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Chapter 1

Introduction

”?Quantum mechanics is certainly imposing. But an inner voice tells me that it is
not yet the real thing. The theory says a lot, but does not really bring us any closer to
the secret of the Old One. I, at any rate, am convinced that He does not throw dice.”,
is a statement Albert Einstein wrote already in 1926 to Nils Bohr [I]. It expresses the
doubts many physicist had in the early days of quantum mechanics in this new theory
to be able to describe the world. Especially the Copenhagen interpretation, stated by
Bohr and Heisenberg around 1927 led to vigorous discussions, because this probabilistic
interpretation of quantum mechanics was contradictory to the common, deterministic
physical interpretation of nature. In 1935, an additional question arose, when Einstein,
Rosen and Podolsky (EPR) proposed their famous gedanken experiment, from which they
concluded that quantum mechanics could not be the whole truth, because it not fulfilled
the conditions they proposed to be essential for any complete physical theory: Realism
and locality. This point of view inspired theories claiming that not all parameters were
accessible experimentally and that these hidden parameters would be responsible for the
outcome of a measurement, explaining the correlations of entangled particles. But the
gedanken experiment proposed no experiment or measureable quantity to prove whether
nature obeys these local hidden variable theories or not. The gedanken experiment based
on non-separable two-particle states. The high correlation in the measurement results
between these, so-called entangled states inspired EPR to their conclusion.

Inspired from a simplified version of the EPR-paradox derived by Bohm, who consid-
ered two spin—% particles [2], Bell was the first to prove that, considering spin correlation
measurements, a limit for certain expectation values exists if local hidden variable theories
were right, whereas quantum mechanics can violate this upper bound [3]. Bell’s inequality

allowed for the first time to derive experiments testing the quantum theories.

The test of Bell’s original inequality has among other equivalent formulations [4] [ (]
been subject to many experiments. The first ones used a cascade decay in calcium atoms to
create entangled photon pairs [7], improved experiments by Aspect et al. in the following
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Introduction

years showed a very strong violation of Bell’s inequality [8] [9].

The experiments so far were all subject to two loopholes, that as long as not closed,
still allow to explain the correlations of entanglement with local realistic theories, although
all outcomes of the measurements were in favor of quantum mechanics. The first one is
the locality loophole, that claims the possibility of relativistic interactions of the different
analyzers, used to perform the measurement [10]. The first experiment addressing this
loophole was performed by Aspect et al. in 1982 by changing the measurement bases very
fast but not randomly [11]. The first experiment really closing this loophole was performed
in 1998 [12], changing the measurement bases of the spacelike separated analyzers ran-
domly to exclude any possible exchange of information between them. This experiment
was however still subject to the second loophole, the detection loophole. It states, that the
performed measurements, all having very low detection efficiencies, do not represent the
outcome of the whole ensemble. Thus although the outcome of an experiment is in favor
of quantum mechanics, there still is the possibility that the system as a whole behaves
according to local realism.

In 2001 Rowe et al. performed a test of Bell’s inequality on entangled ions [I3] having
a much higher detection efficiency than the photon experiments and closed the detection
loophole. But the ions where not spatially separated far enough to close the locality loop-
hole. To rule out a local realistic description of nature, a final loophole free test of Bell’s
inequality closing both loopholes simultaneously is still outstanding.

A very promising idea to close both loopholes is the combination of the high detec-
tion efficiency of internal atomic states with a spacelike separation of the readout setups
using photons as carrier of quantum information to distribute entanglement [14] [I5]. A
key ingredient therefore is the entanglement between atoms and photons, providing an
interface between matter and light exploiting the advantages of both systems. Perform-
ing a Bell-state measurement on two photons being entangled with an atom each, the
entanglement can be swapped onto the two atoms, which internal states can be read out
very efficiently. The entanglement between matter and light has already been successfully
proven by entangling an ion [16], a trapped single atom in a dipole trap [I7] and a single
atom in a cavity [I8] with a photon, respectively. The entanglement swapping between
two massive particles has been realized recently by Moehring et al. [19] stating with two
entangled ion-photon pairs and generating an entangled ion pair. The ions were separated
by one meter.

The simplest and mostly performed way for the entanglement swapping is to interfere
the two photons on a beamsplitter and only considering the case when a coincident de-
tection event occurs in both detectors. This method has already been successfully used
to perform entanglement swapping with two entangled photon pairs, generated by spon-
taneous parametric down conversion [20]. The fidelity of this Bell state measurement and
thus of the transfer of entanglement depends on different parameters like the arrival time
of the photons, their frequency distribution, the beamsplitter and the detection time.
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Thereby an upper bound for the fidelity of the entanglement swapping is given by the Bell
state measurement.

In this thesis the link between the generation of an entangled atom-photon pair and
the spatially separated photon analysis is presented to distribute entanglement between
matter and light over long distances, using photons which have passed a 300 m single
mode optical fiber. This is the first step to overcome the locality loophole. Together with
the entanglement swapping of two atoms it will allow a final loophole free test of Bells
inequality.

Overview One important problem occurring in the extension to long distances is the
birefringence of the optical fiber, which guides the photon to the photonic Bell state
measurement. Having a length of 300 m the birefringence of the fiber changes randomly
due to temperature changes and vibrations. As a consequence the entanglement between
the atom and the photon is destroyed. To minimize losses due to the random unitary
transformation of the polarization of the photon, an active stabilization of the birefringence
of the fiber is necessary. In the first chapter a setup capable to stabilize the polarization in
an optical fiber with an accuracy of 99.8% is explained. The second chapter describes the
setup to generate the entanglement between an atom and a photon [I7] and the integration
of the polarization control into this setup. First correlation measurements between an atom
and a photon over long distances using the extendend setup are discussed, showing that the
entanglement is maintained over this distance with a mean visibility of 0.75. Calculations
to give the expected upper bound for the visibility of entanglement swapping and the
experimental requirements are presented in the third chapter by analyzing two photon
interference on a beamsplitter and its consequences for the Bell state measurement. In the
fourth and last chapter, the results are summarized and an outlook is presented.
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Chapter 2

Control of polarization in optical
fibers

The transport of quantum mechanical information over long distances is a key element
of quantum communication and information because single photons are ideal carriers of
information. The information is e.g. encoded in their polarization, providing a quantum
mechanical two level system. Besides free-space communication, light can also be efficiently
sent over optical fibers. The remaining problem of these quantum channels is the time
varying stress induced birefringence of optical fibers. This leads to depolarization, causing
loss of the carried information. To prevent this loss, it is essential to be able to control the
polarization in the fiber. In this section a setup is described to preserve polarization of light
passing a 300m long fiber. First, a short introduction into the description of polarization
is presented, then the different parts of the setup are explained, an algorithm to actively
stabilize the polarization is developed, and, at the end of the chapter, experimental results
are presented that show that the polarization in optical fibers can be maintained with very
low residual errors.

2.1 Description of the polarization of light

A classical lightwave can be fully described by the evolution of its electric field. Except
for the propagation direction, the frequency of the oscillation, the amplitude and the
direction in which the electrical field points are the relevant degrees of freedom. For a plane
wave the direction of the electrical field oscillation is perpendicular to the propagation
direction and is called polarization direction (fig. . The most general description of
the polarization properties of a plane wave, travelling in z-direction is given by a complex
2-dimensional vector, the so-called Jones vector [21]:

E, . cos & ;
J = , w2 — [ 2 vp2 2.1
<Eye“"1>e O(SingeZ“”l)e ’ 2.1)
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Figure 2.1: Schematic picture of the polarization of a plane wave travelling along the
z-direction.

with Ey = E2 + ES . We are not interested in the absolute intensities of light, so we choose
FEy = 1. The global phase s is not measurable in the case of a single wave and shall be
omitted. The Jones vector reduces to:

[
J=| 2 (2.2)
smg e'1

We define light as horizontally (vertically) polarized, when the polarization vector points
into the direction of the z- (y-)axis. The quantum mechanical description of polarization is
equivalent to the description of a two level system, that is described in a two dimensional
C-space as well:

|W) = cosg |0) + et sing 1) (2.3)

In case of polarization, |0) (|1)) correspond to horizontal (vertical) polarization (we will
also use |H) (|V))). This notation allows to represent every state |¥) as a point on a
surface of a sphere with radius 1, called the Poincaré sphere (When dealing with other
systems than photons, it is called Bloch sphere). The position of the state on the sphere
is given by the spherical angles 6 and ¢, (fig. .

The three axes of the Poincaré sphere are defined by three bases, which are comple-
mentary in Jones space. Usually one chooses the z-axis to be the H/V-basis, where H (V)
stands for horizontal (vertical) polarization. The y-axis represents the +/— -basis, where
+ (—) means +45°- (—45°-) polarized light. Finally the z-axis gives the circularly polar-
ization basis, with the notation R/L for right/left-circular polarization. Measuring in one
of these bases gives maximal uncertainty of the others, e.g. projecting the polarization of
a photon into the H/V basis, we loose all information of the state with respect to the
other two bases. The three bases have the following properties:
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2.1 Description of the polarization of light

Figure 2.2: Representation of a polarization state on the so-called Poincaré sphere. Any
possible state |¥) can be represented as a point on the surface of the sphere, defined by
the angles 8 and ;.

1

4 = (M) (2.4)
1

- = (M =V) (2.5)
1

R) = = () +1V) (2.6)

L) = ——|H)+ V) (2.7)

S

The vectors on the sphere expressed in Cartesian coordinates are called Stokes vectors
and read:

S
s=| s |. (2.8)
S3

S; are the projections on the x—, y— and z-axis respectively. This representation allows
to map the C2-space on a three three dimensional R-space. Working with the Poincaré
sphere, one has to consider the fact, that on the Poincaré/Bloch sphere the azimuthal
angle is doubled as seen already in eqn. , where the angles are given by g.
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a) Ry S b)

Figure 2.3: a)Visualization of the effect of a A/2-wave plate at angle v on a state |¥),
transforming it into the state |¥’) by rotating it about an angle of m around r. b) shows
the effect of a half wave plate in the real space.

2.1.1 Manipulation of polarization

The most important linear optical components used to manipulate polarizations are
retardation plates. These plates consist of a birefringent material with a well defined
thickness, giving rise to a phaseshift of A\/x between the part of the light polarized parallel
to the extraordinary axis and the perpendicular polarization, because of the different group
velocities of light within these polarization components [22]. Therefore they are also called
A/x wave plates or, in case of z = 2(4) half (quarter) wave plates. A transformation induced
by such a plate is unitary and can be visualized in Stokes space [21] as a rotation. The
angle v of the waveplate, defined as the angle between the optical axis and the polarization
vector of |H), gives a rotation-axis in the 5152 plane, with an angle 2v with respect to
the S; axis. The transformation by the \/z-plate thus can be visualized as a rotation of
the polarization state by 27 /x around this axis (see fig. .

2.2 Polarization drifts

Nowadays, optical fibers are the most used carrier of light, giving the possibility to
guide light over large distances. Problems can arise, when the information is not encoded
in the intensity of the light but in its polarization state, since optical fibers are object to
stress induced birefringence. Typically one has no information about the orientation of
the refractive axes, as it depends not only on the material of the fiber, but also on the un-
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Figure 2.4: Drift of the polarization in a 300 m long fiber in our laboratory with a tem-
perature varying about 5°. The spikes at 15.75 h result from one measurement that failed.

known imperfections and the way the fiber is stressed. As a consequence the polarization
of the light is randomly rotated on its way through the waveguide. As the fiber is subject
to temperature changes and vibrations, this random rotation is time dependent (see fig.
21).

There are commercially available, polarization maintaining optical fibers, that can con-
serve the polarization (but have a higher attenuation). This kind of waveguide does not
suit our purpose as it only preserves two orthogonal polarizations (e.g. |H) and |V)).
But as the phase between these polarization states is not maintained and still subject to
e.g. temperature changes, any superposition states of |H) and |V) will still be changed
randomly. To prove entanglement, or to realize entanglement swapping it is necessary to
maintain all polarization states, therefore we have build a setup capable of conserving the
polarization state on a timescale suitable for our experiment. To test the consequences of
temperature changes in a laboratory we sent a well defined input polarization through a
300 m single mode fiber (type 630 HP from Nufern), as this is the distance we will use
in the experiment. We measured the output polarization over approximately 24 h, with
a temperature varying about approximately 5° (fig. . The input state drifts approxi-
mately about 20°/h in Stokes space, what results in an overla}ﬂ of 98% between the state
measured at ¢y and g+ 1 h. This makes measurements lasting longer than 1 h impossible,
as too much information is lost. Thus the control of the drifts of the birefringence of an

'the overlap between two states |¥1) and |¥2) in Jones space is defined by | (¥1|T2) |* and is used as
a measure for probability.
The overlap of states in the Poincaré space is no such measure, because orthogonal states, like |H) and |V),
have an overlap of —1 in the Stokes vector description. From the above equation for the overlap follows,
since the angles on the Poincaré sphere are doubled with respect to the ones of the Jones description and
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optical fiber is necessary to maintain the polarization state.

An additional test was made by measuring the polarization every 10 minutes and deter-
mining the drift in this time interval, because this will be the typical time between two
polarization control runs. We measured that the polarization on average drifts in 10min
about 4.291° in Jones space, resulting in an overlap of 99.44%.

Finally, we tested the wavelength dependency of the fibers birefringence in a small region
of 6.8GHz around the frequency we are working at. Changes of the fiber’s birefringence
were not observed.

2.3 Scheme for active stabilization of polarization in a fiber

As we have seen in the last section the control of the birefringence is of fundamental
interest when information, encoded in the polarization of light has to be sent over long
distances using optical fibers. In this section a scheme allowing to maintain the polarization
in a fiber and to control it is presented. The setup is working at a wavelength of 780nm,
corresponding to the Da-line of 87Rb .

2.3.1 General idea

The process of maintaining the polarization of light guided through a fiber can be
divided into two main steps (see fig.

e The measurement of the effect of the fiber at a suited wavelength. In order to measure
the full effect of the fiber, two complementary polarizations of reference light are
needed (two polarizations from non commmuting bases would be sufficient, but the
visibility is best for complementary polarizations), as any transformation introduced
by the fiber can be described using two variables (See next section).

e The decision what has to be done in the next step. Therefore an algorithm, capable
of handling the measured data and being able to decide which transformation to
apply to compensate the birefringence of the fiber is necessary. The transformation
itself is realized with a so-called fiber polarization controller.

knowing the angle o between two Stokes vectors to be

that the overlap P between two states is then given by

P =cos’(a/2) = COS2(% arccos <|Ssll||SSZ2| )) (2.10)

The normalization is done since the errors in the measurement result in a length of the Stokes vector
different from 1.
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AU “au\F(sw S)

control parameters ———  stokes vectors

300m single mode

reference laser fiber

V, +45 POLARIZATION POLARIZATION
D CONTROL MEASUREMENT

Figure 2.5: Schematic setup to maintain the polarization in a fiber

In the following subsections the components needed to realize the above steps are
presented.

2.3.2 Generation of two complementary reference polarizations

For the measurement of the polarization transformation of the optical fiber, two com-
plementary polarization directions are necessary. Stabilizing two orthogonal polarizations,
what is the first intuitive choice for reference polarizations, is not sufficient.

This can be seen easily, using the notation of eqn. The effects on the polarization
state by a fiber are described by unitary transformations. A general unitary transformation
(writing |¥) as a column vector) is defined by:

- e’ﬂ.cosa SiflAOz (2.11)
—sina e Pcosa

If we now suppose that we maintain |V') and |+), which are two complementary polar-
izations, a necessary and sufficient condition that all other polarization states are main-

tained is:
Uulvy = |v) (1) -
U|+> B @ sU=1 (2.12)

The left hand side clearly follows from the right hand side, what remains to show is the
other direction. Condition (1) gives with above definition of U:

U|V)=—sina|H) +e Peosa|V)=|V) . (2.13)

what yields a = 0. Using this result in condition (2) gives:

Ul4) = —=(P|H) + e P V) = |+) . (2.14)

Sl
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Figure 2.6: Schematic setup for the creation of two complementary reference polarizations
that are alternately sent to the experimental setup and finally is coupled into the optical
fiber to the photon detection setup, where the polarization analysis is located.

It follows 8 = 0. Thus it is shown that U= 1, what means that no unitary rotation except
from 1 can take place if these two polarizations are maintained.

If we chose |H) instead of |+) as second reference polarization, § would not have to be
zero, what is seen by calculating U |H) for a = 0, thus a rotation can still take place, what
proves that two orthogonal polarizations are not sufficient.

Setup

In our experiment we use |V) and |+) as reference polarizations. These polarizations
are prepared with respect to a reference frame that defines all polarizations necessary for
the main experiment. For this purpose we use light from a frequency stabilized laser diode
at a wavelength of 780 nm. The two polarizations are joined with a beamsplitter. The |V')-
polarized light passes the setup without changes, as all optical components have the H/V-
basis as eigenbasis. The |+) reference beam gains additional phases when it is reflected
from mirrors. These phases are neutralized with a so-called ” phase plate” or ” compensation
plate”, which is a birefringent crystal (e.g. a YVO crystal) oriented such, that |H) and
|V} are the eigenpolarizations. By rotating the plate around an axis perpendicular to the
propagation axis, the phase between the two eigenpolarizations can be adjusted (fig. .
To switch between the two polarizations we use self-made shutters. They are made of a
relay and a razors edge, allowing a maximum switching frequency of approximately 20 Hz.
The light is then guided through a fiber to the main experiment, i.e. the glass cell of the
vacuum chamber, where the single atom is trapped. The photons to be guided through
the detection fiber are created in this cell. Therefore, when the reference polarizations
are adjusted, the polarization of the reference beams is again tested immediately before
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2.3 Scheme for active stabilization of polarization in a fiber

passing the glass cell, i.e. this is the point where above mentioned reference frame is
defined. Behind the glass cell the light is coupled into the optical fiber leading to the
single photon analysis via the detection optics (see section .

The prepared polarization is tested with a highly accurate polarizer, The measure-
ment was performed directly in front of the glass cell. For |V')-polarization we obtain an
extinction ratio of 99.88% and for |+)-polarized light of 99.80%. Thus, the quality of the
generated polarizations is very good and as the detection accuracy of the polarization
analysis is of the same magnitude, high enough to serve as reference polarization.

2.3.3 Polarization analysis

An important part of the polarization stabilization process is the faithful measurement
of the polarization. Thereby it is important to find a compromise between a reliable and
fast measurement on the one side and being able to measure at low light intensities, since
we have limited amounts of test light. High light intensities increase the danger of acci-
dentally damaging the single photon detectors used for the single photon detection of the
entanglement measurement. There are different ways to realize a full polarization tomog-
raphy (e.g. [23] 24]). In our experiment, we chose for simplicity the straight forward way
of measuring each Stokes parameter separately. There are also commercial polarimeters,
but none of them is working at our wavelength of 780 nm.

Setup

The polarization tomography has to completely determine the polarization of the in-
coming light. The most straight forward way to measure the Stokes vector is to measure
directly the components of the vector, i.e. to measure the polarization in three comple-
mentary bases, defining the axes in the Poincaré sphere. We choose the common bases
H/V,+/— and L/R onto which we project the polarization state. Therefore we split the
light into three beams and perform a projective polarization measurement in each arm.
In case of projecting onto H/V this is done by splitting up the light with a polarizing
beamsplitter (PBS) and measuring the intensities of the two parts. To project onto +/—
we add a half wave plate at 22.5° before the PBS and for projection onto R/L we add a
quarter wave plate at 45° (fig. .

The detectors in each arm project the polarization state onto the corresponding basis
polarization. The according Stokes parameter follows from the normalized difference of
the measurement results of the polarizing beamsplitter:

Lir—1LiRr

S =
" Lir+Lig

i€{1,2,3} (2.15)
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BS 2 I I PBS
ss1 [ 1
singlemode — 105 ~ \ V4 @ 45° Phd 3;
fiber M2@225° —4— \ phase plates
Phd 1 pBs Phd2, PBS Phd 3,
Phd 1 Phd 2,

Figure 2.7: Scheme of the polarization tomography. The light is split up into three parts
using the 50 : 50 beamsplitters BS 1 and BS 2 in the analysis arms, where we perform a
polarization measurement in the H/V-, +/—- and R/L-basis using a combination of half
and quarter wave plates and polarizing beamsplitters (PBS). The photodiodes Phd 1 are
measuring in H/V-basis, Phd 2 in +/—-basis and Phd 3 in R/L basis. The absorption plate
in the first arm is used to guarantee same total intensities in each arm. The phase plates
compensate the additional phase shifts of the polarization states when passing through
the setup.

Photodetection of the incoming light

To monitor the intensity of the incoming light in each arm, photodiodes are used. In
principle also single photon counters could be used, but in this case the measurement takes
more time as the detectors have to gain reasonable statistics, whereas classical lightfields
have negliable noise. The photodiodes are of the type BPW34 and have an efficiency of
0.589A /W. The photo current flowing through the diode when absorbing light is measured
at a 1 M resistor connected in series to the diode. Using a non-inverting amplifier this
voltage is amplified by a factor of 10. In this way 1 uW power of the incoming light causes
a voltage of about 5.89V. These voltages are read by a USB-adapter with an input range
from —2V to 2V (we only use the range from 0 — 2V), which defines a maximal input
power of 0.34uW for each pair of photodiodes, since for the eigenpolarizations the light
in one arm is directed onto one diode. The overall maximum power of the incoming light
field is thus 4 x 0.35uW = 1.35u4W. Lower power gives the same results down to 0.05uW
(see fig. . The duration of the polarization measurement is determined by the rise time

14
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IR) axis of the PBS L)

spanned by its
egenpoarzatoﬁ
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L) ZYR)

Figure 2.8: Scheme of the effects of a A\/2 wave plate at 22.5° in front of a PBS. The
polarization of the incoming light is rotated in that way, that the PBS separates the |+)-
and the |—)-polarized part of the light

7 of the photodiodes. Which follows from the diode capacity and its resistance. With a
resistance of 1M(2 and a capacity of 72pF we get a rise time of 7 = 72us. The maximum
measuring frequency is F' = = = 13, 9kHz.

Error sources

Errors during the measurement can be separated into errors from the electronics and
errors of the optical components. The first one is dominated by electrical noise from the
USB voltage converter (USB-ADC). The USB-ADC reader has a 12 bit resolution, making
the digitalizing error 0.98 mV /bit, what defines the noise to be of this magnitude.
Looking at the components, there are mainly three sources that give rise to errors: The
polarizing beamsplitters and the 50 : 50 beamsplitters and the wave plates. Of course
there is some absorption for all components too, but this is polarization independent
and thus negliable. The error arising from the PBSs is due to non-ideal splitting of H-
and V-polarization. However, if we know the splitting ratios for H- and V-polarized light
(Tr/v, Rpyv), one can show that from the measured values It g, Ig u, I,v and Igy (T, R
indicating transmitted and reflected power respectively) the real power I trye, Iv true can
be calculated:
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Figure 2.9: Measurement of polarization for different input intensities. The input polariza-
tion is |V'). The dots represent the measured values.Every point was measured 3-4 times
for better statistics. The measurement accuracy stays the same until the voltage output
is comparable to the noise of the voltage reading unit (smaller 0.054W).

1

RyTy — Ryly
1

RyTyg — RgTy

It true (RvIrg —TvIgH) (2.16)

IV,true (RHIT,V - THIR,V) . (217)

This result is interesting, as it shows that no ideal polarising beamsplitters is needed. The
only necessary condition is that the splitting ratio is polarization dependent. Equations
and allow to completely eliminate errors arising from nonideal splitting ratios.

There are two non polarising beamsplitters in our setup, which are also not ideal 50 : 50
beamsplitters. First, they do not have an exact 50 : 50 splitting ratio. Except for the fact
that in this case the intensity is not equal for all photodiode pairs this has no effect upon
the measurement. The second problem is that the beamsplitters give rise to additional
phases between the |H)- and |V)-polarized parts of the light. This can be compensated
using compensation plates in each arm. When measuring in H/V-basis,this is not even
necessary because here the additional phase has no effect. Additionally one has to consider
that on reflection by the beamsplitter, |+)-polarization is rotated into |—)-polarization
and vice versa (see sec. . The third aspect is, that the splitting ratio is polarization
dependent, so the polarization of the light is changed passing the beamsplitter. If we denote
the transmitted fraction of the incoming horizontally polarized light with z (the reflected
one is then 1 — z), and the vertical polarized fraction with y (and 1 — y respectively), it
follows that the overlap | (¥ assed|Winitiar) |* With the initial polarization state is bigger
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than:
2

1

P o= L[VEEVY (2.18)
2| vVr+y

2

1[vVI -

Py = LI ztvi-wf (2.19)
2 V2—x—vy

where Pr/p is the probability to get the initial state after transmission /reflection when
the input state was |4+) or |—) (or any polarization state with equally distributed |H) and
|V') fractions). These equations give the minimal overlap between the output polarization
behind the beamsplitter and the initial state in front of it, when we assume that the max-
imal change of the polarization arises when the incident light is |+)- or |—)-polarized (or
in any polarization state fulfilling above claim). The assumption that these polarizations
are changed the most, when passing a beamsplitter is a very good approximation for the
minimal overlap as long as the difference between x and y is not bigger than 0.2, which is
true in our case. The beamsplitters used in our setup have the following properties (fig.

27):

BS1: z=0.550 (2.20)
y = 0.495 (2.21)
BS2: x=0.499 (2.22)
y = 0.485 (2.23)

They were chosen from a set of ten tested beamsplitters. With these values we obtain
an overlap with the incoming polarization state of 99.93% for measuring in the H/V-basis,
99.91% for measuring in the +/—-basis and 99,91% for measurement in the R/L-basis.
For the calculation of the last two overlaps one has to take into account, that the light
passes both beamsplitters.

The main error from the waveplates originates from misalignment of about ~ from
the expected angle setting. This misalignment of the wave plates causes the detectors to
measure a different state, resulting in an overlap of cos?(27) between the wanted and the
prepared one. In our case v ~ 0.5° thus the overlap is around 99.99% and this error can
be neglected.

Performance

To test the setup we prepared different polarization states oriented along three great
circles (crossing the S; and Sa-, the S;- and S3- and the So- and Ss-axis, respectively)
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Figure 2.10: Results of measurement of the polarization along three great circles plotted
versus the angle of the A\/2 wave plate, used to align the measured polarization. The dots
are the measurement results and the solid lines result from the calculated values at that
particular position of the wave plate. The graphs below show the overlap of the measured
and the expected states.

by manually preparing the polarization with a polarizer, a half and a quarter wave plate,
placed along the input laser beam before the polarization analysis. The results are shown
in fig. This measurement was done for a power of the incoming light of 0.73 uW. We
expect a sinusoidal behavior of the two Stokes parameters defining the plane, where the
great circle lies in, whereas the remaining parameter should be zero. Fig. shows the
measured data that follows this expected behavior.

Slight deviation is given by the Stokes parameter that is expected to be 0. It shows
a small oscillation around zero with a maximum amplitude of 0.05 for the scanning of
the great circle in the So — S3 plane. This is due to the fact that this parameter is most
sensitive to alignment errors (proportional to sin around 0). But that is also the parameter
affecting the measurement result the least.

We calculated the overlap of the prepared polarization state with the measured one
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Figure 2.11: Photo of the polarization analysis setup. The light enters the setup via a
pinhole at the lower right corner of the picture. The remaining pinholes are used to adjust
the direction of the incoming beam. The lens focuses the beam, making its waist small
enough to fully hit the photodiodes. In order to measure the full beam, we use a 400 mm
lens to focus the beam from a waist of 3 mm down to a waist of approximately 30 pum
much smaller then the 3 mm diameter of the photodetectors.

and than added the error occuring from misalignment of the input polarization reference
system to the measurement reference frame by approximately 0.5 around the Ss-axis.
This error occurs due to unevenness of the bread board the analysis setup is located on.
From this calculation, we get an average overlap of 99.88% for the rotation in the S;Ss-
plane, 99.94% for the great circle in the S1S3-plane and 99.84% for the one in lying in the
S9S3-plane. These values give a mean overlap of 99.87%, which is in good agreement with
above error considerations.

As we want to use the polarizations |V') and |+) for compensation of the birefringence
of the optical fiber these two polarizations are of special interest. From the measurement
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Figure 2.12: Photo of the polarization controller including the driver card (taken from the
General Photonics website).

above we get an overlap for vertical polarized light of 99.96% and 99.85% for |+)-polarized
light?]

The presented polarization analysis measures polarizations very accurate. Together with
the reference polarizations it gives an ideal tool to measure the change of birefringence of
the detection fiber.

2.3.4 Manipulation of polarization

The tool used to manipulate the polarization in the fiber is a ”mini dynamic polar-
ization controller Polarite III” from General Photonics, including the driver card. It is
preferable to waveplates because there are no losses due to coupling the light into and out
of the fiber and it is much faster, as the rotation of the wave plates is very time consuming.
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Figure 2.13: Picture of the polarization changes when the voltage at one squeezing element
is manipulated and all others remaining at 0V. The second picture shows the averaged
rotation axes following from the circles on the left. The orientation follows also from the
direction of the rotation with increasing voltage. The initial polarization state is the same
for all four channels.

Working principle

The way the controller works is by applying pressure onto the fiber with four squeezing
elements, controlled by external voltages. This changes the birefringence in a controlled
way. If one visualizes the effect of one squeezing element on a certain polarization one
can see, that it is rotated around a fixed axis on the Poincaré sphere, where the rotation
angle depends on the applied voltage (fig. . Three of these elements are arranged in
such a way that the axes are almost perpendicular to each other (input channels 0,1 and
3), channel 2 is parallel to channel 0. The squeezing elements create an overdetermined
system, making resetfree manipulation of the polarization possible. Resetfree means that
the effect of one squeezing element is compensated by the others, when it reaches its limits.
The Stokes vector of the incoming polarization first is rotated by the first element, the
new oriented vector is rotated around the axis defined by the second squeezer and so on.
With this feature, the actions of the different squeezing elements depend on the action of
the following ones, what arises from the fact that this kind of systems is non commutative.
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\ |

Figure 2.14: Schematic picture of the cone occurring when manipulating the voltage of
one squeezing element. The rotation axis r, the initial Stokes vector S;, the measured one
S, and the rotation angle o are shown.

Properties

In this section we are going to present some experimental data and features of the
conroller. The allowed input voltages for the squeezing elements lie between 0 V and 5 V.
This voltage is internally amplified by a factor of 30. Our voltage output has a resolution
of 13bit in a range from —10 to 10 V, thus we get a minimal resolution of 2.5 mV. The
rotation angle per voltage is almost the same for every channel and is lying between
0.352°/ mV (squeezer 1) and 0.472°/mV (squeezer 0) on the Poincaré sphere (fig. [2.15)).
Thus the minimal angle of rotation lies between 0.86° and 1.15° on the Poincaré sphere.
This was measured by applying voltage in steps of 0.01 V onto every squeezing element
sequentially and measuring the new polarization. The rotation axis was calculated from
the measured polarization changes (because the initial polarization is not perpendicular
to the axis of the fiber squeezer no great circle is scanned). The rotation angle is defined
as the angle between the initial and final part of the Stokes vectors perpendicular to the
rotation axis (fig. . These vectors S; , and S,,, ;, representing the perpendicular part
are calculated by:

S =1 X (Si/m x1), (2.24)

i/m,p

where the normalized vector r defines the rotation axis. The angle « can be calculated,
using the scalar product of these two vectors. The resulting formula simplifies to:

_ (Si % 1)(Sm(U) x 1)
a(U) = arccos ( S < 1] S (0) * r[) , (2.25)

2A small detuning of the reference light of about 0.1 — 1 nm already gives rise to measurable errors
in the polarization analysis. For the future experiment however this poses no problem because we used a
laser light field locked to the atomic transition in order to obtain the reference light.
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Figure 2.15: Measurement of the dependence of the rotation angle on the applied voltage
for two channels of the polarization controller. We calculate the angle from eqn. S0
only angles between 0° and 180° can occur. The dots are the measured values and the red

lines are linear fits. The kinks at the end of the measurement arise because the squeezing
elements saturate.

where S; is the initial Stokes vector and S,,,(U) the measured one for applied voltage U.

Stability

The stability of the adjusted polarization is also of fundamental interest. On large
timescales, up to an hour, no drift of the polarization was observed. The short-time be-
havior is also interesting because it limits the time-interval between two adjustments of
the polarization and therefore defines the maximum speed of our polarization control al-
gorithm. Here the adjusted polarization remains stable on timescales bigger than 1 ms
(the timescale of one polarization measurement), except when the voltage on one channel
is changed. Fig. shows a measurement of the short time drifts of the polarization
immediately after changing the voltage from 0 V to 1.5 V at channel 0. One observes, that
the polarization drifts for approximately 4 ms after applying the voltage. The measured
drifts lie between 0.38° and 7.57° in Stokes space. When the voltage changes are smaller,
this drift becomes smaller. Because the change is largest during the first microsecond and
the remaining drift can be neglected when the voltage changes are very small, what is
true for the polarization control algorithm. The algorithm waits for 1 ms every time the
polarization is changed before measuring the changed polarization.

Bandwidth

The bandwidth with which the polarization can be manipulated is about 20kHz (3dB)
for every squeezer. This was tested by applying a sawtooth voltage with an offset of 0.2V
with an amplitude of 0.1V and measuring the effect on the polarization for increasing
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Figure 2.16: Measurement of the drift of the polarization after a sudden voltage change
from 0 V to 1.5 V on channel 0.

frequencies.

2.4 Algorithm to maintain polarization

The previous section showed that we are able to measure the effect of a fiber onto two
complementary polarizations with high accuracy. The next problem is to find the optimal
set of parameters for the fiber controller that exactly compensates the transformation of
the fiber in order to maintain the polarization of the light passing it. One possibility to
realize this would be to analyze the transmitted polarization states, allowing to calculate
the transformation matrix of the fiber. In the next step the parameters of the controller
would have to be set accordingly to compensate this transformation. The exact calculation
of the parameters is very difficult due to the lack of knowledge of the axes of the fiber
controller, because the input polarizations at the controller are unknown (results from
the long detection fiber, we only know the alignment of the axes relative to another). In
principle these axes can be measured, but this takes time and the resulting system of
equations is complex and also takes too much time to be solved.

The second method uses the principle of a gradient descent. We define a measure that
gives the deviation of the measured polarizations behind the fiber from the respective in-
put states. Then the voltages of the squeezers are varied slightly to determine the direction
in which this deviation decreases. Then the parameters are changed by a small amount
towards the optimal direction. This process is repeated until the output polarizations are
equal to the input polarizations.

The advantage of this method is that no equations have to be solved, the electronic real-
ization is simple and errors, occurring while adjusting the polarization are compensated
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immediately in the next iteration steps. Therefore we have chosen this way of maintaining
the polarization. Additionally, in future this method could possibly be implemented in full
electronic way which would allow a much faster compensation.

2.4.1 Definition of a measure

For the implementation of an optimization algorithm the first step is to define a mea-
sure, that gives the deviation of two polarization states from their set values, i.e. from
the values of the Stokes vectors of the two reference polarizations. The function has to
depend on the two input and output polarization states. For the allowed parameter set the
function must be monotonous to make sure that there are no local extrema and the point
where the two output polarizations are equal to the input must be a global minimum. A
function which fullfills these conditions is the following one:

3

F(Sm1,Sm2) = [S1 — Sm1|*> +[S2 — Sma|* = Z(Sml,i — 81.)% 4+ (Smai — S2.)%, (2.26)
i—1

where S,,1, S;no are the measured Stokes vectors and S, So are the values we want to
reach for the two polarizations respectively.
The function f has a global minimum f = 0 at the point (S;,1,Sm2) = (S1,82),0< f <1
and it is monotonously growing when the overlap between input and output states becomes
smaller. In the following we shall call f the error function.

2.4.2 Calculation of the gradient of the error function

The next step is to find an algorithm to minimize the error function. Since we do
not know the rotation axes of the polarization controller, the polarizations can not easily
be changed in a certain direction. Instead we use the fact that we implicitly are given
the errorfunction as a function of the voltages applied on the different channels of the
polarization controller,
f(Sml(Uo, Ul, UQ, Ug), SmQ(U(), Ul, UQ, Ug)) = f(U(), Ul, UQ, Ug). Thus we can obtain the
gradient for each set of voltages This gradient is estimated from the differential quotient
in this four dimensional voltage space by applying a voltage, slightly varied about AU; at
every channel of the controller one after another, according to

(V)i(U) = J(U+ <0""AAU[Z”’O)) — /) ;. i€{0.3} (2.27)
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2.4.3 Correspondence of the error function to the error in the polariza-
tion

In this section we will present results achieved with the final setup, that is already
implemented in the main experiment. First, we give an estimation what the value of the
error function means in the worst case for the deviation of the two input polarization
states from their setpoints. For small values of the error function, the biggest error for one
of the input polarizations is when the other state matches perfectly the setpoint. Let the
45°%-polarized input polarization (i.e. S2 = Sy5) be perfectly maintained passing the fiber,
i.e. Spa = Su5 = (0,1,0). The deviation of the first lightfield from its vertically polarized
input polarization (i.e. S; = Sy = (—1,0,0)) follows then from a rotation by an angle of
e around the axis defined by Sy5. It follows for the error function:

F(Sm1,Sm2) = (Smi1+ 1?4+ (Smi2—0)2 + (Sm13 — 0)% + (Sm2,1 — 0)% + (Sma2 — 1) + (Sima2,s — 0)

= (Smi1+ 1%+ 572n1,3 = (1 —cosd)? + (1 — cos?6) = 2 — 2cos 6,

where (Smi1 = —cos 0, Spmi2 =0, S?nm =1- S%M)

1
= ¢ = arccos(l — §f(sm1, Sm2))

The angle by which the two input polarizations are rotated when passing through the
fiber is smaller than € on the Poincaré sphere and smaller than %e in Jones space. This
means the overlap with the initial polarization state is better than COSQ(%E). We will use
these values as an upper bound for the error of the polarization control.

2.4.4 Minimizing the error function

The locally determined gradient V f can be used to minimize f by changing the voltage
U := (Uy, U1, Uz, Us) in small steps in the direction —V f. For a monotonous function this
procedure converges to the global minimum. This is realized in the following algorithm
that is implemented in a C-program:

e Open the shutter to send light of the first reference polarization through the fiber.

e Measure the output polarization. Measure the output polarization for a slightly var-
ied voltage U;+AU; at all channels, respectively (and reset it after the measurement).

e Close the shutter and repeat the procedure for the second reference polarization.
From these 10 polarization measurements we obtain f(U) and, according to sec.

vI(U)
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2.4 Algorithm to maintain polarization

e Change each of the voltages in the opposite direction of V f(U), multiplied with a
scaling factor 0 < D < 1, which defines the step Sizeﬂ

U — U - DVf(U) (2.30)

e [f the new voltage is smaller than 0 V or bigger than 5 V, it is reset to 1 V.

e If the errorfunction f(U) is smaller than a previously defined threshold €7, the gradi-
ent gets smaller and the convergence of the algorithm gets slower. Therefore, in this
regime we implemented a direct calculation of the optimal setting to reach f = 0:

— We want to directly reach the set values, i.e. minimize the error function within
the next step, where the change of the voltage will be D,AU:

f(U+DyAU) =0 (2.31)
— The error function can approximated by the first element of its Taylor series:
0= f(U+DyAU) = f(U)+ VU - D,AU (2.32)
— VU is approximated by the differential quotient (eqn. [2.27)).

3
0~ f(U)+ Z [f(U + 0, AAU&""" 0)) - £(U) D,(AU); (2.33)
i=0 v

— The change of the voltage will only be slightly different from the amount the
voltage is varied to get the differential quotient. We can suppose AU; = (AU);,
because the variation to estimate the gradient will be approximately equal to the
needed voltage change. It follows with f(U+(0, .., AU;,..,0))— f(U) =: Af;(U)

f(0)

9= _Z?:() Af,(T) (2.34)

— We have estimated a new scaling factor that is calculated from the last mea-
surement. Experimentally, additionally scaling down D, has given better results
(see table on next page).

e If the error function is below a second threshold €2 even smaller than €, given by
the resolution limit of the polarization control, the voltages are not changed at all,
as it is likely that the measured gradient points in the wrong direction (see fig. [2.17)).

3Too big steps lead to errors due to the approximation of the gradient only being valid in a very small
region around U
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Figure 2.17: Scheme of estimating the differential quotient of the errorfunction f for values
near to the setpoints in one dimension. Because the minimum could be passed by changing
the voltage, it is possible that the measured gradient points in the wrong direction and
the correction step will move away from the minimum. Therefore, within the region with
f < €2, no correction is performed. Within the first threshold (blue region), the calculated
scaling factor D, is used.

e repeat above procedure until the error function is below a third threshold fy.eqr for 5
consecutive iterations (€1 > fyrear > €2). This is done to exclude the function being
below the threshold because of a measurement error and stopping the polarization
control without stabilizing the birefringence.

e when reaching the condition to stop, the final voltage settings are stored into a file
and used as the start values for the next time the polarization stabilization algorithm
is used.

The optimal values of the three thresholds €1, fyreak, €2, the scaling factor D and the
step size AU; to estimate the differential quotient were determined experimentally.

2.5 Characterization of the polarization control setup

2.5.1 Parameter-set of the algorithm

The parameter set was optimized manually with respect to the convergence, the itera-
tion number and the stability. The following table shows the optimal values obtained from
experimental tests:
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INTENT VARIABLE| VALUE ‘ COMMENT

first threshold from which on resulting overlap with ini-
the error function is linearly | €; 0.01 tial value is better than
approximated 99.74%

second threshold from which resulting overlap with ini-
on the voltages are not cor- | € 0.0008 tial value is better than
rected 99.96%

The value t