen as the
generators of the N qubit symmetry group SU (2)⊗N . The state ρ can now
be reconstructed in the newly defined basis by searching for the transforma-
tion matrix between the coefficients rj corresponding to the basis Γj and the

coincidence probabilities obtained by measuring in the operator basis ÔJT
i

(here, the simplification i = i1, i2, ..., iN is used). For that purpose, the en-
tries of rj are related to the measured coincidence count rates ni according to

ni = N ∑4N

i=1 Bi,jrj which requires the evaluation of the 4N × 4N dimensional
transformation matrix

Bi,j = 〈Ψi|Γj|Ψi〉. (85)
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Here, Bi,j is invertible only in the case that a tomographically complete
set of projections {|Ψi〉〈Ψi|} is used.
This allows to determine the underlying density matrix according to

ρ =
1
N

4N

∑
i=1

Mini (86)

as a function of the matrices Mi = ∑4N

i=1(B−1)i,jΓj and the respective count
rates ni obtained for all 4N projection measurements. Here, the normaliza-
tion condition is fulfilled by the condition ∑4N

i Tr[Mi]ni = N .
Application on bipartite qudit entangled states— The described tomo-

graphic reconstruction scheme can be directly applied for the evaluation
of the density matrix of a 2x8 qudit entangled state as prepared in this
work. Here, the prepared qudit states are analyzed by the interferome-
ter systems consisting of up to 3 interferometer arms. These interferom-
eter arms used to project the incoming qudits encoded into each photon
into the tensor product of |Ψ〉Ai = 1/

√
2(|0i〉A + eiαAi |1i〉A) and |Ψ〉Bj =

1/
√

2(|0j〉B + e
iβBj |1j〉B). These are defined by the respective qubit bases

|0i/j〉A/B/|1i/j〉A/B encoded into the short and long paths of the respective
interferometers.
For example, Alice’s analysis is described as

|Ψ〉8A = |Ψ〉A1 ⊗ |Ψ〉A2 ⊗ |Ψ〉A3 = |010203〉A + |110203〉A + · · ·+ |111213〉A.

Correspondingly, applying the analysis on both qudits corresponds to
their projection onto |Ψ〉8 = |Ψ〉8A ⊗ |Ψ〉8B. For a postselection of only 8
two-photon states at the time window 0∆T the prepared two-photon states
are projected onto

|Ψ〉0∆T
8 =

1
2
√

2
(|0〉′A|0〉′B + |1〉′A|1〉′B + |2〉′A|2〉′B + |3〉′A|3〉′B + |4〉′A|4〉′B + |5〉′A|5〉′B +

|6〉′A|6〉′B + |7〉′A|7〉′B) =

1
2
√

2
(|010203〉′A|010203〉′B + |110203〉′A|110203〉′B + |011203〉′A|011203〉′B +

|111203〉′A|111203〉′B + |010213〉′A|010213〉′B + |110213〉′A|110213〉′B +

|011213〉′A|011213〉′B + |111213〉′A|111213〉′B) =

1
2
√

2
(|01〉′A|01〉′B + |11〉′A|11〉′B)⊗ (|02〉′A|02〉′B + |12〉′A|12〉′B)⊗

(|03〉′A|03〉′B + |13〉′A|13〉′B) (87)

Here, in order to simplify the notation the phase acquired in each path
was included into the state notation according to |11〉′A = eiαA1 |11〉A, |12〉′A =

eiαA2 |12〉A and |13〉′A = eiαA3 |13〉A and equivalently for Bob’s states. Note,
that in the last step of the decomposition of Eq.( 87) the state is represented
as the tensor product of 3 2x2 dimensional entangled states encoded into
the state space of paired interferometer arms (A1B1, A2B2 and A3B3 inter-
ferometer pairs). This is an inherent property of the used analysis.
The prepared 2x8 dimensional two-photon state is now tomographically re-
constructed in the basis {|010203〉′A|010203〉′B, ..., |111213〉′A|111213〉′B} defined
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by the used analysis described in Eq.( 87). For that purpose suited pro-
jection measurements have been performed on the respective qubit state
space corresponding to the different interferometer arms. For example,
choosing phase settings αAi = βBj = 0, π allows to project each qubit on

the eigenstates |Pi,j〉 = 1/
√

2(|0i〉 + |1i〉)/|Mi〉 = 1/
√

2(|0i〉 − |1i〉) of σx.
For αAi = βBj = ±π/2 a projection measurement along the eigenbasis

|Ri〉 = 1/
√

2(|0i〉 + i|1i〉)/|Li〉 = 1/
√

2(|0i〉 − i|1i〉) of σy is implemented.
In contrast, no measurement along the z direction, with eigenbasis |0i〉/|1i〉,
can be directly performed with the used interferometer setup. Further de-
tails about the experimental procedure to retrieve the required data in this
basis is presented in 5.2.3.

5.2.2 Standard tomography

Correlation tensor— The reconstruction scheme based on using a full tomo-
graphic set (see [82]) is based on the fact that any N-qubit density matrix
ρ can be evaluated by the elements of the full correlation tensor T̂ with
elements

Ti1,i2,...,iN = Tr[ÔST
i ρ] = Tr[(σi1 ⊗ · · · ⊗ σi2 · · · σiN )ρ]. (88)

Here, a measurement defined along each qubits Hilbert space is described
by the following parameterization as a function of the Pauli spin matrices
σx, σy, σz:

σ(αAi , γAi ) = cos αAi sin γAi σx + sin αAi sin γAi σy + cos γAi σz (89)

σ(βBj , δBj ) = cos βBj sin δBj σx + sin βBj sin δBj σy + cos δBj σz (90)

The setting of αAi and αBj corresponds to a rotation of the observable
along the x-y plane defined for the respective qubits Bloch sphere. A rota-
tion along γAi and δBj corresponds to a measurement along the x-z measure-
ment plane. As a function of the phases set at Alice’s side, a projection onto
|0〉 is achieved by choosing a phase setting {αAi = 0, γAi = 0} and to |1〉 by
setting {αAi = 0, γAi = π} (for Bob’s projectors accordingly).
The determination of a N qubit correlation element of Ti1,i2,...,iN along each
direction {i1, i2, ..., iN} ∈ {x, y, z} is made by evaluating 2N coincidence prob-
abilities ps1,s2,...,sN

i1,i2,...,iN
according to

Ti1,i2,...,iN = ∑
s1,s2,...,sN=0,1

(−1)s1+s2+...+sN Tr[Ps1
i1
⊗ Ps1

i1
· · · ⊗ PsN

iN
ρ] =

∑
s1,s2,...,sN=0,1

(−1)s1+s2+...+sN ps1,s2,...,sN
i1,i2,...,iN

. (91)

Here, the indices si = 0 denote the projection of each qubit into the
{|0〉, |P〉, |R〉} eigenstates and si = 1 a projection into {|1〉, |M〉, |L〉} of the
respective z,x and y Pauli spin operators. PsN

iN
denotes the actual projection

measurements on the respective qubits along the direction iN and index sN .
The probabilities are evaluated directly out of the measured set of counts
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cs1,s2,...,sN
i1,i2,...,iN

by normalizing them to the total counts observed per basis accord-
ing to

pi1,i2,...,iN =
cs1,s2,...,sN

i1,i2,...,iN

∑1
s′1,s′2,...,s′N=0 c

s′1,s′2,...,s′N
i1,i2,...,iN

. (92)

Decomposition of a density matrix as a function of correlation tensor
elements— It is now possible to decompose the underlying N qubit den-
sity matrix ρ as a linear function of the measured elements Ti1,i2,...,iN of the
correlation tensor T̂ [82] as

ρ =
1

2N

3

∑
i1,i2,...,iN=0

Ti1,i2,...,iN σi1 ⊗ σi2 · · · ⊗ σiN . (93)

Using Eqs. 91, 92 it can be directly decomposed into a linear combination
of the coincidence probabilities determined from count rates according to

ρ =
1

2N

3

∑
i1,i2,...,iN=0

1

∑
s1,s2,...,sN=0

ps1,s2,...,sN
i1,i2,...,iN

N

∏
j=1

(
1
3

1 + (−1)
sij σij ). (94)

Here, the operators γi
j = ( 1

3 1 + (−1)
sij σj) project onto the eigenstates of

the σx, σy and σz operators applied on each qubit’s state space. It parametrizes
ρ as a function of the input probabilities pa1,a2,...,aN

i1,i2,...,iN
fully determining it.

This type of tomography offers an overcomplete sample of the studied den-
sity matrix ρ, as the number of parameters effectively used to reconstruct it
is on the order of 6N . This is a factor (1.5)N higher than the total number of
measurements 4N required for a tomographically complete set as defined by
the James tomography scheme in 5.2. Nevertheless, the additional number
of measurements can be used to improve the statistics for the evaluation of
ρ. This is ensured as the projection operators corresponding to the standard
basis σx, σy and σz fulfill the condition 1 = (P0

x + P1
x + P0

y + P1
y + P0

z + P1
z )/3.

This advantage can be demonstrated for example for a two-qubit state. Here,
a correlation tensor element T0x corresponding to a measurement along Ô =
1⊗ σx is evaluated by using on average 3 times more counts. This becomes
clear as the set of measurements corresponding to (P0

x + P1
x ) ⊗ (P0

x − P1
x ),

(P0
y + P1

y )⊗ (P0
x − P1

x ) and (P0
z + P1

z )⊗ (P0
x − P1

x ) can be used for that pur-
pose.
Application in this work— A high number of experiments on the entan-
glement of N multi-qubit entangled states have employed the described
method for the reconstruction of the corresponding density matrices [83,
186]. Here, the intrinsic projection of the prepared quantum states into
a qubit state by the used interferometers, enables to use this method for
entangled two-qudit states as well. Here, each of the measurements ap-
plied by each interferometer arm can be described as a qubit observable
(see 5.2). In the concrete experimental configuration studied in this work, a
set of 6 interferometer arms are used with 3 arms made available to both
parties. As the logical qubits are encoded into two photons, the use of
two detectors is required to observe the two-photon coincidence count rates

c
aA1

,aA2 ,aA3 ,bB1 ,bB2 ,bB3
iA1

,iA2 ,iA3 ,iB1 ,iB2 ,iB3
between the respective outputs of the different interfer-

ometer arms.
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5.2 full tomography

Figure 20: Tomographically reconstructed density matrix of a 2x4 dimen-
sional state analyzed in the Hilbert space of paired interferometer
arms corresponding to Alice’s A1 and A2 and Bob’s B1 and B2 in-
terferometer arms: |Ψ8

4〉 = 1/2(|0102〉A|0102〉B + |1102〉A|1102〉B +
|0112〉A|0112〉B + |1112〉A|1112〉B) ⊗ |03〉A|03〉B. The theoretically
predicted state is depicted in a) while the experimentally eval-
uated density matrix (b)) reveals a state ρExp,LIN in close cor-
respondence to the theoretical expectations, as the fidelity of
FExp,LIN

4 = 0.882± 0.051 reveals.

In this work, simulations will be performed on the tomographic reconstruc-
tion of the qudit states considered in this work (see 5.5 and 5.6).

5.2.3 Experimental reconstruction using the James tomography scheme

The James tomography scheme is favored with respect to the standard to-
mography scheme described above in order to reconstruct the experimen-
tally prepared qudit states of up to 2x8 dimensions. This is because it re-
quires only the evaluation of up to 46 = 4096 coincidence probabilities ob-
tained for the full set of projection measurements, in constrast to 66 = 46656
for applying the full tomography scheme.

Here, the projection of each of the 6 logical qubits on |0〉, |P〉, |R〉 and
|L〉 provides such a tomographically complete set. Note that, due to current
restrictions of the measurement apparatus to the x-y plane of each logical
qubit, the respective coincidence count rates corresponding to a projection
onto |0〉 or |1〉 have to be evaluated by blocking one path of the respec-
tive interferometer arms. This leads to an increased experimental effort, as
during the blocking the stabilization feedback required to stabilize the re-
spective phases has to be switched off and to be turned on after removing
the blocking device. The phase setting set before switching off is defined
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Figure 21: Tomographic reconstructed density matrices of a 2x8 dimen-
sional state based on the tomographic decomposition according
to James. Deviations from the theoretical predictions a) and b)
are observed with respect to the experimentally determined den-
sity matrix as depicted in c) and d). These deviations are due to a
Poissonian distribution of the acquired counts and mainly due to
residual phase fluctuations in the interferometers used to analyze
the time encoded states. Despite these fluctuations the evaluated
fidelity corresponds to FExp,LIN

8 = 0.8625± 0.0121.

by the settings of the stabilization setup, which remain constant (see section
3.3). Therefore, the phase has to be locked again to the same phase setting
after switching the feedback loop on again1.

Due to these reasons, instead of a measurement along |0〉 and |1〉 as pro-
posed in [75], projections on |R〉 and |L〉 are chosen, allowing to define the
normalization constant N according to Eq.( 83). In this case, the blocking of
only the long interferometer arm is required, while the measurements cor-
responding to the remaining projectors |P〉,|R〉 and |L〉 are done by a suited
shift in the relative interferometer phase (see section 5.2)
Application on a 2x4 entangled state— As a first application of the scheme
the linear evaluation according to James [75] is applied on a 2x4 dimensional
subspace of the 2x8 dimensional state postselected in the time window 0∆T.
This state is analyzed by the logical qubits A1 and A2 at Alice’s side and

1 This is additionally checked by measuring the concidence count rates after removing the block-
ing devices
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5.2 full tomography

of B1 and B2 at Bob’s side. In this notation, the analyzed state to be recon-
structed is

|Ψ8
4〉 = 1/2(|0102〉A|0102〉B + |1102〉A|1102〉B + |0112〉A|0112〉B +

|1112〉A|1112〉B)⊗ |03〉A|03〉B. (95)

Here, the state spanned by the Alice’s and Bob’s 3rd interferometer arms
is projected onto |03〉A|03〉B by blocking the respective long interferometer
paths2.
With prior measurements the analysis devices are calibrated such that all
phase settings αAi and βBj are set to 0 (see 3.4.2). Typical integrated counts
are in the range of ≈ 2500 per measurement time (typically 3s).
The application of the scheme requires the evaluation of 256 different coinci-
dence probabilities for the 256 different projection measurements on |0〉, |P〉,
|R〉 and |L〉 applied on each qubit. The resulting density matrix ρ

Exp,LIN
4 is

depicted in Fig.20 b), which is compared with the density matrix ρTH
4 (Fig.20

a)) to be observed for an ideal preparation of the state.
A figure of merit evaluating the quality of the experimentally prepared
states is the Uhlmann Fidelity [124]

F (ρexp, σth) = Tr[
√√

σthρexp
√

σth]2. (96)

Here, the theoretical state which is aimed to be prepared has the 16x16
dimensional density matrix representation

ρTH
4 =

1
4




1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




(97)

defined in a basis used to represent state ρ = |Ψ8
4〉〈Ψ8

4|. With respect to
this state, a fidelity of F 4

Exp,LIN = 0.882± 0.051 is obtained. Also statisti-
cal errors are responsible for the observation of unphysical matrices, what
causes to obtain purities above unity. This is due to negative eigenvalues in
the range of up to −0.154.
Application on 2x8 dimensional state— In contrast, the determination of
the density matrix of the analyzed 2x8 dimensional state (6 logical qubits)
requires the evaluation of all 46 = 4096 projection measurements performed
over the full 6 qubit analysis. The density matrix has a fidelity of FExp,LIN

8 =
0.863± 0.012 with respect to the theoretically predicted state. An eigenvalue
decomposition reveals that it consists of an eigenstate with eigenvalue of

2 This corresponds effectively to reduce the dimension of the analyzed states from 2x8 to 2x4.
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Figure 22: Simulation results for the evaluation of the fidelity and the max-
imal negative eigenvalues for a set of 100 density matrices sim-
ulated with additional phase noise in each of the interferome-
ter arms and with each count rate diced according to Poissonian
statistics (a) and c)). Additionally, 100 states were simulated in-
cluding only phase fluctuations in the interferometers (b) and d)).
In all cases the density matrices were evaluated according to the
James tomography scheme. As a comparison of the observed neg-
ative eigenvalue distributions displays, the main contribution to
observing unphysical, i.e. negative semidefinite density matrices,
is given by the residual phase noise present in the interferometer
phases.

0.933 close to the theoretical maximum of 1. Additionally, a broad and sym-
metric spectrum of eigenvalues spread over a range of up to > ±50% is
observed.
A comparison of the experimentally evaluated density matrix as depicted
in Fig.21 with the theoretical prediction already hints at a high contribution
of noise, still small enough to allow the distinction of the 2x8 dimensional
state contribution. These noise contributions can be mainly associated to
residual phase noise ∆αAi and ∆βBi present in the now 6 phases analyzing
the state, as will be shown subsequently.

Negative eigenvalues— The influence of the residual interferometric phase
noise for observing negative eigenvalues can best be described by complet-
ing the state analysis of the 2x8 dimensional state
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5.3 convex optimization based quantum state reconstruction

|Ψ8〉 =
1

2
√

2
(|0〉A|0〉B + ei(αA1

+βB1 +∆αA1
+∆βB1 )|1〉A|1〉B

+ei(αA2 +βB2 +∆αA2 +∆βB2 )|2〉A|2〉B+

ei(αA1
+βB1 +αA2 +βB2 +∆αA1

+∆βB1 +∆αA2 +∆βB2 )|3〉A|3〉B+

ei(αA3 +βB3 +∆αA3 +∆βB3 )|4〉A|4〉B + ...+

ei(αA1
+βB1 +αA2 +βB2 +αA3 +βB3 +∆αA1

+∆βB1 +∆αA2 +∆βB2 +∆αA3 +∆βB3 )|7〉A|7〉B) (98)

with the additional independent phase fluctuations ∆αAi and ∆βBi with
i = 1, 2, 3.
As they vary statistically for multiple preparations of the entangled states
and for a fixed set of projection measurements, they contribute significantly
to an additional variation of the observed coincidence count rates and to the
detection of negative eigenvalues.
This last assertion is corroborated, as displayed in Fig. 22, by the simulation
of the reconstruction of density matrices using the James scheme. For the
simulation of 100 states a Poissonian distribution of the counts is assumed
(for 2500 counts, typical for the chosen experimental scenario), with an addi-
tional Gaussian fluctuation in the phase with a standard deviation of 0.025π
(corresponding to typically observed experimental values). A high average
maximal negative eigenvalue of up to EVNeg

8
Poisson,IFPhase = −0.524± 0.056

is observed. Similarly, simulations without the Poissonian error source show
a slightly lower average value of EVNeg

8
NoPoisson,IFPhase = −0.493± 0.056 (Fig.

22 d)). It follows that the main contribution to the observation of negative
eigenvalues is indeed from phase noise. In contrast, the deviation in the
average fidelities is minimal as displayed by F 8

NoPoisson = 0.988± 0.064 (a))
and F 8

Poisson = 0.992± 0.068 (b)). No simulations were performed with only
Poissonian error sources. More significantly, it has to be noted that density
matrices reconstructed by using the standard tomographic set yield a much
lower contribution of negative eigenvalues, even with count rates affected
by the additional fluctuations due to phase noise. The significance of the
observation of high negative eigenvalues for the application of optimization
schemes of these states will be addressed in more detail in 5.6.

5.3 convex optimization based quantum state reconstruction

As demonstrated experimentally, estimating density matrices by the James
tomography scheme has the notorious disadvantage that statistical errors
in the count rates lead in general to non-positive semidefinite density ma-
trices. This has been typically observed for similar experimental configura-
tions based on entangled multiphoton [83, 186] or ion states [66]. It imposes
restrictions on the applicability of the reconstructed density matrix ρ for
determining properties of the underlying state: For example, in order to
derive measures characterizing its entanglement such as the von-Neumann
entropy [152].
Several optimization problems are suited to address this problem, by ensur-
ing the resulting density matrix to fulfill positive semidefiniteness (ρ ≥ 0).
This can be done by estimating the set of probabilities pi(ρ) = Tr[ρΠa

i ] for a
generalized set of projection measurements Πa

i more likely to represent the
measured relative frequencies Fi = ci/N under the condition ρ ≥ 0. Here,
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ci represent the counts registered within a time interval and N the normal-
ization constant. Optimization methods can be based on the application of
a suited estimator function (such as free least squares) characterizing the
deviation between pi(ρ) and Fi [75]. Nevertheless, they suffer from the in-
herent disadvantage that there is no formal proof that the optimal solution
ρopt to the problem obtained with highest likelihood is indeed a global and
not only a local solution. In contrast, convex optimization methods have
the advantage that the obtained solution can be certified to be the global
solution as well. Similarly, it allows to enhance the evaluation precision and
to derive appropriate measures on the error of the estimation.
In order to implement these a more general set of linear optimization al-
gorithms based on convex estimator functions are used. The associated re-
search field, unified under the term of convex optimization has proven to be
reliable with respect to the goal of finding and certifying the optimal global
solution to an optimization problem (see [22] for a deeper insight into the
field).
They are applied here for the purpose of reconstructing the density matrices
of the generated quantum states as they allow to certify that the obtained
density matrices are indeed the global and therefore unique solution to the
optimization problem, while allowing to warrant their physicality.

5.3.1 Convex optimization algorithm

Estimator functions— In order to evaluate the set of probabilities pi(ρ) most
likely to represent the observed frequencies Fi a series of estimator functions
can be used, which themselves are convex functions (i.e. their second deriva-
tives are non-zero). The most commonly used convex estimator functions f
are called least squares (see [96])

f LS(pi(ρ)) = ∑
i

wi[Fi − pi(ρ)]2 (99)

with defined weights wi, free weighted squares

f FLS(pi(ρ)) = ∑
i

[Fi − pi(ρ)]2/pi(ρ) (100)

for the particular case in which the weights wi are approximated by the
respective probabilities as 1/pi(ρ) (as used in the James tomography scheme
[75]) and finally the maximum likelihood [73] function

f ML(pi(ρ)) = −∑
i

Filog[pi(ρ)]. (101)

Common to all methods is that they allow to determine the optimal den-
sity matrix ρopt once the corresponding likelihood function is minimized (or
maximized if the function is concave), after application of a suitable opti-
mization algorithm. Based on these estimator functions, we will present the
chosen method of a nonlinear convex optimization algorithm as described
in more detail in [120]. This method allows to include additional constraints,
ensuring the physicality of the obtained density matrix (ρ ≥ 0), into the op-
timization problem, while being unaffected by typical additional problems
restricting the applicability of similar methods: Finding a solution is intrin-
sically independent on providing suitable input parameters and in addition
the method offers an evaluation of how far away from the global optimum
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the obtained solution is. It is possible to make use of these additional ad-
vantages by resorting to the Newton optimization method (described subse-
quently) allowing a substantial speedup of the algorithms.
First, the density matrix ρ is represented in a suited operator basis Ôi ac-
cording to

ρ(pi) =
1

dim(H)
+ ∑

i
piÔi (102)

where the probabilities pi correspond to the values to be obtained after a
minimization of a suited estimator function f (ρ(pi)). Here, the constraint to
be fulfilled is that ρ(pi) ≥ 0 is always true for all sets of probabilities pi used
to derive ρ. This last condition can be fulfilled by redefining the estimator
function as

g(pi) = −t log det ρ(pi) + f (ρ(pi)) = bi(ρ(pi)) + f (pi(ρ)), (103)

with the additional barrier term t log det ρ(pi). This turns the uncon-
strained optimization problem into a constrained one.

Here, for a small value of the penalty parameter t and for low rank states
the optimized states lie exactly at the border to the set of negative semidef-
inite states. As this corresponds to a strong restriction of the states, the
optimization problem usually is started with a value in the order of 1 and
decreased down to values of 10−10 for which the bias in ρ(pi) attributed to
the barrier term is minimal.
Algorithm— In order to evaluate the optimal value ρopt(popt

i ), the algorithm
can be started by choosing the parameter t0 = 1 and the set of probabilities
corresponding to the maximally mixed state ρ0(p0

i ) = 1/dim(H). Next iter-
ation steps n + 1 are based on decreasing the penalty parameters tn+1 < tn

and using the set of parameters pn
i derived from the previous step n as a

starting point for evaluating the next iteration probabilities pn+1
i .

An intrinsic problem associated to the nonlinear convex optimization prob-
lem is that the number of evaluations required to obtain the better approx-
imation ρ(pn+1

i )n+1 from the previous set of probabilities grows exponen-
tially with the number of qubits the density matrix ρ consists of. One has
to recall that already for 6 encoded qubits the density matrix requires the
optimization of 46 − 1 = 4095 and 66 − 1 = 46655 variables when applied
onto a tomographic set defined by James and by the standard scheme, re-
spectively. Correspondingly, in order to ensure that ρn+1(pn+1

i ) is closer to
the optimal solution with respect to the previous step it is required to use
efficient schemes determining the optimal set pn+1

i out of the exponentially
increasing parameter space.
Numerical methods suited for nonlinear optimizations are, e.g. conjugate
gradient or steepest descent, requiring the evaluation of the gradient of the
estimation function ∇g(pi). In contrast, Newton methods additionally de-
pend on the evaluation of the Hessian matrix 4g(pi) [22]. In the second
case, which will be the method used, the evaluation of the Hessian matrix
and the calculation of its inverse is the most resource intensive step in the
algorithm. Nevertheless, it provides a fast convergence to ρ(popt

i )opt making
it the chosen method here.
The Newton method allows to evaluate the next direction ∆pn

i with respect
to the starting set of probabilities p0

i of the algorithm by approximating the
estimator function up to the second order Taylor expansion as
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g(pn
i + ∆pn

i ) ≈ g(pn
i ) +∇g(pn

i )T∆pn
i +

1
2

(∆pn
i )T 4 g(pn

i )∆pn
i . (104)

The resulting linear equation system has a solution

∆pn
i = −∇g(pn

i ) · (4g(pn
i ))−1 (105)

which requires the Hessian matrix 4g(pn
i ) to be unequal 0 (and therefore

invertible) as the estimator function g(pn
i ) is convex. With the knowledge

gained about the new direction ∆pn
k , the only parameter left is the distance

by which it is necessary to advance along that direction in order to approach
the optimal solution. This is done here by parametrizing the next step of
the optimization as

pn+1
i = pn

i + s∆pn
i (106)

for which a backtracking line search method allows to obtain the optimal
step length s.
Before evaluating these probabilities, concrete values for the gradient as well
for the Hessian matrix have to be evaluated. Analytical expressions for these
are can be formulated: First, the contribution arising from the additional
barrier term bn

i (ρ(pn
i )) = t log detρ(pn

i ) (first term in Eq.( 103)), leads to a
gradient of the form of

∇bn
i = −Tr[(ρn(pn

i ))−1Ôi] (107)

and to a Hessian matrix parametrized as

4bn
i,j = −Tr[(ρn(pn

i ))−1Ôi]Tr[(ρn(pn
j ))−1Ôj] (108)

This second term of the gradient of g(pn
i ) in Eq.( 103) is expressed in the

example of a maximum likelihood estimator function (for similar deriva-
tions for free least squares estimators the reader is referred to [120]) as

∇ f ML,n
i (ρ(pi)) = −∑

k

ck
pn

k
Tr[ÔiPi]. (109)

while the corresponding Hessian matrix corresponds to

4 f ML,n
i,j (ρ(pi)) = −∑

k

ck
(pn

k )2 Tr[ÔiPi]Tr[ÔjPj] (110)

Stopping criteria of optimization algorithm— Several algorithm steps are
performed for a fixed value of the penalty term t until the gradient evalu-
ated at a specific step falls below a defined critical value (chosen for example
to be ||∇g(pn)|| < 10−6). Reaching this criteria allows to approach the opti-
mal density matrix and to decrease the penalty term defining its proximity
to the set of physical states repeatedly, until the corresponding parameter
reaches t = 10−10.
The obtained optimal density matrix ρopt(popt

i ) has the required character-
istics that none of its eigenvalues are negative, while being derived from
the set of probabilities being most likely in accordance with the measured
relative frequencies ci. Moreover, a fraction of the eigenvalues is most likely
set exactly to 0 up to a machine precision of 10−8 − 10−10.

96



5.3 convex optimization based quantum state reconstruction

Figure 23: Real and imaginary components of the density matrix for the
2x4 dimensional state obtained by James tomography and after
application of a convex optimization method. The corresponding
fidelity of FCO

4 = 0.833 reveals a close overlap to the theoretical
expected density matrix

Furthermore, an optimization scheme based on a maximum likelihood es-
timator doesn’t converge to the underlying density matrix when resorting
to the James tomography scheme [75]. Instead, a free least squares estima-
tor is used. A detailed explanation for this fact was not found, but could be
related to the fact that a James tomography scheme based on maximum like-
lihood converges to the underlying state only in the case that the number of
projections acquired per basis setting equals the maximal number of 6, i.e.
the limit defined by the full tomography scheme (here, both estimators, free
least squares and maximum likelihood can be applied).
Due to the proven suitability of a C based programming language for high
performance computing and its compatibility with suited linear algebra
packages (GoTo BLAS, LAPACK) this language is preferred over the en-
coding in programs like Matlab. Moreover, the flexibility of languages like
C or Fortran90 regarding the efficient parallelization of the calculations over
several central processing units (or even Graphic Processing Units) makes
these languages suitable for the optimization problems treated in this work.
Concretely, a speedup of the algorithms from ≈ 15 minutes to 1 second were
obtained for a 4 qubit state when comparing codes based on Matlab and on
C. This translates into a corresponding improvement from > 24 hours to
just ≈ 6 minutes for a 6 qubit state. Here, it was particularly advantageous
to use highly paralellized linear algebra packages like GoTo-BLAS, for the
decomposition of the Hessian matrix in its Cholesky form and for enabling
to enhance the efficiency for the calculation of its inverse.

5.3.2 Convex optimization algorithm applied on experimentally reconstructed den-
sity matrices

The convex reconstruction algorithm presented before is useful to extract the
density matrix most likely to be compatible with the measured coincidence
count rates. The density matrices corresponding to 2x4 and 2x8 dimensional
time encoded states are obtained by measuring each analysis qubit along
the James projector basis Jij = {|R〉〈R|, |L〉〈L|, |0〉〈0|, |P〉〈P|}ij . Here, the
corresponding operator basis defined in 5.2 is applied on the 6 logical qubits
distributed to both parties, Alice and Bob, in order to analyze states with up
to 2x8 dimensions.
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Figure 24: Tomographically reconstructed and convex optimized den-
sity matrix of a 2x8 emission time entangled state |Ψ8〉 =
1/(2
√

2) ∑7
i=0 |k〉A|〉B analyzed by making of Alice’s and Bob’s

interferometer arms corresponding to a 6 logical qubit state anal-
ysis. The fidelity to the theoretically predicted state corresponds
to FExp,CO

8 = 0.7825± 0.0121.

First, the optimization algorithm is applied on the 2x4 dimensional state
analyzed in the basis of Eq.( 95). In this case the reconstructed density
matrix, depicted in Fig. 23, has a spectrum of eigenvalues with only 3
non-vanishing values 0.8588, 0.1065 and 0.0265 greater than 0.02, allowing
to bound its rank to 33. This parameter will be relevant for the estima-
tion of the sparsity of the reconstructed states in section 5.4.1. The fidelity
obtained from the reconstruction is FExp,CO

4 = 0.833 ± 0.051 with purity
P = 0.7496, deviating from the value estimated by linear evaluation of
F 4

Exp,LIN = 0.882± 0.051.
In full analogy, the application of the same scheme on the 2x8 dimensional
state reveals a state close to the theoretical predictions (see Fig. 24). The
evaluated fidelity of FExp,CO

8 = 0.7825± 0.0121 reveals an even larger devi-
ation by up to ∆F8 = 0.081 from the values obtained by reconstructing the
density matrix linearly. It is to note that for obtaining this value, an addi-
tional local filtering transformation [93, 173] was applied, as this operation
preserves entanglement. This transformation increases the fidelity measure
from the experimentally evaluated one of 0.7349± 0.0121. Here, a contribu-
tion of only 8 eigenvalues above 0.02 allows to bound the effective rank to
8. This reveals the state to be close to pure and, more importantly, physical,
as the noise contributions affecting the linear evaluation were fitted to be
0 (up to the value of the t parameter at the last optimization step). It will
be studied in section 5.6 whether the reason for observing lower fidelities
than obtained by the linear evaluation method is due to an intrinsic bias
in the reconstruction method. This effect is specially large for the James
reconstruction scheme coupled with phase fluctuations in the used interfer-
ometers.

The obtained estimation of the underlying density matrices offers a de-
tailed description of the underlying quantum states, but at a considerable

3 The choice of the eigenvalue treshhold of 0.02 is chosen as it corresponds to typically observed
noise levels for the count rates obtained in the experiment
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higher cost: The minimum measurement effort required scales ∝ 4N with
the number of logical qubits N, or correspondingly with 42log2(d) of the
encoded 2xd dimensions of the two-photon states. Here, the derived con-
vex optimization scheme offers significant advantages, as it allows to apply
methods requiring a lower number of measurements in order to estimate
the underlying state ρopt(popt

i ). These methods are described as compressed
sensing (section 5.4) and adaptive (section 5.5) based quantum tomography
schemes.

5.4 compressed sensing based tomography

Background— Basic research in the field of signal processing and recon-
struction has led to the development of novel tomographic reconstruction
schemes based on compressed sensing. A common question emerging in
these scenarios is which minimal frequency is required in order to obtain
a high fidelity reconstruction of a signal, consisting of a spectrum of fre-
quencies fi and with a maximal frequency fmax. This question was adressed
from an informational theoretic perspective and, to the knowledge given so
far, solved by Shannon and Nyquist in the form of the Shannon-Nyquist
theorem (SNT). There, it was demonstrated that the minimal sampling fre-
quency to be chosen is 2 · fmax [153].
This theorem influenced many applications in diverse areas employing sig-
nal reconstruction techniques such as in magneto-resonance-spectroscopy
(MRS), seismology, signal transmission and conversion for many years. Un-
til it was accidentally discovered that the reconstruction of MRS signals with
a much lower sampling rate than allowed by the SNT theorem was still
enough to provide a high fidelity tomography, under the condition that the
signal sampling is done randomly [108].
A theoretical treatment of the problem led to the demonstration that indeed
one important point not addressed by the SNT sampling theorem is the
sparsity of the signals studied. Indeed, most signals used in information
processing scenarios are sparse, i.e. the number of non-zero coefficients al-
lowing to describe its (Fourier-, Wavelet) decomposition is mostly low. In
contrast, signals of high sparsity (i.e. maximally noisy signals) offer a low
information content. The paradigm change consisted here in applying ef-
fective techniques to efficiently gain information on the highest contribut-
ing terms [1] of sparse signals. From this perspective, the signal recovery
problem can be addressed by adapting the sampling rate of a signal to its
information content, characterized by the number of non-zero coefficients
in the decomposition used for its analysis.
A main achievement made by Tao, Candés and Romberg [29] and coworker
Donoho [28, 41] was to proof that indeed it is possible to find a unique
and efficient solution to the problem. It states that under these considera-
tions the unique reconstruction of a sparse signal requires only sampling
rates scaling logarithmically instead of exponentially with the number of
dimensions used to describe the signal’s parameter space4. Moreover, they
showed that the optimization problems are efficiently solvable by resorting
to standard computational resources.
General to these problems is the definition of the solution vector y known
to consist of M entries, corresponding to a decomposition of, for example,

4 Here the maximal frequency fmax used to sample a signal is used to describe the signal as a
vector with a dimension defined by the number of required sample points
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an image in the Fourier or wavelet basis. If it is to be reconstructed from an
input vector x extracted from N different measurements. Here, the studied
vector x is assumed to be sparse. The corresponding linear system φx = y
defined for an MxN matrix φ is underdetermined once M<N. One of the
achievements of [29] is to show that still the solution can be demonstrated
to be unique and moreover to be limited only by the computation preci-
sion and the present noise, once the measurements are sampled randomly.
Using these techniques, compressed sensing based algorithms could be suc-
cessfully applied on noisy and non-ideally sparse samples while offering
a tolerable precision, therefore allowing its practical implementation under
real experimental conditions.
Based on these proofs a series of implementations in various fields could
considerably profit: Efficient face recognition algorithms [76, 89] enable to
recover the identity of a person even if the picture is blurred, while pattern
recognition schemes could be used to identify buildings or targets by its con-
tour shape even under non-optimal conditions of luminosity or placement
of the object [40]. Further on, the possibility to develop so called sensors
"single-pixel" cameras [1] based on sensors with a lower number of pixels
has led to a considerable reduction in their manufacturing cost [43]. Simi-
larly, MRI reconstruction techniques could benefit from an increase in the
information bandwidth to be extracted by compressive sensing techniques.
Here, for example it could be used to decrease the required high exposition
times detrimental to their application on living organisms [107].
With more relevance to this work, these results could be applied on the
state reconstruction schemes as required for obtaining the tomography of
a quantum state efficiently [60, 59]. Here, the studies related to the effi-
cient reconstruction problem of a vector motivate its application on matrix
completion problems of a density matrix with low rank r, i.e. with a low
number r of non-zero eigenvalues [27]. This second condition corresponds
to the sparsity assumption about the underlying vector in the compressed
sensing problem.

Application for the reconstruction of a density matrix— A direct appli-
cation of these discussions to quantum state tomography was undertaken
in [59, 60], where a suitable choice of a Pauli operator basis (the same basis
described in 5.2.2) was chosen to parametrize the matrix instead of using
each matrix element as an independent parameter. Here, the translation of
the optimization problem into a convex one allows to ensure that the recon-
structed state is the global optimal state in difference to similar algorithms
not allowing to discard that the solution is only a local maxima.
It could be demonstrated that compressive sensing enables to reduce the
number of measurements, sampled randomly out from the full set of d2 mea-
surements, in order to determine a (square) matrix describing the d dimen-
sional system uniquely. In analogy, the measurement effort M is reduced
to a logarithmic instead of a exponential dependence on the dimension d of
the studied matrix according to

M ∝ drlog(d)2, (111)

depending linearly on the rank r of the matrix.
In this work, the corresponding matrix completion problem is solved by
making use of the convex optimization scheme derived in the previous sec-
tion 5.3 for only a random selection Ωs of projection measurements out of
the full set Ω. Here, the optimization problem allowing to determine the
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fitted density matrix σ is based on a minimization of the trace norm Tr[σ]
under the constraint that

Tr[Ôiρ] = Tr[Ôiσ], (112)

only by choosing measurements denoted by an index i ∈ Ωs and de-
scribed in the operator basis Ôi. This determines that the fitted matrix σ is
unique and equal to the underlying state ρ once the optimization was suc-
cessful. A suitable choice of the operator basis is the Pauli operator basis Ôi
defined in 5.2.2. Similar bases, such as the basis Ĵij (see 5.3.2) required for
a tomographic reconstruction according to James [75], can be used accord-
ingly.
The motivation for using the trace norm can be based on geometrical argu-
ments: Out of the set of sampled measurements contained in Ωs a large
affine matrix space compatible with these results can be defined. The op-
timization task is now reduced to determining only one point out of the
affine space corresponding to the underlying density matrix ρ. This can be
done by reducing its geometric distance from the set of states compatible
with the sampled frequencies, achieved by using least squares or maximum
likelihood functions and compatible with states with a specific sparsity, by
using a suited norm, such as the trace norm. Here, the assumption that the
state is of low rank enables to offer a further restriction of the states com-
patible with the affine space of Ωs. It is at this point that the introduction of
the additional trace norm constraint into the optimization problem specifies
a computationally efficient strategy for rank minimization, at least down to
a rank defined by the optimization parameters. More importantly, it is pos-
sible to prove that the global minimum of the optimization defines a state σ
identical to ρ and compatible with the set Ωs, up to the precision thresholds
to be fulfilled for the addition of noise.
The inclusion of these conditions into the framework defined by the con-
vex optimization algorithm in Eq.( 103) is done by replacing the estimator
function by

g(pi)
CS = f (ρ(pi))− t log detρ(pi) + λTr[ρ], (113)

where the additional parameter λ allows to further specify the rank of
the fitted density matrix, i.e. to define the degree of admixture of full rank
noise. Based upon apriori assumptions about the fraction of noise present in
the system it allows to effectively tune the noise admixture of the optimized
density matrix accordingly. The possibility to specify λ from a set of mea-
surements has been addressed in literature, but no definitive solution to its
derivation was achieved. Indeed, a simulation of the optimization problem
for different values of λ has been done in this work, without achieving a
conclusive assertion about the optimal λ to be chosen5. Due to that reason,
it is recommended to set this parameter to 0, renouncing to provide a tuning
parameter to describe the noise contributions 6. In this case the compressed
sensing optimization problem is reduced to a (convex) matrix completion
problem for a tomographically incomplete set of measurements.

5 Simulations performed on 2x4 dimensional maximally entangled states (no Poissonian noise)
revealed a good convergence to the underlying states for choices of the parameter λ = 0.0001−
0.5 and for a number of projections of ≈ 32

6 Personal communication by David Gross
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Figure 25: Convergence of parameters evaluating the reconstruction of a 2x4
dimensional two-photon entangled state using compressed sens-
ing reconstruction techniques as a function of the number of pro-
jection measurements. Here, the used figures of merit are the
fidelity, trace distance and purity of the states and are referenced
to the respective density matrix obtained for the full tomographic
set.

5.4.1 Compressed sensing applied on experimental data

Based on the preceding discussions the compressed sensing optimization
scheme is applied to tomographic data obtained from experimentally pre-
pared states. It is the purpose of this section to further corroborate the
proof, derived from purely theoretical discussions, that it enables to provide
a unique solution σ to the optimization problem even for a tomographically
incomplete data set Ωs. Indeed, this point can be addressed by choosing dif-
ferent subsets of the tomographic data for a fixed number of measurements
and by comparing the resulting figures of merit, like the fidelity, trace dis-
tance and purity of the reconstructed states. As a reference for evaluating
the fidelity and trace distance, it is possible to make use of the state evalu-
ated by using the full data set. For the 2x4 dimensional state this consists of
256 and for the 2x8 state of 4096 measurements.
Figs. 25 and 26 display a convergence of the used figures of merit to
the ideal values obtained for the full set of samples as a function of the
number of measurements used to reconstruct the corresponding density
matrices. More importantly, for the 2x4 state a number of measurements
above MExp

4 ≈ 144 suffices to obtain an average fidelity above 88% of

FCS
4 = 0.886± 0.025 and with a maximal standard deviation of 0.025. Simi-

larly, for the 2x8 state for more than MExp
8 ≈ 1600 measurements an average

fidelity of FCS
8 = 0.8867± 0.021 spread with a maximal standard deviation

of only 0.021 is observed.
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Figure 26: Convergence of parameters validating the successful reconstruc-
tion of a 2x8 dimensional two-photon entangled state using com-
pressed sensing reconstruction techniques as a function of the
number of randomly sampled measurements, as a function of
the fidelity, trace distance and purity of the reconstructed states.

These results outline that the obtained density matrices correspond to
near to pure states with a tolerable noise admixture enabling the efficient re-
construction of the states. The high purity of the states was certified by the
fact that the convex optimized states had only 3 (out of 16) and 8 (out of 64)
non-vanishing eigenvalues. The total reduction in the measurement effort
is described by a factor of ≈ 256/144 = 1.778 and of ≈ 4096/1600 = 2.56
for the observed 2x4 and 2x8 dimensional states, respectively. In contrast,
the evaluation of these results for a simulated state with fidelity 1 and no
Poissonian fluctuation of the count rates reveal a convergence to the ideal
figure of merit already for MSim

4 ≈ 64 and MSim
8 ≈ 144 measurements for

the analyzed 4 and 8 dimensional states (not plotted).
Comparison of results with theoretical expectations— It is useful to com-
pare these results with the results predicted by the theory: In this case, the
figure of merit M, the number of required measurements, is predicted to
scale according to M ∝ drlog(d)2 with r corresponding to the rank and d2 to
the dimension of the studied two-photon states. Here, the dimension of the
reconstructed density matrices corresponds to d = 4 · 4 and d = 8 · 8, within
which the postselected 2x4 and 2x8 dimensional states are embedded. With
these values and a rank of 3 and 8, as observed for the convex optimized
experimentally reconstructed states, the bounds read as Mr=4

d=4·4 ≈ 70 and
Mr=8

d=8·8 ≈ 1670. In contrast, for rank 1 states these values correspond to
Mr=1

n=4·4 ≈ 23 and Mr=1
d=8·8 ≈ 208. These values are in the same order of

magnitude than the ones obtained from experimental (MExp
4 ≈ 144 and

MExp
8 ≈ 1600) as well of simulated data (MSim

4 ≈ 64 and MSim
8 ≈ 144).

To sum up these results, it can be stated that a compressive sensing sam-
pling scheme can be used to increase the reconstruction efficiency for low
rank quantum states. Nevertheless, it is of interest to discuss if these efficien-

103



tomographic reconstruction of qudit entangled states

cies can be further increased, by making use of intrinsic properties defined
by the mathematical formulation of quantum theory itself. This will be the
topic discussed in the next section.

5.5 adaptive quantum state estimation

Current tomography schemes— As displayed in the previous section, ran-
dom sampling of a subset of a tomographically complete set allows to re-
construct the density matrix of quantum states uniquely. Moreover, this is
only the most promising strategy to follow in the case that no apriori in-
formation is available about the studied state. Nevertheless, most low rank
quantum states prepared offer inherent symmetries, which are of informa-
tional value and which can be evaluated prior performing the tomographic
measurements. One of these characteristics is the permutationally invari-
ant property [167], stating that the state is invariant under the interchange
of the qubits it consists of. This is a property satisfied by most prominent
states such as Dicke [181] or many GHZ [182, 21] states with wide applica-
tions in quantum information. These schemes are valuable, as they lead to
only a quadratic instead of an exponential increase in the required measure-
ments with the number of qubits N the quantum state consists of. Further
on, combined with convex optimization techniques, the physicality of the
resulting density matrices can be warranted [167], while the application of
compressed sensing schemes on the PI subspace allows to further decrease
the measurement effort [151].
Nevertheless, it is an open question to be adressed here whether alternative
scheme offers an equivalent or improved speedup for states not restricted to
be permutationally invariant. On the other side, it should also not require
random sampling over a subset of the measurements. A useful character-
istic of quantum states allowing to increase the reconstruction speedup for
a broader set of states is correlation complementarity which is a property
derived from the axiomatic foundations of quantum theory. It can be ex-
pressed in the formalism of a state decomposition based on dichotomic ob-
servables [99, 91] or on mutually unbiased bases [184].
Correlation Complementarity— It states that for a correlation measurement
(corresponding to an observable A) performed on a given state ρ and for
which a high expectation value close to the maximal value close to 1 is
observed, there exists a large set of observables anticommuting with the ob-
servable A, whose expectation values are predicted to be very low. Here,
the measurement effort can be reduced as only the observables leading to
higher correlations and therefore with a higher informational value, have to
be measured.
Correlation complementarity can be outlined for a two-qubit state, for which
the expectation values of all 9 correlation tensor elements are denoted as
Tij = Tr[ρ(σi⊗ σj)] for dichotomic measurements performed along the Pauli
measurement basis σi with elements i = x, y, z.
The trade-off relations

T2
zz + T2

zx + T2
zy + T2

xz + T2
yz ≤ 1

T2
yy + T2

yx + T2
yz + T2

xy + T2
zy ≤ 1

T2
xx + T2

xy + T2
xz + T2

yx + T2
zx ≤ 1 (114)
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Figure 27: Efficiency of the adaptive quantum state tomography and the

compressive sensing schemes applied on simulated maximally
entangled states in 2x4 dimensions with varying fidelities and
prepared in randomly rotated bases. The corresponding figure of
merit, the fidelity with respect to the underlying state, converges
to a maximum value for the different simulated states with a fi-
delity of 90% down to 60% with increasing number of steps s of
the adaptive scheme (blue) or equivalently as a function of the
randomly sampled correlation bases for the compressive sensing
scheme (green). The adaptive scheme only slightly outperforms
the compressed sensing scheme. Each average fidelity is plotted
with the corresponding 68% confidence region.

follow directly from correlation complementarity. Here, the first condi-
tion describes that once the high correlation value |Tzz| = 1 is observed,
quantum theory predicts that |Tzx|, |Tzy|, |Txz| and |Tyz| corresponding to
anticommuting correlations with respect to zz, are expected to be 0. From
the information theoretical point of view, the measurement of |Tzz| = 1 al-
lows to retrieve more information about the underlying quantum state than
observing a low expectation value, as it directly conveys that the other cor-
relations have to be small. In contrast, if for example |Tzz| = 0 is observed,
any of the correlations in the trade-off relation of Eq.( 114) can have a value
between 0 and 1.

Implementation using the convex optimization scheme— The relations of
Eqs.( 114) are directly implemented by making use of the convex optimiza-
tion framework developed in the previous sections 5.3. Here, the usage
of an operator basis implemented directly in the Pauli operator basis, for
which the complementarity relations hold, allows to use the relations ( 114).
Further on, probability conservation and the positive definiteness of the re-
sulting density matrix implies that the sum in ( 114) is strictly restricted to
≤ 1.
Moreover, the optimization process is shown to be adaptive: It makes sense
to start the scheme, based upon the information retrieved from a small set
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Figure 28: Efficiency of the adaptive quantum state tomography and the
compressive sensing schemes applied on simulated maximally
entangled states in 2x8 dimensions with varying fidelities and
prepared in randomly rotated bases. The same parameters and
labels as for Fig. 25 are used.

of correlation measurements, such as Bxx···x = σx ⊗ σx · · · ⊗ σx and accord-
ingly Byy···y and Bzz···z in order to retrieve a density matrix ρ1 by applying
the convex optimization scheme. Here, the choice of correlation measure-
ments retrieving information along all 3 Pauli spin directions of each en-
coded qubit is required to fulfill the criteria to be met by any matrix com-
pletion algorithm as studied here: The chosen measurement subset has to
allow the retrieval of information equally over the whole parameter space
of the quantum state’s density matrix.

As with high probability ρ1 won’t describe the underlying quantum state,
at a second step of the state reconstruction scheme it is possible to make
use of correlation complementarity by choosing the direction with the next
highest correlation value (excluding the correlations already considered). In
order to find this direction, all correlations of ρ1 are evaluated along all
combinations of Pauli-spin bases and ordered with respect to their weight.
Again, from the information theoretical point of view this correlation has
the highest informational value with respect to other anticommuting cor-
relations, more likely to lead to the observation of low correlation values.
Therefore, the new correlation measurement is used together with Bxx···x,
Byy···y and Bzz···z as the input for obtaining the convex optimized density ma-
trix ρ2. The subsequent application of this scheme allows to further increase
the tomographic reconstruction efficiency, characterized by the convergence
of the chosen figure of merit, such as the fidelity, to the underlying state ρTh

with increasing correlation measurements.
Applications of these schemes for multiparticle qubit states of arbitrary
qubit number N have been undertaken in [99, 100] for the purpose of en-
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Figure 29: Average fidelities for the application of the adaptive tomographic
reconstruction scheme on a simulated 2x4 dimensional maxi-
mally entangled state. It is applied on a state reconstructed by
using the standard and James tomographic sets. The adaptive
scheme is applied only on the input state while the compressive
sensing scheme is applied on states by using up to 100 different
basis sets for a fixed number of correlation measurements. The
evaluated fidelities converge to the ideal fidelity of 1 with respect
to a state with the corresponding target fidelity of 90% a), 80% b),
70% c) and 60% d). The adaptive scheme based on using the stan-
dard tomographic set converges faster, closely followed by the ef-
ficiency of the adaptive James tomography scheme. They clearly
outperform the efficiency of schemes based on a compressed sens-
ing sampling. The confidence regions of 68% are evaluated for
the compressed based sensing method.

hancing the entanglement detection efficiency. The results have been con-
densed into the derivation of a decision tree enabling to determine, on the
basis of previous correlation measurement results, which measurement is to
be subsequently chosen.

5.5.1 Simulation and experimental results for the adaptive tomography scheme

Results on simulated rotated maximally entangled states— The adaptive
quantum tomography scheme is first applied onto a set of simulated pure
2x4 dimensional, maximally entangled state |Ψ〉 = 1/2 ∑3

k=0 |k〉A|k〉B.
A set of 100 states is obtained by applying a rotation of the basis of maxi-
mally entangled states such that they are distributed equally according to
the Haar measure. This is done by applying unitary transformations on the
states such as to obtain all pure density matrices with the same probabil-
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Figure 30: Simulated average fidelities for the application of the adaptive
tomographic reconstruction scheme on a 2x8 dimensional max-
imally entangled state using identical parameters as for simu-
lations performed on the 2x4 entangled state. Here, again the
observed efficiency for an adaptive tomography scheme clearly
outperforms a scheme based on compressed sensing sampling.
The curves are plotted both for a scheme based on full and on
James tomography.

ity [117]. In all cases the standard tomographic set is used and combined
with a convex optimization based on a maximum likelihood estimator. The
simulations are done for different admixtures of white noise to obtain states
with target fidelities of 90%, 80%, 70% and 60%. For the obtained simulated
states the average fidelities over all 100 states are plotted as a function of the
step number s of the adaptive tomography scheme as depicted in Fig. 27.
In parallel, a compressed sensing scheme based upon the random sampling
of 30 different measurement bases to be obtained from a reduced set of s
correlation bases is applied on the same rotated states. The corresponding
average fidelities of the fitted density matrices over all sampling runs are
plotted. Similar results are obtained for simulations with an equal choice of
the parameters on a 2x8 dimensional maximally entangled and arbitrarily
rotated state as depicted in Fig. 28.

As depicted in Figs. 27 and 28, the adaptive tomography scheme succeeds
in average at the same step in uniquely retrieving the underlying state with
respect to a compressed sensing based scheme. Here, the criteria for certi-
fying the reconstruction success is that the obtained fidelities to the input
states is F > 98%. Depending on the target fidelities of the considered 2x4
(or respectively 2x8) dimensional rotated states the number of steps (correla-
tion bases for the compressive sensing scheme) for which the reconstruction
was successful increases from around 10 for a target fidelity of F = 90%
to 20 for a fidelity of F = 60% (out of a maximum of 81 and 729 different
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bases for a full tomographic set). For a reference fidelity of F = 90% this
results in an average reduction in the required measurements by a factor of
8 for a 2x4 dimensional state and by a factor of 72 for the 2x8 dimensional
state. No James tomography reconstruction scheme was applied on the sim-
ulated data, as no arguments could be found that it could help the adaptive
scheme to outperform a compressive sensing based scheme either.
Application on non-rotated maximally entangled states— Nevertheless, the
framework considered for these discussions is different for typical experi-
mental scenarios. Usually, it is well known which state is to be prepared
and any considered quantum tomography scheme aims to provide a certifi-
cate that indeed this is the case for a low number of measurements. This is
for example the case for states studied in this work.
The performance of both schemes is again studied on unrotated maximally
entangled 2x4 and 2x8 dimensional states with varying input fidelities rang-
ing between 90% to 60%. Here, additionally the James tomography scheme
is applied by using only the corresponding subset of 4 out of the 6 projec-
tion measurements as acquired for the full tomography scheme. Concretely,
for each correlation basis chosen, only the set of measurements correspond-
ing to a projection on {|0〉, |P〉, |R〉, |L〉} is used for that purpose (see 5.2).
The number of measurements per basis is lower than for using the full set
{|1〉, |0〉, |P〉, |M〉, |R〉, |L〉} to determine one entry of the correlation tensor
T̂ in the full tomography scheme (see 5.2.2).
Results on simulated non-rotated maximally entangled states— Here, in
both cases (see Fig. 29 for results on a 2x4 and 30 on a 2x8 dimensional
state), a faster convergence of the state detection efficiency is observed for
the adaptive scheme based on using the standard tomographic set with re-
spect to a scheme based on James tomography. This behavior is to be ex-
pected as the corresponding number of projection measurements, used to
retrieve information about the prepared quantum states, are reduced in av-
erage by a factor (6/4)4 = 5.06 and (6/4)6 = 11.39 with respect to the full
tomography scheme. This factor is due to the reduction of the number of
projection measurements per basis from 6 to 4.
More importantly, a clear enhancement in the adaptive state detection ef-
ficiency for the 2x4 dimensional state by up to 15 correlation (24) measure-
ments with respect to the compressed sensing scheme is observed when bas-
ing it on a full and James tomography scheme for target fidelity of F = 90%
(F = 60%). Similar observations are made on the 2x8 state, where the
improvement is in the range of 19 steps for a target fidelity of 90% (full
tomographic set). In contrast, the convergence for the adaptive and com-
pressive sensing James tomography scheme to the ideal values isn’t reached
for the chosen number of measurement bases of up to 25. Moreover, the
curves saturate at a fixed value at ≈ 90% within the simulated 25 steps of
the scheme. A similar observation is made on the 2x4 dimensional state,
where the fidelity saturates for up to 10 steps as well, before increasing to
the ideal values.
Within the performed reconstruction steps, no convergence to fidelities ap-
proaching unity could be observed for the James tomography scheme on
the 2x8 dimensional state. Nevertheless, the aim followed here is to display
that the adaptive tomography scheme clearly outperforms a scheme based
on compressed sensing, what is clearly to be extracted from the curves. For
a target fidelity of F = 90% and using the standard tomographic set this
reduction in the measurement effort can be expressed in absolute numbers:
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For compressed sensing based schemes these factors correspond to 5 and
40 and for the adaptive scheme to 27 and 400 for a simulated 2x4 and 2x8
dimensional state, respectively. Note that the efficiency of the compressed
sensing scheme applied on maximally entangled states is reduced with re-
spect to the scheme applied on maximally entangled rotated states, leading
to the conclusion that compressed sensing based schemes are more suc-
cessful when applied on states with an additional random measurement
transformation. This observation can be interpreted in the scenario of the
Random Isometry Property (RIP) [30], a property to be fulfilled by the com-
pressed sensing based measurement scheme considered in this work. In this
context, it hints at the possibility that the random sampling technique cho-
sen here might not be optimal with regards to reducing the measurement
effort.
Results on the experimentally prepared entangled states— Complementing
these simulations, the efficiency of the method is evaluated as well for the
experimental tomographic data obtained for the 2x4 and 2x8 dimensional
states studied in the previous sections. As no tomography based on using
the standard tomographic set was performed, only results on the scheme
based on James tomography are provided (see 28). Nevertheless, it has to
be stressed out that according to the preceding simulation results, a better
convergence of the adaptive tomography scheme is predicted by using the
standard tomography set.
In order to apply the compressed sensing scheme, a subset of 100 (for the
case of 2x4 dimensional states) and 25 (for 2x8 dimensions) bases are ran-
domly chosen out of the full set for a fixed step of the reconstruction.
For the 2x4 dimensional state these results reveal an increase in the detec-
tion efficiency on the order of 25 correlation measurements with respect to
a scheme based on compressed sensing. This apparent improvement in the
reconstruction speed with respect to the results obtained from simulated
states has to be relativized by the fact that for experimental data a success-
ful reconstruction is achieved for 30 steps while for simulated data without
noise this was achieved for 14 steps. This effect can be attributed in first
instance to the additional noise (Poisson distribution of counts and phase
noise) present in the experimental data.
The application of the same schemes for the analyzed 2x8 dimensional state
reveals again a faster convergence of the evaluated fidelities for the adap-
tive scheme than for the compressed sensing scheme. Nevertheless, in this
case, the achieved fidelity using the adaptive scheme reaches only ≈ 87%
with respect to the underlying density matrix within the 200 steps of the
adaptive scheme. No clear reason for this saturation was found, but could
be associated to similar saturation effects as observed for the simulated data
using the James tomography scheme (Fig. 30). A slower convergence of the
curves to the ideal values than for the simulated states can be attributed to
the additional (phase) noise contributions, as obtained for similar work [60].
Despite these restrictions a success of the reconstruction, certified by fideli-
ties > 85%, is achieved for the adaptive tomography scheme for ≈ 120 steps,
while for the compressed sensing based scheme a convergence of the fideli-
ties to the same regime couldn’t be obtained within the 200 steps of the
simulation. This corresponds to a reduction in the convergence speed with
respect to simulations based on noiseless data as depicted in Fig. 30. Sum-
marizing these results, an average reduction in the measurement effort by a
factor of ≈ 2 is observed for the adaptive tomography scheme with respect
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5.5 adaptive quantum state estimation

Adaptive Scheme/ James Tomography

Compressed Sensing Scheme/James

F
id

e
lit

y

Number of steps s

a)

Experiment 2x4d Experiment 2x8d

Number of steps s

F
id

e
lit

y

b)

Figure 31: Average fidelities when applying the adaptive and compressed
sensing based reconstruction on the experimentally realized max-
imally entangled 2x4 a) and 2x8 b) dimensional states. Here,
the reconstruction methods are applied on a tomographic set ac-
cording to the James tomography scheme. For both cases the
evaluated fidelities (in the compressed sensing scheme averaged
over 100 and 25 randomly sampled 2x4and 2x8 states, respec-
tively) are plotted as a function of the number of correlation mea-
surements used to retrieve the corresponding density matrices.
Clearly, the adaptive tomography scheme is more efficient than
the compressed sensing based scheme in order to retrieve the ex-
perimentally reconstructed state obtained for a tomographically
complete data set.

to a compressed sensing based scheme.
The advantage of the adaptive tomography scheme over the compressed
sensing scheme can be explained by the fact that the maximally entangled
states display correlations close to the maximum of 1 along the chosen analy-
sis bases. In consequence only a small number of correlations are big while a
high number of correlations whose observables anti-commute with the first
one are low. This can be attributed again to the fact that big correlations are
of a higher informational value. As the adaptive tomography scheme de-
tects these correlations already for a low number of steps, the state is more
efficiently reconstructed, as shown for simulated and experimental data.

Conclusion— An adaptive quantum tomography scheme based on cor-
relation complementarity is demonstrated to outperform the compressed
sensing scheme for the efficient detection of the underlying quantum state
for dimensions up to 2x8, if the state is maximally correlated along the used
basis. For states prepared along arbitrary rotated directions, the scheme is
shown in average to perform as good as the compressed sensing scheme, as
demonstrated for a scheme based on full tomography.
Simulations on the statistical fluctuation of the corresponding count rates
were not done in this section. As will be shown in the next section 5.6 this
would lead to a bias in the corresponding figures of merit like the fidelity,
when reconstructing the underlying states using constrained optimization
algorithms.
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Figure 32: Average fidelities observed for a simulated tomographic experi-
ment of a maximally entangled 2x4 dimensional state using linear
inversion applied on a standard tomographic set (LIN) and con-
vex optimization methods based on maximum likelihood (MLE)
and free least squares estimators (FLS) in dependence of the used
count rates per basis. Each average fidelity is plotted as a function
of the total count rates per correlation basis used to reconstruct
the corresponding density matrices. A clear bias is observed for
low counts for all states admixed with white noise such as to ob-
tain a target fidelity of F 90%,80%,70%,60%, except for the method
based on LIN. In contrast, all average fidelities asymptotically
converge to the target fidelity for higher counts per basis.

5.6 bias in the fidelity measure

A suited quantum tomography scheme, enabling to give a unbiased and,
more importantly, a physical estimation of the underlying quantum state ρ,
is required if reliable quantum computation or quantum information pro-
cessing schemes are to be implemented. As will be seen no quantum to-
mography scheme known fulfill all these properties. Nevertheless, these
requirements are primordial as relevant figures of merit, such as the von
Neumann entropy and the Fischer Information of a state are based on using
physical density matrices.

As could be observed in 5.2.3 for density matrices reconstructed by repre-
senting them directly as a linear function of the observed frequencies with a
high probability they aren’t physical (for 2 qubit states with an average prob-
ability of ≈ 75% [75]). This method has been denoted in literature by linear
inversion (LIN). In contrast, optimization schemes were developed aiming
at providing the physical density most likely to be in correspondence with
the observed frequencies. Formally, the problem is addressed by defining
ρ = arg max

ρ≥0
T(ρ| f ) where T(ρ| f ) corresponds to an estimator function de-

pending on the observed frequencies f to be maximized. Here, the problem
is constrained by the limitation that ρ ≥ 0 has to be fulfilled.
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Figure 33: Average fidelities observed for a simulated tomographic experi-
ment of a 2x8 dimensional state admixed with white noise such
as to obtain a target fidelity of F 90%,80%,70%,60%. The reconstruc-
tion methods applied on a standard tomographic set are based
on linear inversion (LIN) and the application of convex optimiza-
tion methods based on maximum likelihood (MLE) and free least
squares estimators (FLS). The average fidelities obtained are plot-
ted in dependence of the used counts per measurement basis.

It could be shown in [152], that independently of the estimator function
chosen, the formulation of the optimization problem as a constrained one
leads to a bias in the figures of merit extracted from the optimized density
matrix. As shown exemplarily in [152], as well as in this work, simulations
based on estimator functions such as maximum likelihood and weighted
least squares lead to the observation of these systematic deviations in, for
example, the fidelity of the reconstruction.

It is possible to display the nature of the bias by embedding the studied
states within the set of physical (i.e. ρ ≥ 0) or unphysical (i.e. ρ < 0) quan-
tum states. Pure states can be embedded at the boundary separating the set
of physical and unphysical states. For small admixtures of noise, i.e. for
the studied quantum state remaining close to the edge, small statistical fluc-
tuations in the associated count rates ci used to evaluate ρ already suffice
to observe variations in the eigenvalues with a magnitude surpassing the
contribution of white noise, therefore with a high probability being nega-
tive. The resulting density matrix is therefore more likely to be unphysical.
In contrast, for quantum states with a higher mixedness (characterized by
a lower fidelity due to the admixture of white noise) it is less probable that
statistical fluctuations will lead to the observation of ρ ≤ 0.
The main purpose here is to study the effect of these statistical errors when
applying the convex optimization scheme. For that purpose suited simula-
tions are done for different total counts available per full correlation mea-
surement basis for the full set of correlations (81 and 729 for the 2x4 and 2x8
dimensional states). The reconstruction is done on simulated states with dif-
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ferent fidelities with respect to the target state. In addition, we study if the
choice of the estimator, in this case maximum likelihood (ML) or free least
squares (FLS) has any additional influence on the bias.

5.6.1 Simulation results for the standard and James tomography scheme

Simulation results for multinomial fluctuation in the count rates— Sim-
ulations are performed on 2x4 (Fig. 32) and 2x8 (Fig. 33) dimensional
maximally entangled states for 500 different tomographic sets obtained by
applying the standard tomography scheme. Here, the counts ci fluctuate
according to a multinomial probability distribution. The simulations reveal
a strong bias in the average fidelity evaluated by FLS and ML estimators
specially for low count rates. A bias is observed with respect to the max-
imally entangled state underlying the data for all different target fidelities
of the reconstructed state between 90% down to 60% (obtained by adding a
fraction of white noise to them). In contrast, the observed average fidelities
converge asymptotically to the target fidelities with increasing count rates
within the standard deviation obtained over all 500 simulated states. The
simulations display that the density matrices reconstructed according to the
linear inversion scheme (LIN), have a fidelity corresponding in average to
the target fidelity for all count rates per basis.
Simulation results for fluctuation in the count rates and in the interferom-
eter phases— Of more relevance to this work is to study the corresponding
bias for additional sources of statistical noise, such as the residual phase
noise present in the analysis interferometers. Here, the reconstruction is
based additionally on the James tomography scheme [75] as applied on ex-
perimentally prepared states in this work. Indeed, as demonstrated in 5.2.3
the resulting density matrices are clearly unphysical, while the fidelities of
the reconstructed density matrices obtained by applying a convex optimiza-
tion method are clearly biased with respect to the ones obtained by a linear
inversion scheme. It is possible to study here, if the experimentally observed
bias corresponds to the one expected based on simulated experiments.
Fig. 34 displays the average fidelities for a set of 500 2x4 dimensional max-
imally entangled states each reconstructed from a different set of multino-
mially fluctuating count rates. These are additionally fluctuating due to
phase noise simulated according to a normal distribution with a standard
deviation of ∆φ = 0.025π. The reconstruction methods used here are based
on LIN, ML, FLS and additionally on the James tomography scheme based
on FLS. Clearly, an increased bias is observed for the James tomography
scheme with respect to the ML and FLS reconstruction schemes applied on
the standard tomographic set for all studied fidelities and all count rates.
It could be argued that a major source to the additional bias is due to the de-
creased number of projection measurements available for the reconstruction
based on the James tomography scheme with respect to the full tomography
scheme. Here, the James scheme requires to use 4 out of 6 projection mea-
surements per qubit. Concretely, the number of projection measurements
per basis is reduced by a factor (6/4)N = 1.5N corresponding to the ratio
between the projection measurements used in the standard and James to-
mography scheme. For 4 logical qubits (used to analyze a 2x4 dimensional
state) this ratio corresponds to 5.06 and for 6 qubits (2x8 dimensions) to
11.39.
In order to compare the predictions made on density matrices between the
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Figure 34: Average fidelities for 500 simulated experiments for a 2x4 dimen-
sional states with a fluctuation of the count rates according to
multinomial statistics and additionally, by additional phase fluc-
tuations with a standard deviation of ∆φ = 0.025π in the analysis
interferometers. The reconstruction method based on linear inver-
sion (LIN) is compared with other methods which make use of
convex optimization techniques based on free-least squares and
maximum likelihood estimators. All of these methods are ap-
plied using the same standard tomographic set. With more rel-
evance to this work, these results are compared with the ones
obtained by a tomographic reconstruction defined by the James
tomography scheme and using a free least squares estimator. A
clear bias for the last method can be observed for all considered
target fidelities of F 90%,80%,70%,60% and for all simulated count
rates.

ones obtained for the standard and and the James tomography scheme, the
simulations are additionally performed for count rates per basis increased
by the corresponding ratio. The argument for this approach is based on
sample complexity [50] : In order to evaluate a density matrix with the
same error bound, increasing the available number of projection measure-
ments or the number of counts registered per projection measurement is
equivalent.

Typical experimental runs allowed to retrieve up to 2500 counts per pro-
jection measurement, such that additionally simulations for count rates per
basis of 2500 · 5.06 = 12650 for the 2x4 and of 2500 · 11.39 = 28475 for the
2x8 dimensional state were done. As can be seen in Fig. 32 the associated
bias for the James tomography scheme for a count rate per basis of 12650 is
clearly below the value obtained by using the standard tomography set for
2500 counts per basis, therefore displaying that the reduction in the fidelity
in the James tomography scheme cannot be associated solely to a decrease
in the available number of projection measurements. The bias can be asso-
ciated accordingly to a systematic deviation attributed to the constrained
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formulation of the optimization problem on a dataset affected by statisti-
cal fluctuations. This is exemplified for reconstruction schemes based on
simulated density matrices with an input fidelity of 90%. The simulations
corresponding to this fidelity were chosen due to the proximity of their tar-
get fidelity to the fidelity of the reconstructed states employing the linear
inversion scheme studied in 5.2 and not affected by a bias. Here, the fideli-
ties of FExp,LIN

4 = 0.882± 0.051 and FExp,LIN
8 = 0.863± 0.012 were observed

for the experimentally prepared 2x4 and 2x8 dimensional states.
For the 2x4 dimensional maximal entangled state and a target fidelity of
FTarget = 90%7 a bias of 0.900− 0.848± 0.010% = 0.052± 0.010% is observed
when using the James tomography scheme for 12650 counts per basis (see
Fig. 32), while the bias observed for the MLE and FLS reconstruction meth-
ods remains small. For 300 different simulations on a 2x8 dimensional state
only one parametrization of FTarget = 90% (not plotted) and count rates per
basis of 28475 is used. The simulations reveal a small bias in the ML and
FLS estimated fidelity, while an average value of 0.837± 0.006 is observed
for density matrices evaluated according to the James tomography scheme,
leading to a bias of 0.900− 0.837± 0.006 = 0.063± 0.006.
In contrast, the experimentally observed bias is in the range of FExp,LIN

4 −
FExp,CO

4 = 0.882 ± 0.051 − 0.833 ± 0.051 = 0.051 ± 0.072 and FExp,LIN
8 −

FExp,CO
8 = 0.863± 0.012− 0.7825± 0.012 = 0.081± 0.017 for the 2x4 and

2x8 dimensional states. For the 2x4 and 2x8 dimensional states these de-
viations lie well within the range predicted by the theoretical simulations,
while for the 2x8 state these deviations are slightly above the average values
for the simulated states of 0.063± 0.006.
These simulations certify that the James tomography scheme is affected by
an even higher bias in the evaluated fidelities than for schemes based on
using the standard tomographic set when applied on a dataset affected not
only by (Poissonian) fluctuations in the count rates, but by additional fluc-
tuations due to phase noise.
In summary, the fidelity used in order to certify the suitability of exper-
imentally realized quantum states is affected by a clear bias, if optimiza-
tion schemes based on maximum likelihood or free least squares estimators,
further constrained by the requirement of physical density matrices, are
applied for its evaluation. This bias is not due to artifacts in the state re-
construction scheme, as certified by using a convex optimization scheme.
[152] displays how to obtain lower bounds for particular nonlinear figures
of merit such as the negativity, relative entropy and Fischer information
directly out of data used to obtain linear inversion based density matrices.
This is even more relevant as specially for these nonlinear measures the eval-
uation is not directly possible in case that the underlying density matrix is
non-physical.

7 Choice motivated by its proximity to the fidelities evaluated by linear inversion
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6
D E T E R M I N AT I O N O F T H E D I M E N S I O N O F Q U D I T
E N TA N G L E D S TAT E S

In the previous chapters a complete guideline for the characterization of
higher dimensional entangled states, regarding their entanglement and prepa-
ration fidelity has been provided. Nonetheless, a full description is not pos-
sible without providing measures on their dimensionality. The evaluation
of the dimensionality of the prepared states is crucial for further applica-
tions for quantum information tasks. For example, determining the security
thresholds for quantum key distribution schemes greatly relies on this pa-
rameter [2, 32].
It will be the main focus of this chapter to apply dimensional witnesses used
to evaluate the Shannon dimensionality in 6.1 and the Schmidt number in
6.2 of the generated quantum states.

6.1 dimensional witness based on the shannon dimension

Dimension witnesses and Shannon dimension— Different methods for the
determination of the underlying dimensionality of a given quantum state
have been developed and experimentally realized: The first one fulfills the
requirements for a state independent detection of the underlying Hilbert
space dimension, based on the evaluation of a probability polytope restrict-
ing the obtained sets of probabilities to be compatible only with states of
a specific dimension [25, 68]. Further schemes based on the evaluation of
dimensional witnesses using quantum contextuality [26] can be used as well
to bound the dimension of the encoded quantum states [63].
In parallel to these developments, dimension detection schemes based on
the determination of the average number of quantum modes emitted have
been successfully implemented in [133, 134]. They are motivated by mea-
sures of the information density carried by a signal such as the Shannon
entropy S = −∑i∈D pilog2(pi) [153]. Here, the Shannon dimension D =
{1, 2, ..., d} corresponds to the number of modes defined within a d dimen-
sional space. Translated to the quantum scenario it allows to quantify the
average number of eigenmodes contributing to a specific quantum state, i.e.
the information density expressed by the number of dimensions at the dis-
posal for encoding quantum information.
Here, the measure based on the Shannon dimensionality is maximized in
the case that the number of entangled modes corresponds to the dimension
of the used Hilbert space. More precisely, in this case the von-Neumann
entropy (translating the Shannon entropy to the quantum scenario) of the
reduced states associated to either party A or B is maximal SA/B = log2(d),
or equivalently, the Schmidt number corresponds to the local dimension
KA/B = d (see 4.3.1).
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It it is to remark, that dimensional witnesses such as the Schmidt num-
ber witness determines the number of modes prepared at the source of a
quantum state. In contrast, the Shannon dimension witness used in this
work [133, 134] detects only the number of modes accessible to the analysis
device. It is possible therefore to define the Shannon dimensionality as a
filtered Schmidt number. In this work the Shannon dimension is defined as
the number of modes accessible to the analysis devices consisting of inter-
ferometer arms allowing to test their coherence with respect to each other
(see 2.4).
Application on emission time entangled states— The Shannon dimension
witness is applied onto the d dimensional emission time entangled states
considered in this work: Out of a continuous range of two-photon emis-
sion time modes present within the source a superposition of d two-photon
modes are detected by the analysis setup (see Fig. 2 in 2.3). Here, the en-
tangled two-photon state prepared in the emission time modes |i(t)〉A and
|j(t)〉B is described according to

|Ψ〉 =
∫ ∞

−∞
ci(t)cj(t)|i(t)〉A|j(t)〉Bdt. (115)

Here, the weights are distributed according to the two-photon coherence
distribution function ci(t)cj(t) with a FHWM width described by the source’s
coherence length (see 3.2 for experimental details). In this work, the coher-
ence between a number of entangled two-photon states is detected by mak-
ing use of an appropriate set of interferometers. In order to be able to test
the coherence by the used setup, the total delays applied by these interfer-
ometers have to be orders of magnitude smaller than the coherence time of
the source (see 2.3).
In this scenario, the analysis interferometers used couple to the respective
time modes encoded into each photon with a strength of γi = |λi|2. These
weights are equal to each other for a configuration of the interferometer
arms consisting of 50/50 beamsplitters. This motivates defining the eigen-
states of the operators applied by the analysis devices of either party, Alice
and Bob, as

|A(θAi )〉 =
d−1

∑
i=0

eiθAi λi|i〉A (116)

and

|B(θBj )〉 =
d−1

∑
j=0

e
iθBj λj|j〉B, (117)

where the modes |i〉A = |i∆T〉A and |j〉B = |j∆T〉B correspond to the
states the analysis projects the incoming time modes to, as a function of the
time delays ∆T acquired at the interferometer arms. At this point the nota-
tion is simplified by using the phases θAi and θBj , depending on the phase
settings αAi and βBj to be set at the respective interferometer arms (see 3.4.2
for a detailed description of the coincidence functions).
Both parties can detect the emitted two-photon pairs in different time win-
dows allowing to test the coherence between a different number of two-
photon emission time modes. The number of detected two-photon modes
is described by the Shannon dimension d.
Determination of the Shannon dimension— The Schmidt number is defined
by the respective weights ci of the different modes prepared in the source
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according to KA,B = Tr[ρA] = Tr[ρB] = 1/ ∑i c2
i and is not directly accessible

in this work. Only the effective Schmidt number, defined by the Shannon
dimensionality

D =
1

∑d−1
i |γi|2

(118)

depending on the analyzer’s coupling strength γi = |λi|2 is accessible.
This definition was derived and applied on experimentally prepared OAM
entangled states coupling to the analysis devices in [133, 134].
Its evaluation can be performed based on coincidence counts, to be equal-
ized to the coincidence probabilities after determining the maximal coinci-
dence count rate. These are defined as

P(θAi , θBj ) = |〈A(θAi )| ⊗ 〈B(θBj )|Ψ〉|2 (119)

This formula can be simplified to

P(θAi , θBj ) = |
d−1

∑
i,j=0

λiλjcicje
−i(θAi

+θBj
)|2 (120)

with a summation over two different indices i, j describing the contribu-
tion of the preparation and analysis state of each separate photon. Moreover,
for the regime considered here the distribution of the two-photon sources
emission amplitude Ai = cicj are nearly constant over the regime the analyz-
ers couple to. Here, for maximally entangled states for which the witness is
optimized for, the summation indices are equalized, as the weights are equal
(ci = cj). Further on, the interferometers at both analyzers are required to
detect the respective modes with equal coupling λi = λj. If these conditions
are not met, the detected Shannon dimension of the two-photon states is
reduced.
In this scenario, the evaluation of the Shannon dimension ( 118) of the two-
photon state is possible by measuring the coincidence probabilities over the
full analysis phase range the analyzers have access to. Subsequently, the
concrete value for the dimension is obtained by performing an integral over
all phases the analysis of the respective states depends on. This is exem-
plified for a 2x2 dimensional state analyzed by making use of the (relative)
phase settings αA1 and βB1 . Here, the integral over the measured coinci-
dence probabilities corresponds to

∫ 2π

0
P(αA1 , αB1 )dαA1 dαB1 =

∫ 2π

0
|

1

∑
i=0
|ci|2|λi|2e−i(αAi

+βBi
)|2dαA1 dαB1 =

∫ 2π

0
||c0|2|λ0|2 + e−i(αA1

+βB1 )|c1|2|λ1|2|2dαA1 dαB1 =

1

∑
i=0
|γi|2 · Pmax(2π)2. (121)

with the maximal two-photon generation probability Pmax = |Ai|2 =
|cici|2, where |Ai|2 corresponds to the two-photon amplitude. Addition-
ally, the individual interferometer coupling strengths are used to define
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γi = |λi|2.
Based on the equations ( 118) and ( 121), the evaluation of the average mode
distribution determining the Shannon dimension is simplified to

D =
1

∑1
i=0 |γi|2

=
(2π)2Pmax∫ 2π

0 P(αA1 , αB1 )dαA1 dαB1

. (122)

Similar expressions for the coincidence probabilities for states with vary-
ing dimension are required to obtain the respective dimensions. Here, the
only difference is that with varying dimensions the number N of indepen-
dent relative phase settings required to analyze the states lead to a factor
(2π)N instead of (2π)2.
For example, the bipartite dimension of the 2x8 dimensional state is experi-
mentally accessible by evaluating the following formula

D =
1

∑d−1
i=0 |γi|2

=
(2π)6Pmax∫ 2π

0 P(αA1 , ..., αA3 , βB1 , ..., βB3 )dαA1 · · · dαA3 dαB1 · · · dαB3

,

(123)

based on an equivalent argument as used for deriving ( 122), with the
only difference that the integration is over the 6 phases the 2x8 dimensional
coincidence function depends on (see details in the next subsection).
Its evaluation can be readily applied on the experimentally prepared states,
allowing to determine the dimension of the analyzed states postselected by
coincidence measurements at a specific time delay.

6.1.1 Experimental Evaluation of Shannon Dimension

Evaluation of integral of coincidence functions— As summarized in 3.4.2,
depending on the relative time delay between Alice’s and Bob’s photons,
the 64 time modes are distributed to 15 different time windows. As the
number of superposing two-photon states detected within a time window
varies accordingly, the Schmidt number of the generated states lies between
1 to 8. Each two-photon state is characterized by a specific variation of
the coincidence probabilities to be detected at the outputs of the respective
interferometer systems. For example, for a 2x8 dimensional analysis device
a variation of the coincidence probabilities according to

P(αA1 , αA2 , αA3 , βB1 , βB2 , βB3 )8d = cos (
αA1 + βB1

2
)

2
cos (

αA2 + βB2

2
)

2

cos (
αA3 + βB3

2
)

2
(124)

is expected for an interferometer output combination ++. Here, the ap-
plication of the Shannon dimension witness enables to obtain the bipartite
dimension according to

D =
1
|γi|2

=
(2π)6Pmax∫ 2π

0 P(αA1 , αA2 , ..., βB3 )8ddαA1 αA2 · · · dαBi

=
(2π)6

8π6 = 8 (125)
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Figure 35: Coincidence count rates obtained for two-photon states of differ-
ent bipartite dimension 2xd analyzed at different time delay side
windows (2x8 in a), 2x6 in b), 2x4 in c) and 2x3 in d)). Here,
each coincidence count rate is plotted for a specific phase setting
configuration {αAi , βBi} for i = 1, 2, 3 denoting each interferom-
eter’s phase setting for a partition of each phase into 4 values
0 = 2π,π/2,π and 3π/2. The respective count rates are fitted
by parametrizing each fitting function according to the expected
phase dependence. The fitted functions allow to obtain a measure
on the bipartite Shannon dimension of each state. For states of
dimension between 2x8 and 2x6 only a fraction of the count rates
(in total 4096) obtained for corresponding measurement settings
are displayed.

with Pmax normalized to the maximum probability 1.
Similar calculations are used to determine the dimension of states analyzed
for data collected in the different postselection time windows. In order to
evaluate the corresponding integrals, the coincidence probabilities are deter-
mined at different points spaced by a phase difference of π/2. Therefore,
each phase is scanned over 4 different values {0 = 2π,π/2,π and 3π/2}
spanning the full range between 0 and 2π. Choosing a low number of
divisions div is motivated by the exponential increase ∝ (div)N in the re-
quired measurement settings. Therefore, for the present analysis of a 2x8
dimensional state requiring 6 phases, the current choice leads already to
64 = 4096 measurements. With decreasing dimension of the analyzed states
and a lower number of required analysis phase settings this number is re-
duced exponentially, in the case of 2x4 dimensions down to 256 and for 2x2
down to 16 measurements.

Fitting of coincidence curves and results— The scanned probability curve
has to be fitted in order to obtain a precise evaluation of the dimension with
corresponding errors. For that purpose the choice of 4 divisions is shown to
be sufficient, as displayed for the experimentally obtained coincidence count
rates in Fig. 35. Here, the observed count rates obtained for an integration
time of 3s and for a postselection time window width of only 164ps are
fitted by using functions with an appropriate choice of fitting parameters
and a functional dependence described by the predicted functions ( 41) to
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( 47). A numerical optimization method implemented in Mathematica (Non-
linearFit) is used to retrieve the optimal values of the fitting parameters.
For example, for the evaluation of the 2x8 dimensional witness a parameter-
ization of the fit function according to

CFit(αA1 , αA2 , · · · , βB3 )8d =

A1(1 + V1 cos (
αA1 + βB1 − φ

O f f set
1

2λ1
))

(1 + V2 cos (
αA2 + βB2 − φ

O f f set
2

2λ2
))

(1 + V3 cos (
αA3 + βB3 − φ

O f f set
2

2λ3
)) (126)

is used, where the visibilities Vi, periods λi, phase offsets φ
O f f set
i and

amplitude A1 for i = 1, 2, 3 are the independent parameters to be fitted.
The integration over the obtained coincidence count rates and following
normalization over the corresponding fitted maximal count rate reveals the
following values for the bipartite dimension:

State Shannon Dimension D
2x8 7.33± 0.063 > 7
2x7 6.42± 0.076 > 6
2x6 5.16± 0.087 > 5
2x5 4.201± 0.045 > 4
2x4 3.54± 0.108 > 3
2x3 2.416± 0.057 > 2
2x2 1.686± 0.147 > 1

In all cases, the observed bounds surpass the values to be obtained for
states with a dimension falling below the dimension to be detected by one.
This shows that the detected states have the specified Shannon dimension.
The corresponding errors are evaluated by parameterizing the fitted func-
tion CFit(copt

i ) with the obtained optimal parameters copt
i and with the cor-

responding standard deviations ∆copt
i such as to obtain the error function

∆CFit(copt
i ) =

√
∑i(∂CFit(ci)/∂ci|copt

i
)2(∆copt

i )2. Finally, the evaluation of the

integral over the same integration bounds, as used for obtaining the Shan-
non dimension D, is required for obtaining the total integration error.

6.2 dimensional witness based on the determination of the

schmidt number

Schmidt number witness— The approach followed in [145] offers an alter-
native evaluation of the dimension of the superposing two-photon states in
the form of an effective Schmidt number KA,B, corresponding again to the
Schmidt number of the state accessible to the used analysis. It is further-
more suited to provide exact bounds for evaluating the dimension even in
the case of mixed states. These studies are motivated by similar studies on
entanglement witnesses used for the detection of entanglement [72].
In close correspondence, the main approach followed here allows not only
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to detect the entanglement but to evaluate the number of modes which are
entangled with each other [162]. Moreover, the dimension detection scheme
can be applied on mixed states as well:
A mixed state to be studied is represented as ρ = ∑i pi|Ψri

i 〉〈Ψ
ri
i | (under the

condition ∑i pi = 1) in terms of pure states of rank ri: |Ψri
i 〉 ∈ HA ⊗HB.

These are defined as |Ψri
i 〉 = ∑ri

i λi|ei〉| fi〉 under the condition ∑ri
i=1 |λi|2 = 1.

The Schmidt number k is finally determined as the minimum value of
the respective maximal Schmidt ranks over all pure states according to
k = min rmax (compare with section 4.3.1).
For the following discussions it is necessary to embed the previously de-
fined mixed states within convex spaces Sk defining states with a specific
Schmidt rank k. It allows to evaluate bounds for the derivation of the max-
imal Schmidt number associated to a given state ρ. Moreover, convexity
allows to define that any state of Schmidt number k is embedded within the
state space Sk+1 of states with Schmidt number k + 1.
In this framework, introducing a Schmidt number witness Wk is introduced
determinining the specific bounds for a state to be embedded within the
corresponding state space Sk by using specific distance measures.
Accordingly, the Schmidt number k of a state ρ can be detected if the wit-
ness Wk fulfills the condition Tr[Wkρ] < 0 allowing to bound the Schmidt
number of the state ρ to at least k− 1. A central proof of [146] determines
that there exists such a witness defined by a positive operator P by using

W = W̃ − ε1. (127)

An optimal choice of the parameter

ε = inf
Ψ<k

i ∈Sk−1]
〈Ψ<k

i |P|Ψ<k
i 〉 (128)

is determined over all possible sets of states with Schmidt number below
k.
Finding an optimal Schmidt number corresponds to an optimization pro-
cess evaluating the minimal distance from the studied state from all states
with Schmidt number k− 1.
A measure fulfilling these characteristics is the Uhlmann fidelity (see Eq.( 96)).
It evaluates the fidelity between the experimentally estimated mixed state
ρexp and any state ρ<k with at least rank k− 1.
Fidelity as optimal Schmidt number witness— A particular proof for the
derivation of the witness for maximally entangled states was provided by
Géza Tóth 1 and is described here in full detail here due to the unavailability
of published material.
Bounds for the corresponding Schmidt number witness can be derived from
the description of a maximally entangled state analyzed in the Schmidt basis
|Ψri

i 〉 = ∑ri
i λi|ei〉| fi〉. The Schmidt coefficients can be shown to be bounded

by the respective Schmidt rank ri according to

ri

∑
i=1

λi ≤
√

ri. (129)

For a mixed state, k is defined as the maximally obtained Schmidt rank
for all pure states |Ψri

i 〉. Here, the discussion is first applied on a pure state
|Ψk〉 with corresponding maximal Schmidt rank k and further generalized

1 Private communication
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to mixed states.
When applying these studies on maximally entangled states

|Ψmax〉 =
1√
d

d

∑
m=1
|m〉|m〉 (130)

aimed to be prepared in this work, the calculation of the fidelity reveals
that

F = |〈Ψmax|Ψk〉|2 =
1
d
|(

d

∑
m=1
〈m|〈m|)(

k

∑
i=1

λi|ei〉| fi〉)|2 =

1
d
|(

d

∑
m=1
〈m|〈m|)(U1 ⊗U2

k

∑
i=1

λi|i〉|i〉)|2 ≤
k
d

(131)

holds. Here, the optimization corresponds to the determination of the
optimal unitary transformations U1 ⊗U2 applied on the respective Schmidt
bases of Alice and Bob. In this case, it can be shown that the maximal
entangled state defined previously optimizes the measure.
Obtaining a fidelity F such that

F ≥ k
d

(132)

is fulfilled enables therefore to detect the presence of a state with at least
a Schmidt number k.
The same conclusions can be derived for general mixed states ρ, due to the
convexity of the set of states with a specific Schmidt rank k, for which the
last expression translates into

F = Tr[|Ψmax〉〈Ψmax|ρ] ≥ k
d

. (133)

6.2.1 Experimental Evaluation of the Schmidt number witness

Using the experimentally determined estimations of the density matrices ρ
of the time-energy encoded states allows to directly evaluate the detected
Schmidt number k. Here, the fidelity F is evaluated by applying the con-
strained optimization scheme described in the preceding sections.
Concretely, the free least squares estimation of the fidelity

F FLS = 〈Ψ|ρFLS|Ψ〉 (134)

is used, where |Ψ〉 corresponds to the maximally entangled states defined
in 2x4 and 2x8 dimensions, and ρFLS the experimentally reconstructed states
evaluated by using the free least squares estimator.
Here, the bounds to be surpassed for the detection of at least a Schmidt
number of 3 and of 7, i.e. the presence of bipartite entangled states of a
Schmidt number of 4 and 8 respectively, are F4 ≥ 75% and F8 ≥ 87.5%.
The first bound is surpassed by the analyzed 2x4 dimensional state, as
FExp,CO

4 = 0.833 ± 0.055 was obtained by applying the convex optimiza-

tion scheme. In contrast, the observed value of FExp,CO
8 = 0.7825± 0.012

doesn’t suffice for the detection of a Schmidt number of 8 for the 2x8 di-
mensional state. Instead, the same Schmidt number witness can be used
to bound the dimension to be at most 7, as the corresponding threshold of
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F 6
8 ≥ 6/8 = 75% is clearly surpassed. An equivalent result is obtained

when using the fidelity calculated by applying a linear inversion scheme on
the obtained data, where the obtained fidelity FExp,CO

8 = 0.863± 0.012 is
slightly below the bound required to detect 2x8 dimensions.
As discussed in 5.6, a high contribution to observing a low value for the fi-
delities than shown for a direct application of the James tomography scheme
(5.2.3) is due to a bias in the estimation method, which is particularly wors-
ened in the case of a state reconstruction scheme based on James tomogra-
phy 5.6.1 applied on a dataset affected by additional phase noise contribu-
tions. Resorting to other informationally complete tomographic sets such as
the ones based on standard quantum tomography could be used to obtain
a better estimation of the fidelities according to the simulation results pre-
sented in 5.6.1. Nevertheless, this comes at the considerable disadvantage
of an increase in the measurement effort by a factor (1.5)6. Promising alter-
natives based on compressed sensing (5.4) or adaptive (5.5) state estimation
techniques could be followed here in order to reduce this effort.
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C O N C L U S I O N S A N D O U T L O O K

This work introduced and experimentally verified novel methods for en-
hancing the complexity of quantum states encoded into photons, useful for
applications in the field of quantum information and computation. The
strategy adopted here is to expand the Hilbert space dimensionality of the
quantum states, denoted as qudit states, encoded into the emission time de-
gree of freedom of a pair of photons (see section 2.4). Using this degree of
freedom makes it suitable for enhancing the transmission distances required
for quantum communication schemes [165] with respect to the encoding
into other degrees of freedom such as the orbital angular momentum or
polarization, whose analysis is difficulted for a transmission over long dis-
tances. In comparison to the encoding of quantum states into multi-qubit
entangled states [181], it offers an intrinsic reduction in the measurement
times required for analyzing and processing the encoded quantum states.
In order to detect entanglement in the time degree a freedom, an analysis
scheme is developed which is able to increase the scaling of the dimension
of the entangled states encoded with respect to other related schemes (see
Chapter 2 and related Publication P1 [140]). Concretely, it addresses and
solves the limitations regarding the scalability [188, 165] and stability [138]
of previous proposals and experiments (see section 3.2). These improve-
ments have been achieved based on the design and test of a suited interfer-
ometer setup and on the design of an active stabilization scheme of each
interferometer arm, respectively (see publication P1 [140] and section 3.3).
Further on, making use of a more efficient photon pair source based on a
periodically poled crystal (see section 3.1) the required measurement times
could be further reduced. Using the current experimental configuration,
the encoding of quantum states embedded in Hilbert spaces of up to 2x8
was experimentally demonstrated. These results encourage the encoding in
Hilbert spaces with dimensions surpassing 2x16, within the current exper-
imental constraints. Future applications could profit from a simplification
of the scheme based on using waveguide based interferometers combined
with a detection scheme relying on upconversion detectors (see section 3.2).
This step would provide an even better scalability of the scheme to even
higher dimensions, as the required time delays would be orders of magni-
tude lower than for the present configuration, making stabilization schemes
unnecessary.
This work provides a further insight into how to characterize the encoded
higher dimensional states for quantum information applications (Chapter
3). Here, the most valuable resource for these applications, entanglement,
is characterized in more detail by resorting to various entanglement detec-
tion criteria (see sections 4.1 and 4.3). A scheme, based on the application
of Bell-type inequalities defined for bipartite quantum states in arbitrary di-
mensional Hilbert spaces, is used to demonstrate the non-separability of the
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two-qudit states prepared (see section 4.2.1 and the publication draft P3).
Similarly, obtaining full knowledge on the density matrix of the encoded
quantum states is a valuable resource for quantum information processing
tasks (Chapter 4). Here, an important scheme enabling state reconstruction
is based on quantum tomography. Different schemes designed to obtain
unbiased and physical density matrices representing the quantum states
were discussed and further applied on the experimentally obtained data.
First, we used a linear decomposition of the density matrix as a function
of coincidence probabilities obtained for a tomographically complete set of
projection measurements (see section 5.2). Here, the main limitation of this
scheme, regarding the intrinsic unphysicality of the reconstructed quantum
states due to additional noise sources, was addressed. This problem was
solved by applying schemes based on convex optimization techniques (see
section 5.3) ensuring the physicality of the reconstructed states. The result-
ing convex optimized density matrices correspond to the physical density
matrix most likely to represent the obtained data set, but at the cost of
reduced reconstruction fidelities due to an additional bias intrinsic to the
estimators used in the evaluation (see section 5.6 and related publication P5

[141]).
The convex optimization method is further used and combined with further
schemes suited to reduce the measurement effort, while ensuring the high
fidelity tomographic reconstruction of the states. The first scheme, based on
methods motivated by the application of compressed sensing techniques on
sparse signals, allows to make the measurement effort scale only logarith-
mically instead of exponentially with the encoded dimension (see section
5.4). The only constraint for these applications is that the underlying den-
sity matrices are required to have a low rank. This property is fulfilled
by the generated states, as for experimentally realized 2x4 and 2x8 dimen-
sional entangled states states the measurement effort is reduced by a factor
of approximately 1.8 and 2.6, respectively. A further method suited to re-
duce the required number of measurements can be based on correlation
complementarity, a property satisfied by quantum mechanical observables
(see section 5.5). In a closely related scenario, the advantage of this strategy
was demonstrated experimentally to reduce the number of measurements
required to detect entanglement (see publications P2 and P4 [99, 100]). As
demonstrated in this thesis, this property can be used as well to reduce the
number of (correlation) measurements required to reconstruct the under-
lying quantum states with respect to a compressed sensing based scheme.
Here, significant reductions in the measurement effort by a factor > 40 with
respect to a full tomographic set could be predicted for simulated noiseless
states. For the experimentally prepared states, affected by noise and featur-
ing an increased rank, this effect is reduced, but still allows to observe a
saving in the number of measurements by a factor of ≈ 2 with respect to a
compressed sensing based scheme.
Finally, different methods were studied in more detail allowing to deter-
mine the dimension of the underlying quantum states (Chapter 5). This is
of critical relevance for applications in quantum cryptography, where the
dimension of the encoded states determines the security thresholds to be
warranted for a secure transmission [32]. Here, two schemes, one based
on the evaluation of the Shannon dimension, determining the number of
analyzed entangled modes and the other one based on the application of a
Schmidt number witness are applied on experimentally obtained data. They
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allow the detection of the number of emission time modes encoded into a
pair of photons.
These results demonstrate that the proposed scheme is well suited for prepar-
ing and analyzing emission time correlated photon pairs in dimensions
of up to 2x8, allowing to foresee its scalability to even higher dimensions
≥ 2x16. A particular focus has been laid here on implementing the tools re-
quired to characterize their entanglement quality. Based on the fact that en-
tanglement in high dimensional Hilbert spaces was detected with high sta-
tistical relevance, their application for (long distance) cryptography schemes
using entanglement as a security certificate, is promising. Following these
arguments, employing qudits for these tasks enables to achieve a higher
statistical relevance, as the critical noise thresholds [32] are increased and
the critical detection efficiencies reduced for detecting entanglement with
respect to qubits [174]. Further applications in the field of quantum compu-
tation would profit from an expansion of the scheme to time-bin encoding
(section 2.4.2), as this would enable to increase the number and complexity
of the information processing tasks required for these purposes [31, 97]. A
central limitation still affecting their large scale application to tackle today’s
information processing problems. Where quantum computers could tackle
currently unsolvable computation problems and quantum communication
schemes could address the increasing need of certifying the security of high
bandwidth data transmission.
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8
A P P E N D I X C H A P T E R

8.1 analysis angles for the maximal violation of the cglmp

inequalities for d dimensional quantum states

The angles (in radian) are given in the following table and correspond to
the values used to evaluate the maximum of the Bell inequality parameters
ISetup
d listed in Table 4.2 for MUB based preparation bases defined in section

4.2:

2x8d Phase settings
Alice setting 1 α1

A1
= 0, α1

A2
= −π

2 , α1
A3

= π
4

Alice setting 2 α2
A1

= −π
2 , α2

A2
= −π

2 , α2
A3

= π
4

Bob setting 1 β1
B1

= −π
4 , β1

B2
= π

2 , β1
B3

= −π
4

Bob setting 2 β2
B1

= π
4 , β2

B2
= π

2 , β2
B3

= −π
4

2x7d Phase settings
Alice setting 1 α1

A1
= 0.449, α1

A2
= −1.548, α1

A3
= −0.361

Alice setting 2 α2
A1

= 0, α2
A2

= 3.837, α2
A3

= 4.126
Bob setting 1 β1

B1
= 2.917, β1

B2
= 1.997, β1

B3
= 1.259

Bob setting 2 β2
B1

= −2.917, β2
B2

= 2.89, β2
B3

= −3.229

2x5d Phase settings
Alice setting 1 α1

A1
= −0.928, α1

A2
= −2.158, α1

A3
= 0.142

Alice setting 2 α2
A1

= 0.662, α2
A2

= −1.219, α2
A3

= 0.651
Bob setting 1 β1

B1
= −1.937, β1

B2
= −1.701, β1

B3
= −0.194

Bob setting 2 β2
B1

= −0.609, β2
B2

= −1.755, β2
B3

= −1.184

2x4d Phase settings
Alice setting 1 α1

A1
= −0.376, α1

A2
= −0.092

Alice setting 2 α2
A1

= 1.194, α2
A2

= −0.092
Bob setting 1 β1

B1
= 1.162, β1

B2
= 0.092

Bob setting 2 β2
B1

= −0.408, β2
B2

= 0.092

2x3d Phase settings
Alice setting 1 α1

A1
= −π

3 , α1
A2

= −π
6

Alice setting 2 α2
A1

= 0, α2
A2

= −π
2

Bob setting 1 β1
B1

= −π
2 , β1

B2
= π

Bob setting 2 β2
B1

= π
6 , β2

B2
= − 2π

3
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2x2d Phase settings
Alice setting 1 α1

A1
= −π

4
Alice setting 2 α2

A1
= π

4
Bob setting 1 β1

B1
= 0

Bob setting 2 β2
B1

= π
2
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Abstract Qudit entangled states have proven to offer sig-
nificant advantages with respect to qubit states regarding the
implementation of quantum cryptography or computation
schemes. Here we propose and experimentally implement
a scalable scheme for preparing and analyzing these states
in the time–energy degree of freedom of two-photon pairs.
Using the scheme, the entanglement of (2 × 4)-dimensional
states is demonstrated.

1 Introduction

Entanglement is an intrinsic property of quantum mechan-
ics which has enabled the realization of classically impossi-
ble tasks, such as the implementation of more efficient com-
putation algorithms, provably secure cryptographic schemes
and the teleportation of quantum particles. Compared with
qubits, the application of qudits, i.e. states defined in a d-
dimensional Hilbert space, offers interesting alternatives.
For example, they allow the reduction of elementary gates,
and consequently of the number of physical information car-
riers, necessary to perform quantum computational tasks [1].
Moreover, the number of classical bits transmitted per pho-
ton pair can be increased by resorting to high-dimensional
super-dense coding schemes [2], and the fault-tolerance

D. Richart (�) · Y. Fischer · H. Weinfurter
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1,
85748 Garching, Germany
e-mail: Daniel.lrichart@mpq.mpg.de

D. Richart · Y. Fischer · H. Weinfurter
Ludwig-Maximilians-Universität, Schellingstr. 4,
80797 München, Germany

bounds for quantum cryptography schemes can be sig-
nificantly increased, e.g. to error rates of 35% for four-
dimensional encoding [3]. In this context we propose and
experimentally implement a scalable scheme for preparing
and analyzing high-dimensional states in the time–energy
degree of freedom of entangled two-photon pairs.

This paper is structured as follows: a short introduction
of the theoretical framework will be given in the following.
Section 2 describes in detail the experimental setup, with a
special focus on the stabilization scheme used. Finally, ex-
perimental results demonstrating entanglement between two
ququats (d = 4) will be presented in Sect. 3.

Since the first proposal for creating time–energy corre-
lated quantum states by Franson [4], they have been used
for long-distance distribution and teleportation of entangled
states [5, 6] or for the implementation of Quantum Key
Distribution (QKD) schemes [7]. As described schemati-
cally in Fig. 1, a source of time–energy entangled photons
can be any process that coherently emits pairs of photons.
Spontaneous parametric downconversion (SPDC) driven by
a source of coherent pump photons is such a process. Within
the coherence time of each pump photon a continuous super-
position of two-photon states |Ψ 〉 = ∫

t ′ |t〉|t〉dt defined for
an emission time t is created. For the analysis of the state,
each photon of a pair is distributed to the two observers Al-
ice and Bob, which are provided with unbalanced interfer-
ometers implementing the very same time delay �T and
additional phase shifts φA and φB .

If �T surpasses each SPDC photon’s coherence time
tc,ph, the local phase shifts φA and φB will not determine the
relative intensities at the outputs of the interferometers. Yet,
if both parties agree to analyze coincident detections with 0
time delay, they will project the initial state |Ψ 〉 onto a su-
perposition of the two-photon states |0〉A|0〉B (both photons
arrived at the detectors along the short arm) and |1〉A|1〉B
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Fig. 1 Scheme for analyzing time–energy entangled two-photon states
in two-dimensional Hilbert spaces. A coherent photon pair source is re-
quired to produce photon pairs within a continuous range of two-pho-
ton emission times. The parties Alice and Bob are each provided with
a photon and an interferometer system. A two-dimensional entangled
state can be analyzed by performing projection measurements for a
time delay tA − tB = 0 between the detected photons. Each photon can
be detected at any of the outputs ± of the respective interferometer
system

(arrival via the long arm):

|Ψ 〉0�T
2D = 1√

2

(|0〉A|0〉B + ei·(φA+φB)|1〉A|1〉B
)
. (1)

They will observe a variation of the coincidence rates in
dependence on the relative phases their photons acquire at
their respective interferometers according to

C0�T
2D = cos2 (φA + φB). (2)

This behavior can only be attributed to second-order
interference between the two-photon states |0〉A|0〉B and
|1〉A|1〉B , resulting in the non-classical correlations between
the measurement results.

Evidently, such a scheme is not limited to only two pos-
sible arrival times. As long as the sum of the delays is suf-
ficiently shorter than the pump coherence time, the effective
dimensionality of the state is defined only by the number of
delays used in the analyzers [8–10]. Figure 2 depicts how a
four-dimensional state can be observed. Here a time–energy
correlated state is analyzed by choosing the emission time
delays (in multiples of �T ) |0〉, |1〉, |2〉 and |3〉 within the
coherence time of a pump photon as the four-dimensional
computational basis. In analogy to the two-dimensional con-
figuration, spontaneous parametric downconversion can be
used to produce two-photon pairs.

They can be analyzed if one photon of a pair is sent to
Alice and the other to Bob who are provided with multiple-
path interferometer systems designed to project onto the
four respective emission times. Here the interferometers are
constructed by loops with respective delays �T and 2�T

Fig. 2 Scheme for analyzing time–energy entangled two-photon states
in higher dimensional Hilbert spaces. Extending the two-dimensional
configuration, the parties Alice and Bob use a double-loop interfer-
ometer configuration to project onto a superposition of four two-pho-
ton detection times |0〉A|0〉B , |1〉A|1〉B , |2〉A|2〉B and |3〉A|3〉B of a
four-dimensional entangled state

Fig. 3 Time distribution of the coincidence count rates as a function of
tA − tB , Alice’s and Bob’s photon detection times. For a time delay of
0, coincidence count rates associated to a four-dimensional entangled
state can be selected. For delays ±�T and ±2�T , a projection onto
states with a superposition of three and two two-photon probability am-
plitudes is realized, displaying correlations of three- and two-dimen-
sional entangled states, respectively. No correlations can be observed
in the coincidence windows ±3�T , corresponding to a projection on
a one-dimensional state

such that the probabilities of a photon acquiring a time de-
lay i�T , with i ∈ [0,3], are equal. They allow us to project
onto the two-photon states |0〉A|0〉B , |1〉A|1〉B , |2〉A|2〉B and
|3〉A|3〉B , which are indistinguishable for a detection time
delay tA − tB = 0 (see Fig. 3). If the maximal time delay
fulfills 3�T � tc, a coherent superposition can be observed:

|Ψ 〉0�T
4D = 1

2

(|0〉A|0〉B + ei·(φA,1+φB,1)|1〉A|1〉B
+ ei·(φA,2+φB,2)|2〉A|2〉B
+ ei·(φA,1+φB,1+φA,2+φB,2)|3〉A|3〉B

)
. (3)
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The coincidences between, say, the + output of each in-
terferometer (Fig. 2) show a variation according to

C0�T
4D = 1

4
cos2

(
φA,1 + φB,1

2

)

cos2
(

φA,2 + φB,2

2

)

(4)

as a function of their respective relative phase settings φA,1,
φA,2, φB,1 and φB,2 at the �T and 2�T loops.

Similarly, both parties can agree on measuring coinci-
dence count rates with different time delays, which allows
them to project onto two-photon superpositions with a vary-
ing number of terms. Here states with the same computa-
tional basis as the four-dimensional state but with their re-
spective coincidence functions showing an intrinsic depen-
dence of three- and two-dimensional states are analyzed (see
Fig. 3). A projection onto time delays tA − tB = ±�T and
tA − tB = ±2�T allows us to project onto the three- and
two-dimensional maximally entangled states

|Ψ 〉�T
3D = 1√

3

(|1〉A|0〉B + ei·(φA,2+φB,1−φA,1)|2〉A|1〉B

+ ei·(φA,2+φB,2)|3〉A|2〉B
)
, (5)

|Ψ 〉−�T
3D = 1√

3

(|0〉A|1〉B + ei·(φB,2+φA,1−φB,1)|1〉A|2〉B

+ ei·(φA,2+φB,2)|2〉A|3〉B
)
, (6)

|Ψ 〉2�T
2D = 1√

2

(|2〉A|0〉B + ei·(φA,1+φB,1)|3〉A|1〉B
)
, (7)

|Ψ 〉−2�T
2D = 1√

2

(|0〉A|2〉B + ei·(φA,1+φB,1)|1〉A|3〉B
)
. (8)

For a projection onto the + outputs at the respective interfer-
ometers and normalized to the total coincidence count rates,
the following rates are obtained for delays tA − tB > 0:

C�T
3D = 1

64

(
3 + 2 cos (φA,1 − φB,1 − φA,2)

− 2 cos (φA,2 + φB,2)

− 2 cos (φA,1 − φB,1 + φB,2)
)
, (9)

C2�T
2D = 1

16

(
1 − cos (φA,1 + φB,1)

)
. (10)

In order to expand the dimensionality of the analyzed
states, additional interferometer loops are required to dou-
ble the previous time delays. As an advantage, the construc-
tion allows us to increase the number of analyzed emission
time delays, and consequently the dimensionality exponen-
tially ∝2N (instead of linearly ∝ N for similar interferom-
eter proposals [10]), with N the number of interferometer
arms. As a drawback, the number of independent phase set-
tings is smaller than the dimensionality of the states. Ulti-
mately, only the pump laser coherence time and the minimal
time resolution of the detection system limit the number of

degrees of freedom and consequently the Hilbert space di-
mension as they impose constraints on the time delays �T

to be chosen. Alternatively, one can employ time-bin encod-
ing by using a short pump pulse and an interferometric setup
for the pump laser equivalent to the analyzer ones [11] or
the many mutually coherent pulses of a mode-locked laser
[12] (for time-bin-entangled states an additional phase mod-
ulator between the source and the interferometers could be
added. Here time-dependent phase shifts enable us to apply
the phase shifts missing in (3), etc.).

2 Experimental implementation

2.1 General setup

A high-brightness SPDC photon-pair source based on a pe-
riodically poled KTP crystal is chosen to produce the en-
tangled photons [13]. A poling period of 9.67 µm and type
II degenerate phase matching are used to produce photon
pairs with an efficiency of η = 49,000 (s mW)−1 at a central
wavelength of 805.9 nm and with a bandwidth of �λ < 1.1
nm (corresponding to a coherence time of ≈2 ps). The pho-
ton pairs are emitted collinearly and the H - and V -polarized
photons are separated and coupled into single-mode fibers,
respectively.

The implementation of the generic scheme (Fig. 2)
was based on various considerations. Fused fiber couplers
(FFCs) are used as beam splitters as they warrant a bet-
ter spatial mode overlap between the different paths (see
Fig. 4). This enables a significantly better interference visi-
bility, while requiring only a passive temperature stabiliza-
tion [5]. As a drawback, the FFCs are less suited for the near-
infrared wavelength regime used here than for the Telecom
wavelengths for which chromatic dispersion can be compen-
sated routinely. Dispersion is particularly disturbing in this
type of interferometer due to the different path lengths in
the combined interferometers. Therefore, a hybrid interfer-
ometer configuration consisting of a fiber and a free-space
path implementing the time delay is chosen, such that both
arms of the interferometer share the same path length made
of fiber. Polarization-mode dispersion between the different
interferometer paths is less severe and is compensated by
manual polarization controllers.

The minimal time delay required to distinguish between
the different two-photon amplitudes in Fig. 3 depends on
the timing resolution of the single photon detection devices.
Recently, CMOS-based avalanche detectors (APDs) are re-
ported to reach FWHM timing resolutions down to 50 ps
[14]. However, due to the higher detection efficiency in the
near infrared, we choose the standard reach-through SPAD
(Perkin Elmer, AQ4C-SPCM) with a typical resolution of
500 ps. In order to make the overlap of the two-photon
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Fig. 4 Experimental setup. Photon pairs are created by pumping a pe-
riodically poled KTP crystal using parametric downconversion. The
photons are separated at a polarizing beam splitter and sent to the re-
spective interferometer systems both parties (Alice and Bob) require
to analyze the shared entangled states. The interferometers are con-
structed by using fused fiber couplers (FFCs) as beam splitters and a
free-space path to implement the required time delays. Finally, single
photon avalanche detectors (APDs) are used to detect the photons at
each interferometer output

detection signals negligible, we thus choose �T > 2.4 ns.
A computer-controlled time-correlation module with a spec-
ified resolution of 82 ps (ACAM TDC-GPX) is used for
measuring the time differences between the detections at
the outputs of each interferometer using four independent
APDs. It is believed that further improvements in the de-
tection efficiency and timing resolution of APDs will lead
to a significant miniaturization and further scalability of the
scheme. Furthermore, the minimal time delay �T imposes
a strict lower bound for the coherence time of the SPDC
pump laser. For that purpose, we use a grating-stabilized
blue laser diode at 402.8 nm offering a coherence time of
2.58 µs 	 �T .

Alice’s and Bob’s interferometer delays �T and 2�T

are equalized with respect to each other within the coher-
ence time of their photons to enable the indistinguishability
of the respective two-photon probability amplitudes. Similar
adjustments are made to equalize the 2�T delays to double
those of �T (Fig. 4).

2.2 Interferometer stabilization

In order to warrant a stable phase relation in the interferom-
eters over longer measurement times, a stabilization scheme
compensating thermal and mechanical drifts of each inter-
ferometer has been developed.

2.2.1 Polarization-multiplexing scheme

As described before, time–energy correlated states offer an
intrinsic insensitivity to the global phase acquired during
the transmission of the photons to the respective analysis
devices. Nevertheless, the fluctuation of the various phases

Fig. 5 Interferometer stabilization scheme using polarization multi-
plexing. An error signal dependent upon the interferometer phase is
extracted by ensuring that the polarization transformation for a refer-
ence laser is orthogonal in both arms, while the SPDC photons share
the same polarization state at the output. It can be used to drive a feed-
back loop adjusting the relative phase αSL to a constant value while a
change αλ/2 of the analysis λ/2 waveplate allows us to vary the relative
phase acquired by the SPDC photons without any shift of the compo-
nents inside the interferometer

of the unbalanced interferometers during the measurement
time will cause a reduction or even loss of interference vis-
ibility. The variation �φ of the relative phases depends on
the fluctuation of the path-length difference �L and wave-
length variation �λp of the pump laser. As temperature
drifts and vibrations of the optical components will cause a
variation of both parameters �L and �λp, total path-length
differences of up to 2 m require a stabilization scheme.

�λp is minimized by referencing the pump laser diode
to a stabilized reference cavity using the Hänsch–Couillaud
locking scheme. The cavity itself is stabilized by a grating-
stabilized laser diode at 780 nm locked itself to a frequency-
comb mode (250 kHz FWHM, 780-nm central wavelength,
maser referenced) [15]. The same laser diode is used to sta-
bilize each interferometer to a subwavelength accuracy by
using polarization multiplexing (depicted in Fig. 5).

Polarization multiplexing can be used for stabilizing
standard interferometers as well as for the system imple-
mented here, for which the reference laser and photon modes
spatially overlap [16]. For similar methods, fringe locking
on the reference laser interference signal would limit the
range over which a stable interferometer phase change is
possible, and also requires the measurement of the intensi-
ties at both outputs of the respective interferometer. Instead,
for polarization multiplexing it suffices to make the polar-
ization states of the stabilization laser in both arms mutually
orthogonal, while the polarization state of the SPDC photons
should not be changed (in this example H ). Thus, manual
fiber polarization controllers (PCs) are used first for equal-
izing the polarizations of the SPDC photons in the respective
interferometer paths. The stabilization laser is then coupled
into one input of the interferometer polarized with 45◦. The
rotation of its polarization vector to −45◦ is induced along
the long arm (red) using a birefringent crystal (here YVO4)
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with optical axes orientation along H . This leaves the SPDC
photon’s polarization H unchanged.

In this experiment, wavelengths of 780 nm and 806 nm
are chosen for the stabilization laser and SPDC photons,
respectively, allowing separation by a dichroic beam split-
ter. The polarization analysis of the stabilization laser con-
sists of an YVO4 crystal used to compensate for an ad-
ditional phase φ acquired in the fibers and the dichroic
beam splitter and a λ/2 waveplate before projecting onto
a polarizing beam splitter (PBS) which reflects V (verti-
cal) and transmits H (horizontal) polarized light. The polar-
ization change by the waveplate rotation adds to the inter-
ferometer phase resulting in the error signal E(φSL, φ λ

2
) ∝

cos (φSL − 2φλ/2) extracted by measuring the difference of
the intensities H/V at both outputs of the PBS (φSL is the
relative phase difference mod 2π between the interferome-
ter arms, and φλ/2 is the rotation angle of the λ/2 analysis
waveplate). A P–I feedback control is applied to piezoelec-
trically lock the phase φSL to 0, such that a rotation of φλ/2

will contribute to an effective phase change −φλ/2 acquired
by the 806-nm photons. Using this method, we observe fluc-
tuations of the error signal of each interferometer loop with
�φSD ≤ ±0.02π , resulting in a relative stability of all four
loops of �φSD ≤ ±0.059π as determined from coincidence
measurements over one hour (see Fig. 7).

We want to emphasize that for our method the phase-
change speed is ultimately limited by typical millisecond
piezoactuator response times, while the probability of fringe
skipping is minimized with respect to other stabilization
schemes. More importantly, no optical component is placed
in the path of the photons in order to vary their phase, there-
fore avoiding transmission losses and mode aberrations for
the SPDC photon modes.

2.2.2 Time-multiplexing scheme for stabilization of
different interferometer arms

Figure 6 describes how the polarization-multiplexing scheme
can be applied in order to extract error signals dependent on
the respective phases φ1 and φ2 caused by the two interfer-
ometer loops �T and 2�T .

The H -polarized photons obtained from the SPDC
source are coupled into one input, and fiber polarization con-
trollers are placed in each path to obtain H polarization at
each output of the fibers. In order to obtain independent er-
ror signals SL1 and SL2, the stabilization laser intensity is
split up into two modes.

The first component (SL1) used to stabilize �T is cou-
pled into the free interferometer input and extracted at the
long path of the 2�T interferometer using a dichroic beam
splitter with ideal transitivity for 806 nm and a 30–70%
splitting ratio for 780 nm. The error signal E(φ1, φ1, λ

2
) ∝

Fig. 6 Time-multiplexing scheme of stabilization laser intensities SL1
and SL2 for stabilizing of different interferometer loops independently.
The electronically demultiplexed error signals depend only on the re-
spective phase settings φ1 and φ2 of the delays �T and 2�T , allow-
ing an independent stabilization and variation of the relative phases
acquired by the photons. Here the interferometer delay 2�T is added
by using an optical delay line between two mirrors

cos (φ1 + φ1, λ
2
) can be extracted by applying the scheme de-

scribed in Fig. 5. For referencing 2�T , the intensity SL2 is
coupled through the free-space path of the first interferom-
eter using a dichroic beam splitter with the same character-
istics. The intensities for SL2 are extracted by interference
filters after their overlap at the last beam splitter. The cor-
responding error signal displays a dependence only on the
phase φ2 acquired at the 2�T interferometer: E(φ2, φ2, λ

2
) ∝

cos (φ2 + φ2, λ
2
). The variation of φ1, λ

2
and φ2, λ

2
allows an

independent variation of the relative phases acquired by the
SPDC photons in both interferometer arms.

As the stabilization light for the two loops would mutu-
ally disturb the generation of the error signals, they are time
multiplexed (100-Hz frequency, offset >20 ms) by trans-
mitting each mode through alternating blades of an optical
chopper before feeding the laser light into the interferome-
ters. For demultiplexing the respective error signals depend-
ing on the phases φ1 and φ2, the P–I feedback electronics
are driven by analog sample-and-hold circuits triggering a
feedback loop only at the times at which the respective sta-
bilization signals are detected.
Despite the chromatic filtering between the stabilization
laser and the SPDC photons, non-negligible background
counts are still measured at the wavelength of 806 nm. It
is believed that they can be associated with scattering pro-
cesses of the stabilization laser in the fibers and other optical
components. For this reason, the detection of SPDC pho-
tons and the transmission of both reference signals SL1 and
SL2 are also time multiplexed with respect to each other,
by transmitting the SPDC photons through a further set of
blades of the same optical chopper. To minimize losses in
the photon coincidence count rates, the time-averaged trans-
mission rate of the SPDC photons is set to ≈75% while the
stabilization signals share ≈25% of the time. The scheme
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Fig. 7 Phase fluctuation of the four-dimensional coincidence rate over
measurement times of up to one hour. Routinely a standard deviation
of �φ = ±0.059π is observed

is scalable and can be applied on additional interferome-
ter arms used to expand the dimensionality of the analyzed
states.

3 Experimental results

First, we evaluate the performance of the stabilization
scheme by analyzing the time-dependent variation of the
coincidence count rates for the four-dimensional state. Typ-
ical phase deviations for measurement times of up to 50 min
and integration times of 10 s are displayed in Fig. 7. Average
standard deviations of �φ4D = ±0.059π are observed, ≈3
times larger than for the single-interferometer stabilization
scheme of �φPM = ±0.02π described in Sect. 2.2.1, but
still sufficiently small for further measurements. The main
contribution to this value is due to the independent fluctu-
ations of four interferometer phases (see (3)) and the addi-
tional phase uncertainty resulting from the short time span
used for stabilization (≈8%).

In order to characterize and to evaluate the setup, first
the dependence of the coincidence count rates of (4), (9)
and (10) for different dimensions is tested for phases φ1 and
φ2 for each party. An illustrative way to display the differ-
ence between two-dimensional and four-dimensional entan-
gled states is to simultaneously scan the phases φA,1 and
φA,2 of Alice’s interferometers (φB,1 = φB,2 = 0). Then the
coincidence functions as given in (3) and (9) simplify to
C0�T

4D ∝ cosφ4 and C2�T
2D ∝ cosφ2, respectively. As illus-

trated in Fig. 8, the coincidence count rates clearly show an
excellent overlap with the function C0�T

4D . As described in
[17, 18] these characteristics can be used to define dimen-
sional witnesses.

Next, we analyze the coincidence count rates observed
for states of different dimensions by comparing the experi-
mental data with the corresponding theoretical predictions.

Fig. 8 Coincidence count rate variation for a simultaneous scan of
phases φA,1 and φA,2 in both interferometer arms of Alice. The func-
tion C0�T

4D is fitted to the experimental data while C2�T
2D corresponds

to the theoretical coincidence function for a two-dimensional state

In Fig. 9 the coincidences for the +,+ detector combina-
tion are shown as a function of φA,2 for Figs. 9(a) and 9(b)
and in dependence on φA,1 for (c) and (d) while keep-
ing the respective other phases constant at 0. In (a) and
(b), the fringe visibility for the four-dimensional data (blue)
amounts to V4D = 0.981(8)% while the corresponding value
for the three-dimensional state (green) only amounts to
V3D = 0.654(7)% and vanishes for the two-dimensional
state (red), in close correspondence with the theoretical pre-
dictions of V4D,th = 1, V3D,th = 7/9 = 0.78 and V2D,th =
0 according to (3), (8) and (9). The phase difference be-
tween both coincidence count rates of �φ = φ3D − φ4D =
1.024(2)π corresponds closely to the theoretical expected
value of π . In contrast, when varying φA,1 (Figs. 9c and 9d),
the three-dimensional coincidence function remains con-
stant at 1/9 of the maximal probability, while the two-
dimensional coincidence count rate displays a visibility of
V2D = 0.919(11)%, in clear correspondence with the the-
oretical expectations (V2D,th = 1). Again, the phase differ-
ence �φ = φ2D − φ4D = 1.013(2)π displays the good re-
producibility of the interferometer setup. The periods of
all curves show a deviation of less than ≈4% with re-
spect to the ideal value. A contribution of accidental co-
incidence count rates in the range of 1% of the maximal
count rates of the four-dimensional state is observed, result-
ing in a negligible reduction of its interference visibility.
For the two-dimensional state, the count rates are reduced
by a factor of four as compared to the four-dimensional
state (see (9)); the same background causes a significantly
lower signal/noise ratio and a higher reduction of the visi-
bility.

A figure of merit for the suitability of the setup for
preparing higher dimensional time–energy entanglement is
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Fig. 9 Experimental and
theoretical coincidence
probabilities for
four-dimensional,
three-dimensional and
two-dimensional states as a
function of φA,2 (a and b) and
φA,1 (c and d)

Fig. 10 Coincidence count rate of the four-dimensional entangled
state scanned as a function of the phase φA,1 of Alice’s short inter-
ferometer

the interference visibility of the coincidence curves. Fol-
lowing the considerations given in [19], a Bell inequality
can be defined [18], which is violated only by (2 × 4)-
dimensional entangled states. Here the bound I ≤ 2 can be
translated into a minimal fringe visibility of Vc = 78.4%
to allow a violation of local realism for the state space
spanned by our interferometer system. The experimentally
determined visibility (Fig. 10) of Vexp = 0.975(16)% sur-
passes the bound by 12 standard deviations, offering the po-
tential for a violation of higher dimensional Bell inequali-
ties [18].

4 Conclusion

We introduced an experimental scheme which is suited for
the preparation and analysis of four-dimensional entangled
photons. The experimental results exhibit high visibilities
and are in good agreement with the described theoretical
predictions, enabling the expansion of the scheme to en-
tangled states of even higher dimensions. From the view-
point of fundamental research, they offer the opportunity for
studying the increased non-classicality of high-dimensional
states as characterized by the violation of Bell tests [18, 20]
or allow studies of the non-contextual nature of quantum
mechanics [21–23]. With increasing dimensionality of the
encoded states, the application of mutually unbiased bases
allows us to increase the security bounds of quantum cryp-
tography schemes [20] while minimizing the experimental
effort for full state determination [24] with respect to stan-
dard tomographic techniques. It is thus of high relevance to
utilize the benefits of the scheme demonstrated here and to
further increase the dimensionality of qudit states.
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We introduce an experimental procedure for the detection of quantum entanglement of an unknown

quantum state with a small number of measurements. The method requires neither a priori knowledge of

the state nor a shared reference frame between the observers and can thus be regarded as a perfectly state-

independent entanglement witness. The scheme starts with local measurements, possibly supplemented

with suitable filtering, which essentially establishes the Schmidt decomposition for pure states.

Alternatively we develop a decision tree that reveals entanglement within few steps. These methods

are illustrated and verified experimentally for various entangled states of two and three qubits.
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Introduction.—Entanglement is the distinguishing fea-
ture of quantum mechanics and it is the most important
resource for quantum information processing [1,2]. For
any experiment it is thus of utmost importance to easily
reveal entanglement, ideally with as little effort as
possible. Common methods suffer from disadvantages.
On the one hand, employing the Peres–Horodecki cri-
terion [3,4] or evaluating entanglement measures, one
can identify entanglement in arbitrary states; however,
it requires full state tomography. On the other hand,
various entanglement witnesses [4–10] can be deter-
mined with much fewer measurements, but they give
conclusive answers only if the state under investigation
is close to the witness state; i.e., they require a priori
knowledge.

Recently, it has been shown that the existence of entan-
glement can be inferred from analyzing correlations among
the measurement results on the subsystems of a quantum
state. The properly weighted sum of correlations will over-
come characteristic thresholds only if the state is entangled
[11]. Here we further develop this approach to obtain a
simple and practical method to detect entanglement of all
pure states and some mixed states by measuring only a
small number of correlations. Since the method is adaptive,
it does not require a priori knowledge of the state nor a
shared reference frame between the possibly remote ob-
servers, and thus it greatly simplifies the practical applica-
tion. We describe two schemes. The first one essentially
can be seen as a direct implementation of Schmidt decom-
position, which identifies the maximal correlation directly.
For bipartite pure systems, this approach can be divided
conceptually into two stages: (i) calibration that establishes
the experimental Schmidt decomposition [12,13] of a pure
state by local measurements and suitable filtering and
(ii) two correlation measurements to verify the entangle-
ment criterion. The second scheme shows how to use a

decision tree to obtain a rapid violation of the threshold,
thereby identifying entanglement.
Entanglement criterion.—For a two-qubit quantum state

�, Alice and Bob observe correlations between their local
Pauli measurements �k and �l, respectively. They are
defined as the expectation values of the product of the
two measurements, Tkl ¼ Tr½�ð�k � �lÞ�, with the so-
called correlation tensor elements Tkl 2 ½1;�1�. The local
values Tk0 (T0l), with �0 being the identity operator, form
the local Bloch vector of Alice (Bob). Using these mea-
surements, a sufficient condition for entanglement can
be formulated as [11,14]:

X
k;l¼x;y;z

T2
kl > 1 ) � is entangled: (1)

For pure states this is also a necessary condition, while for
mixed states care has to be taken. For mixed states, the
likelihood of detecting the entanglement decreases with
purity [15]. An extension of (1) can generally identify
entanglement of an arbitrary mixed state, however, then
losing the state independence [11,16]. Note two important
facts. First, Eq. (1) can be seen as a state-independent
entanglement witness, derived without any specific family
of entangled states in mind. Second, to test whether the
state is entangled, it is sufficient to break the threshold;
i.e., it is neither required to measure all correlations nor to
compute the density matrix [17]. Rather, it is now the goal
to find strategies that minimize the number of correlation
measurements. We show how this can be done by a
particularly designed decision tree, or by identifying a
Schmidt decomposition from local results and filtering
when necessary.
Schmidt decomposition.—Consider pure two-qubit

states. Any such state has a Schmidt decomposition
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jc Si ¼ cos�jaijbi þ sin�ja?ijb?i; � 2
�
0;
�

4

�
; (2)

where the coefficients are real and the local bases fjai,
ja?ig and fjbi, jb?ig are called the Schmidt bases. Once the
bases are known, Alice constructs her local measurements
�z0 ¼ jaihaj � ja?iha?j and �y0 ¼ ija?ihaj � ijaiha?j,
and so does Bob in analogy. They can now detect entan-
glement with only two correlation measurements because
T2
z0z0 þ T2

y0y0 ¼ 1þ sin22� > 1 for all pure entangled

states. Note, the laboratories are not required to share a
common reference frame.

In order to extract the Schmidt bases from experimental
data, one starts with local measurements, determining the

local Bloch vectors ~�ð ~�Þ of Alice (Bob). (Those vectors

are related to the correlation tensor coefficients via �i ¼
Ti0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
x0 þ T2

y0 þ T2
z0

q
.) We consider two cases. First, sup-

pose that a pure state has nonvanishing local Bloch vectors.
Their directions define the Schmidt bases of Alice and Bob
up to a global phase�. Writing these bases in the computa-
tional basis

jai ¼ cos�Aj0i þ ei’A sin�Aj1i;
ja?i ¼ sin�Aj0i � ei’A cos�Aj1i;
jbi ¼ cos�Bj0i þ ei’B sin�Bj1i;

jb?i ¼ ei�ðsin�Bj0i � ei’B cos�Bj1iÞ; (3)

we see that the required coefficients can be inferred di-
rectly from the local Bloch vectors, ~� ¼ ðsin2�A cos’A;
sin2�A sin’A; cos2�AÞ on Alice’s side, and similarly for
Bob. The global phase of jb?i shows up as the relative

phase in the decomposition (2); i.e., jc Si ¼ cos�jaijbi þ
sin�ei�ja?ij~b?i (with jb?i ¼ ei�j~b?i). It can be deter-

mined, for example, from the Tyy correlation as cos� ¼
Tyy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2

x0 � T2
y0 � T2

z0

q
. If Bob would use the basis

fjbi; j~b?ig to build his observables �z00 and �y00 , the corre-

sponding correlations Ty0y00 ¼ sin2� cos�would vanish for

cos� ¼ 0 and the two measurements Tz0z00 and Ty0y00 would

not suffice to detect entanglement. In such a case, however,
the other two correlations, Tx0y00 and Ty0x00 , are nonzero, and

can be used to reveal entanglement. Therefore, the deter-
mination of � in the calibration is not essential if one
accepts possibly one more correlation measurement.

Second, in the case of vanishing local Bloch vectors, the
pure state under consideration jc mi is maximally en-
tangled and admits infinitely many Schmidt decomposi-
tions. In order to truly prove entanglement, Bob can thus
freely choose some basis, say computational basis, for
which the state will now be of the form jc mi ¼ 1ffiffi

2
p �

ðjaij0i þ ja?ij1iÞ. The basis of Alice can be found after
filtering by Bob in his Schmidt basis: F ¼ j0ih0j þ "j1ih1j.
(For an actual implementation, see the experimental

section.) When Bob informs Alice that his detector behind
the filter clicked, the initial state becomes

ð1 � FÞjc mi ! 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "2

p ðjaij0i þ "ja?ij1iÞ: (4)

Note that, due to filtering, a nonvanishing local Bloch
vector emerges for Alice. Thus, the respective Schmidt
basis can be found with the method described above and
used for the evaluation of T2

z0z þ T2
y0y.

Decision tree.—Our second algorithm for entanglement
detection does not even require calibration and also applies
directly to mixed states. Alice and Bob choose three or-
thogonal local directions x, y, and z independently from
each other and agree to only measure correlations along
these directions. In Fig. 1 we show exemplarily which
correlations should be measured in order to detect entan-
glement in a small number of steps. Starting with a mea-
surement of Tzz, one continues along the solid (or dotted)
arrow if the correlation is higher (or lower) than some
threshold value (e.g., 1=2 in Fig. 1). The tree is based on
the principle of correlation complementarity [19–22]: in
quantum mechanics there exist trade-offs for the knowl-
edge of dichotomic observables with corresponding anti-
commuting operators. For this reason, if the correlation
jTzzj is big, correlations jTzxj, jTzyj, jTxzj, and jTyzj have to
be small, because their corresponding operators anticom-
mute with the operator �z � �z. Therefore, the next
significant correlations have to lie in the xy plane of the
correlation tensor, and thus the tree continues with a
measurement of the Tyy correlation. This concept can be

FIG. 1 (color online). The decision tree for efficient two-qubit
entanglement detection. No shared reference frame is required
between Alice and Bob; i.e., they choose their local x, y, z
directions randomly and independently, which effectively gives
rise to a basis fxA; yA; zAg for Alice and fxB; yB; zBg for Bob
(not detailed in the figure or the main text). The scheme starts
with measuring Tzz and follows at each step along the dashed
arrow if the modulus of correlation is less than 1

2 and otherwise

along the continuous arrow. The algorithm succeeds as soon asP
T2
ij > 1. The measurements in the blue shaded area suffice to

detect all maximally entangled pure states with Schmidt-base
vectors along x,y, or z.
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generalized to multiqubit states. A decision tree for three
qubits is given in the Supplemental Material [15]. The
number of detected states grows with the number of steps
through the decision tree. Since condition (1) is similar to
the purity of a state, the scheme succeeds faster the more
pure a state is (see Supplemental Material [15] for detailed
analysis). Varying the threshold value does not lead to any
significant changes in the statistic of detected states.

Finally, we connect both methods discussed here for the
analysis of multiqubit states. A numerical simulation for
pure states reveals that the correlation measurement along
local Bloch vectors gives correlations close to the maximal
correlations in more than 80% of cases. Therefore, these
local directions give an excellent starting point for the
decision tree.

Experiment.—For the demonstration of these new sim-
ple analysis methods we first use two photon-polarization
entangled states. In the following, we will thus replace the
computational basis states by horizontal (j0i ! jHi) and
vertical (j1i ! jVi) linear polarization, respectively. The
photon source (Fig. 2) is based on the process of sponta-
neous parametric down-conversion (SPDC), using a pair of
crossed type I cut�-barium-borate (BBO) crystals pumped
by a cw laser diode at a wavelength of 	pump ¼ 402 nm,

with linear polarization of 45�. It emits pairs of horizon-
tally and vertically polarized photons that superpose to the
state j�i ¼ 1ffiffi

2
p ðjHijHi þ ei
jVijViÞ [23]. The spectral

bandwidth of the photons is reduced to 5 nm using inter-
ference filters, and two spatial emission modes are selected
by coupling the photon pairs into two separate single-mode
fibers.

For the purpose of preparing any pure two-qubit state,
the polarization of each photon can be rotated individually
by a set of quarter- (QWP) and half-wave plates (HWP) in
each mode. By tilting an yttrium vanadate crystal (YVO4)
in front of the BBOs, the relative phase 
 among the
photon pairs can be set. Additionally, the state can be
made asymmetric by removing a portion of vertically
polarized light in one spatial mode with a Brewster plate

(BP). In the last step of the experiment, the polarization
of each photon is analyzed with additional quarter- and
half-wave plates and projection on jHi and jVi using a
polarizing beam splitter (PBS). The local filtering of a
maximally entangled state can be accomplished by placing
a Brewster plate in front of the analysis wave plates. This
Brewster plate reflects with a certain probability vertically
polarized photons and, together with detection of a photon
behind the Brewster plate, implements the filtering opera-
tion (4). Finally, the photons are detected by fiber-coupled
single-photon detectors connected to a coincidence logic.
Experimental Schmidt decomposition.—Let us consider

the state shown in Fig. 3(a). The protocol starts with Alice
and Bob locally measuring the polarization of the photons,
enabling them to individually determine the local Bloch
vectors. For high efficiencies, which are possible in experi-
ments with atoms or ions, the local measurements can
indeed be done independently [24]. If nonvanishing local
Bloch vectors can be identified, one can proceed to the next

FIG. 2 (color online). Scheme of the experimental setup. The
state j�i ¼ 1ffiffi

2
p ðjHijHi þ ei
jVijViÞ is created by type I SPDC

process. An yttrium vanadate crystal (YVO4) is used to manipu-
late the phase 
 of the prepared state. For preparation and
analysis of the state, half- (HWP) and quarter-wave plates
(QWP) are employed. Brewster plates (BP) can be introduced
to make the state asymmetric and to perform the filter operation,
respectively.
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FIG. 3 (color online). Demonstration of Schmidt decomposi-
tion of a maximally entangled state prepared in unknown bases.
The correlation tensor and corresponding density matrix are
depicted for (a) the unknown state, (b) the state after applying
local filtering, and (c) the state analyzed in the Schmidt bases. It
is important to note that only the blue shaded elements of the
correlation tensors will be measured, as this suffices to prove
entanglement. The full correlation tensors and the corresponding
states are only shown for completeness and didactic reasons.
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step. For the example here, the local expectation values are
close to zero and filtering has to be applied. By using a
Brewster plate in front of Bob’s analysis wave plate, local
Bloch vectors emerge as long as the filtering operation is
successful [Fig. 3(b)] [25]. In this case, we obtain T0l ¼
ð0:000; 0:040; 0:334Þ and Tk0 ¼ ð0:188;�0:034; 0:336Þ.

In the next step, Alice and Bob use their local Bloch
vectors to realign their analyzers to the new local Schmidt

bases fjai, ja?ig and fjbi, j~b?ig, respectively. This process
diagonalizes the correlation tensor, as depicted in Fig. 3(c).
Therefore, it is only necessary to measure Tz0z00 ¼ 0:922�
0:015 and Ty0y00 ¼ �0:864� 0:015 to prove entanglement,

since T2
z0z00 þT2

y0y00 ¼1:597�0:038>1. Hence, 2�3 local

measurements are needed in the first step of the algorithm,
three combined measurements are needed for filtering if
necessary, and finally only two correlation measurements
have to be performed for entanglement detection.

Application of the decision tree.—In order to demonstrate
the application of the decision tree, we will apply it to three
states. For the first state 1ffiffi

2
p ðjHijHiþjVijViÞ, whose corre-

lation tensor is depicted in Fig. 4(a), the decision tree (Fig. 1)
starts with the measurement of the correlation Tzz ¼
0:980� 0:015 and continues with Tyy¼�0:949�0:015.

These two measurements already prove entanglement
since T2

zz þ T2
yy ¼ 1:869� 0:041> 1. For a second state,

1ffiffi
2

p ðjRijRiþijLijLiÞ, we obtain a correlation of Tzz ¼
�0:056� 0:015, close to zero [Fig. 4(b)]. Consequently,
the next steps according to our algorithm (Fig. 1) are to
determine the correlation Tyy ¼ 0:978� 0:015, followed

by Txz ¼ �0:959� 0:015, with their squares adding up to

a value of 1:879� 0:041> 1 and hence proving entangle-
ment. As a last example, we consider the initial state of
Fig. 3. According to our decision tree, we need to measure
Tzz ¼ 0:768� 0:015, Tyy ¼ 0:018� 0:015, and Tyx ¼
�0:922� 0:015, thus giving a value of 1:440� 0:036> 1
and proving entanglement with only three steps.
Many qubits.—For the demonstration of multiqubit en-

tanglement detection,we use two three-photon, polarization-
entangled states: theW state [26] and theG state [27] (Fig. 5).
In order to observe these states, a collinear type II SPDC
source is used togetherwith a linear setup to prepare the four-

photon Dicke state Dð2Þ
4 [28,29]. Once the first photon is

measured to be vertically polarized, the other three photons
are projected into the W state. Similarly, the three-photon
G state is obtained if the first photon is measured to beþ45�
polarized.
The protocol for entanglement detection starts with

observers locally measuring the polarization of the photons,
enabling them to individually determine the local
Bloch vectors. For the G state we obtain Ti00¼
ð0:636;�0:008;�0:015Þ, T0j0¼ð0:623;�0:092;0:010Þ, and
T00k¼ð0:636;0:070;0:022Þ. The local Bloch vectors suggest
that the correlation Txxx is big. Therefore, the decision tree
starts with the measurement of Txxx ¼ 0:904� 0:025 and
continues with Txzz ¼ �0:578� 0:025 (see Fig. 2 in the
Supplemental Material [15]). These two measurements al-
ready prove entanglement because T2

xxx þ T2
xzz ¼ 1:152�

0:038> 1. For the W state, the local Bloch vectors Ti00 ¼
ð0:016;�0:070; 0:318Þ, T0j0 ¼ ð�0:010;�0:073; 0:308Þ,
and T00k ¼ ð�0:011;�0:0547; 0:319Þ suggest that now the
correlation Tzzz is big. Indeed, we observe Tzzz ¼ �0:882�
0:025. The decision tree is the same as above but with local
axes renamed as follows: x ! z ! y ! x. Therefore, the
second measurement has to be Tzyy. With Tzyy ¼ 0:571�
0:025, we again prove entanglement as T2

xxx þ T2
zyy ¼

1:104� 0:037> 1.
Conclusions.—We discussed and experimentally imple-

mented two methods for fast entanglement detection for
states about which we have no a priori knowledge. They
are well suited for quantum communication schemes as the
parties do not have to share a common reference frame,
making the scheme insensitive to a rotation of the qubits
during their transmission to the distant laboratories.
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FIG. 4 (color online). Correlation tensors and density matrices
of the experimental realization of two different states. The imagi-
nary parts of the density matrices are negligible and therefore
skipped. Using the decision tree, only the blue shaded correlations
have to be measured for detecting entanglement. The errors of the
correlations are <0:015 for (a) and <0:023 for (b).

FIG. 5 (color online). Density matrices of the experimental
realization of the G andW state. The corresponding fidelities are
equal to 92.23% and 89.84%.
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The two methods use a particularly simple and practical
entanglement identifier [11]. One of them can be seen as
experimental Schmidt decomposition and the other estab-
lishes a sequence of correlation measurements, leading to
entanglement detection in a small number of steps.
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[11] P. Badzia̧g, Č. Brukner, W. Laskowski, T. Paterek, and M.
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Rev. A 68, 032309 (2003).

[28] jDð2Þ
4 i ¼ ðjHHVVi þ jHVHVi þ jVHHVi þ jHVVHi þ

jVHVHi þ jVVHHiÞ= ffiffiffi
6

p
; R. Krischek, C. Schwemmer,

W. Wieczorek, H. Weinfurter, P. Hyllus, L. Pezze, and A.
Smerzi, Phys. Rev. Lett. 107, 080504 (2011).

[29] N. Kiesel, C. Schmid, G. Toth, E. Solano, and H.
Weinfurter, Phys. Rev. Lett. 98, 063604 (2007).

PRL 108, 240501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

240501-5



Experimental qud it entanglement detection using the time-energy degree of freedom
(Draft version)

Daniel Richart,1, 2 Wies law Laskowski,3, 1, 2 Yvo Fischer,1, 2 and Harald Weinfurter1, 2

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
2Department für Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany

3Institute of Theoretical Physics and Astrophysics,
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We present experimental results on the preparation and detection of entangled two-photon qud it
states including scenarios in which no information about each qud it reference frame is shared. The
used scheme is scalable for dimensions of d ≤ 8 and is suitable for the long distance transmission of
entangled states.

PACS numbers: 03.67.Mn

Introduction— Pioneering efforts in the field of Quan-
tum Information Processing and Communication such as
Quantum Computation, Teleportation and Crytography
had been restricted to physical systems defined in a 2
dimensional Hilbert space. As a matter of fact how-
ever, physical quantum systems as defined for atomic
states, are intrinsically encoded in qud it, i.e. d-level
states. Therefore, in order to harness their full poten-
tial for quantum information processes, it is necessary to
charaterize scalable schemes for their preparation and to
define appropriate measures to characterize their entan-
glement. Research on their properties revealed that qud it
states offer significant advantages with respect to qubit
states: Schemes of superdense coding [1] have enabled to
increase the information density usable for quantum com-
munication tasks while studies on the security of QKD
schemes have demonstrated the lower error susceptibil-
ity for protocols based on qud it states [2, 3]. Critical
to quantum communication purposes is the lower critical
detection efficiency required to close the detection loop-
hole [4]. Similarly, quantum computation schemes based
on qud its require a lower number of physical information
carriers with respect to qubit states in order to imple-
ment any arbitrary gate [5].
Schemes for the realization of qud its have been experi-
mentally realized using superconducting circuits [6], the
orbital angular momentum [7, 8] of photon pairs or the
entanglement in several degrees of freedom to create hy-
perentangled states [9, 10]. So far, an important draw-
back for their application for long distance quantum
crytography is the rotation of their polarization state
and the requirement of an adaptive optics compensation
scheme in order to compensate for a rotation in the an-
gular momentum and the polarization [11].
An alternative scheme not affected by these restrictions
is to use time- energy [12] encoding into the relative de-
tection times of two-photon pairs in order to create d
dimensional bipartite entangled states [13]. In contrast
to previous implementations [14, 15] limited by the lin-
ear increase in the dimension with the number of linear
optical components, here we resort to a scheme scaling

exponentially, as described in more detail in [16].
This paper provides a description of the experimen-
tal scheme used to create scalable qud it states and
presents methods for their characterization. Concretely,
we present results on an entanglement [17] and a com-
bined entanglement and dimensional witness [18, 19] used
respectively to charaterize the entanglement and to de-
termine the dimension of the states prepared. Similar
approaches based on the definition of device independent
inequalities were derived and experimentally verified in
[20, 21].
Experimental Scheme— In the scheme depicted in Fig.

1. the emission times 0,...,7 of a pump photon are taken
into detailed study. At any of these times the photon can
undergo the process of spontaneous parametric downcon-
version (SPDC) such that a photon pair can be created
with equal probability. Indeed, a continuous superposi-
tion of two-photon emission times can be defined within
the coherence time of the pump photon, but the effective
dimensionality of the analyzed states will depend only on
the number of modes coupling to the the analyzers the
two parties, Alice and Bob, are provided with. By mak-
ing use of a series of unbalanced interferometers they can
implement different delays of ∆T , 2∆T and 4∆T and a
relative phase shift φ1, φ2 and φ3 depending on the path
taken by their respective photon at each interferometer
loop. Depending on the number of time delays acquired
by the respective photons, the states can be spanned by
an up to 8 dimensional basis defined by the eight time
delays |0〉, |1〉,...,|7〉 in units of ∆T .

Both parties place single photon detectors at the out-
puts + and − of their respective interferometer systems
and perform coincidence measurements. They observe a
distribution of the coincidences along 15 different time
windows (see Fig. 2). Under the condition the time de-
lays acquired by each party overlap within the photon’s
coherence time, 8 two-photon probabilities superpose to
a state in the time window 0∆T , while the number of
superposing two-photon states decreases with the sepa-
ration from the central time window. Depending on the
time window chosen, the Hilbert space spanned by the
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Figure 1. Experimental scheme used to observe time-energy
entangled two-photon states in a 8 dimensional Hilbert space.
Both parties, Alice and Bob, each share a photon of a qud it
entangled state created by spontaneous parametric downcon-
version (SPDC) using a periodically poled KTP crystal. En-
tangled qud it two-photon states encoded in the time degree of
freedom are created with a Schmidt number inherently limited
by the coherence time of the pump photon source. They are
analyzed by a triple loop interferometer configuration imple-
menting the time delays ∆T , 2∆T and 4∆T . A coincidence
measurement between the detectors placed at their respective
outputs corresponds to a projection to a superposition state
of 8 two-photon detection times |0〉A|0〉B , |1〉A|1〉B ,..., and
|7〉A|7〉B .

two-photon states is therefore 2 × 8, 2 × 7, 2 × 6 and
down to 2 × 1 dimensional respectively. The states can
be written as the maximally entangled states

|Ψ〉d =
1√
d

d−1∑

k=0

(|k〉A|k〉B). (1)

It is important to note, that no variations in the single
photon probabilities are observed as a function of the
interferometer phases due to interference of photons
with themselves, as the time delay introduced surpasses
the coherence time of the photons by many orders of
magnitude.

Entanglement detection— A Bell type inequality
suited for proving entanglement of states defined in
higher dimensional Hilbert spaces was defined in [17]
(CGLMP inequality). It can be used to detect entan-
glement, as long as its classical bounds Id ≤ 2 defined
for any local hidden variable theory for d ≥ 2 are sur-
passed. For that purpose, appropriate preparation bases
have to be chosen for the bipartite qud it entangled states
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Figure 2. Distribution of the coincidence counts into 15 differ-
ent time windows in dependence of Alice’s and Bob’s relative
photon detection times. A projection onto states of differ-
ent dimension d is performed if both parties agree to perform
their time-delay measurements on a specific time delay. For
example, for a time delay of 0, ±∆T and ±2∆T they analyze
a 2x8d, 2x7d down to 2x1 dimensional entangled two-photon
state, respectively.

as encoded in this work. In this work, we choose one set
of maximally unbiased bases (MUBs) [22], which can be

prepared by choosing suited offset phase settings φO,sAi

and φO,tBi
used by both parties to define their d different

measurement results:

|as〉A =
1√
d

d−1∑

m=0

e
(i kd (φ

k
Ai

+φO,s
Ai

))|m〉A (2)

|bt〉B =
1√
d

d−1∑

n=0

e
(i kd (φ

l
Bj

+φO,t
Bj

))|n〉B (3)

Both parties require to choose between 2 analysis phase
settings {φkA,1, φkA,2} and {φlB,1, φlB,2} for k, l ∈ [0, 1].
A coincidence measurement on the 8d state corresponds
to the measurement of

Ck,l,s,t = Tr[ρ8d.(|as〉 ⊗ |bt〉)(〈as| ⊗ 〈bt|)] =

cos (φkA1
+ φlB1

+ φO,sA1
+ φO,tB1

)
2

× cos (φkA2
+ φlB2

+ φO,sA2
+ φO,tB2

)
2

× cos (φkA3
+ φlB3

+ φO,sA3
+ φO,tB3

)
2

(4)

In order to determine the analysis angles required
to surpass the bound Id ≥ 2 for all d dimensional
states defined in (1), a numerical optimization over all
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analysis angles is applied. For the 2x8d state and a 8d
preparation basis the bound is I88,QM ≈ 2.473 > 2, while
for the test of an inequality for 7dimensions on the 8d
state reveals a violation of I87,QM ≈ 2.715 > 2. Similarly,

I55,QM ≈ 2.62 > 2 is obtained for the encoded 5d state,
while no violation of the corresponding inequalities
I77,QM = 1.895 < 2 and I66,QM = 1.524 < 2 was found
when applied on the 2x7 and 2x6 dimensional states.
Finally, for 2x4d, 2x3d and 2x2d states, a violation of
I44,QM ≈ 2.552 > 2, I33,QM ≈ 2.87 > 2 can be defined for
the encoded 4 and 3d states. For the 2x2d the bound
I2d2,QM = 2 ·

√
2 > 2 obtained is equivalent to the bound

given by the CHSH inequality [23].
It is to note that a higher maximal violation (see Fig. 4)
and, respectively, the violation of the inequalities for the
7 and 6 dimensional states, requires the addition of in-
dependent analyzer phases such that their number equal
each photon’s state dimension. This requirement can be
met by resorting to time-bin encoding as described in
[13, 16].

Experimental Results—The evaluation of the CGLMP
inequality terms Id ≥ 2 for d dimensional states requires
the measurement of 4d2 coincidence probabilities. For
experimentally observed count rates of up to ≈ 200 −
300/s for a postselection window of 164ps for the 2x8
dimensional state, an integration time of 3s is sufficient.
We observe the violation of the bounds as IExp8 = 2.191±
0.02, IExp7 = 2.28± 0.015, IExp5 = 2.072± 0.037, IExp4 =

2.244 ± 0.042, IExp3 = 2.29 ± 0.028 and I2 = 2.448 ±
0.055 with good statistical relevance. This certifies that
entangled states defined in Hilbert spaces of up to 8 are
observed.

Dimensional witness— Crucial for many quantum in-
formation tasks is not only the determination of entan-
glement, but the determination of the dimension of un-
known states, as it is critical in order to choose the opti-
mal quantum communication protocol and to determine
the tolerable error rates. In this scenario, the approach
followed in [19, 24] is useful as it allows to determine the
Shannon dimension of bipartite entangled states.Here,
the Shannon dimension describes a bound for the dimen-
sion of the Hilbert space the analysis devices have access
to. In this work, the analysis tests the coherence between
a specific number of two-photon emission-time modes out
of the continuous range of modes emitted by the source,
superposing to the entangled state

|Ψ〉 =

∫ ∞

−∞
ci(t)cj(t)|i(t)〉A|j(t)〉Bdt. (5)

Here, the emission time modes |i(t)〉A and |j(t)〉B are
associated to the photons distributed to either Alice’s
or Bob’s analysis devices and the two-photon amplitude
A(t) is described by the function A(t) = ci(t)cj(t). Its

1.6

1.4

6

Figure 3. Experimental results for the evaluation of the
CGLMP inequality parameter Id. The experimentally deter-
mined values IExp

d surpass the classical bound ICL
d ≥ 2 and

are limited by the maximally determined bounds IMax
d for

the states prepared, except for a test of the inequality for 6
dimensions.

FWHM distribution is restricted by the coherence time
of the pump photon, and restricts the applicability of the
scheme to the case that the maximal time delays analyzed
doesn’t surpass this bound.
The used analyzers consist of unbalanced interferometers
coupling to the emission-time modes of the photons with
the respective weights γi = |λi|2. They project them onto
the states |i〉A = |i∆T 〉A and |j〉B = |j∆T 〉B at Alice’s
and Bob’s location, as a function of the applied time
delays ∆T . This leads to the definition of the operators
applied by the analysis devices of either party, Alice and
Bob, as

|A(φAi
)〉 =

d−1∑

i=0

eiφAiλi|i〉A (6)

and

|B(φBj
)〉 =

d−1∑

j=0

eiφBj λj |j〉B . (7)

Depending on the postselection time window chosen for
the analysis of the two-photon states, the coherence be-
tween a different number of two-photon modes is tested.
Both parties are now able to detect the two-photon Shan-
non dimension of each state by resorting to its definition
as

D =
1

∑d−1
i |γi|2

, (8)
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depending only on the two-photon coupling strengths
γi = |λi|2.
As shown first with the example of a 2x2 dimensional
state, its evaluation can be reduced by calculating the
coincidence probabilities

P (φAi
, φBj

) = |〈A(φAi
)| ⊗ 〈B(φBj

)|Ψ〉|2, (9)

leading to

P (φAi
, φBj

) = |
d−1∑

i,j=0

λiλjcicje
−i(φAi

+φBj
)|2. (10)

Here, the evaluation is simplified for the maximally en-
tangled states the witness is optimized for, for which the
summation indices are equalized (ci = cj), while a similar
condition λi = λj is ensured by choosing interferometer
arms with equal coupling to the respective time modes.
Deviations from these conditions lead to a reduction in
the detected two-photon dimensions.
Finally, the two-photon dimension can be determined by
performing the integral over the coincidence probability
over all phases the used analysis has access to. This can
be derived by observing that

∫ 2π

0
P (φA1 , φB1)dφA1dφB1 =

∫ 2π

0
|∑1

i=0 |ci|2|λi|2e−i(φA1
+φBi

)|2dφA1
dφB1

=
∫ 2π

0
||c0|2|λ0|2 + e−i(φA1

+φB1
)|c1|2|λ1|2|2dφA1

dφB1
=

∑1
i=0 |γi|2 · Pmax(2π)2, (11)

which combined with Eq. 8 allows to represent the
Shannon dimension as a function of

D =
1∑1

i=0 |γi|2
=

(2π)2Pmax∫ 2π

0
P (φA1 , φB1)dφA1dφB1

. (12)

In this notation, the maximal two-photon probability
Pmax = |Ai|2 = |cici|2 was introduced.
The scheme can be expanded for the determination of the
Shannon dimension of the different prepared states, with
the difference that it requires the evaluation of the addi-
tional interferometer phases the corresponding probabili-
ties depend on. The definition of the Shannon dimension
is therefore generalized to

D =
(2π)NPmax∫ 2π

0
P (φA1 , ..., φBN

2

)dφA1 · · · dφBN
2

. (13)

Experimental Evaluation— In order to evaluate the
integral over all phase settings the analysis devices de-
pends on experimentally determined probabilities, each

phase is scanned at 4 different values {0 = 2π,π/2,π and
3π/2}. For the evaluation of the dimensional witness for
the 2x8 dimensional state, whose full analysis depends
on 6 phases, up to 46 = 4096 different measurements
are performed, while this number is reduced to 256 and
16 for the 2x4 and 2x2 dimensional states, respectively.
Again, a choice of integration times of 3s and a posts-
election window of 164ps is sufficient to obtain results
with sufficient statistics. Finally, the detected Shannon
dimension is calculated by integrating over the fitted
probability functions derived from the experimental
data.
The experimentally obtained values are summarized in
the following table:

State Shannon Dimension D

2x8 7.33± 0.063 > 7

2x7 6.42± 0.076 > 6

2x6 5.16± 0.087 > 5

2x5 4.201± 0.045 > 4

2x4 3.54± 0.108 > 3

2x3 2.416± 0.057 > 2

2x2 1.686± 0.147 > 1

It describes, that for all experimentally prepared two-
photon states a Shannon dimension higher than the
next lower dimension is detected. This allows to cer-
tify the suitability of the Shannon dimensional witness
for energy-time entangled states.
Conclusions—We have demonstrated the experimental
application of entanglement and dimension witnesses on
a scalable source for entangled higher dimensional qud it
states of dimension up to 2x8. This proves the suitabil-
ity of the scheme for further applications of quantum
communication and computation tasks, as proposed and
experimentally demonstrated for bipartite states in [25]
and [26]. In this work, the encoding into the emission-
time degree of freedom offers important advantages with
respect to the implementation of long distance quantum
communication scenarios: The encoded state is not sen-
sitive to polarization mode dispersion nor to deforma-
tions of the spatial mode. Also, the tested scheme offers
promising alternatives to address the limited scalability
of similar methods using photonic entanglement, such as
multi-photon entangled states, which are affected by or-
ders of magnitude lower detection efficiencies.
This work is supported by the DFG-Cluster of Excellence
MAP and the DAAD/MNiSW project.
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