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1 Motivation and structure of the study

Motivation Certainly, quantum mechanics is one of the most successful
physical theories. When quantum theory was developed during the first
decades of the 20th century, it step by step provided understanding of a
number of physical phenomena, which could not be explained by any of the
so called classical theories. The new theory was able to predict, for example,
the atomic line spectrum of hydrogen with astonishing accuracy. Paradoxes
like the one occuring in the famous double-slit experiment, could be resolved
by application of the new principles[1].
Until now, classical computation has been a fast developing field for several
decades. Today, we can perform complicated calculations in a few seconds on
handy notebooks. Only few decades ago, a whole house full of computers was
needed for the same exercise. Currently, however, computation approaches a
new frontier. Since the transistors needed to ever increase the computational
power, have become smaller and smaller, they eventually must reach a size,
in which quantum effects become important. Although there may be found
methods in the future, to handle these effects, at the latest zero will set an
lower bound on the size. Therefore it is important to find new paths, along
which computation can be further developed. ”Smaller and smaller still” will
not work forever.
The research on the field of modern optics has lead to a deep insight in optical
effects. Today, lasers can be driven stable at very high intensity. Therefore,
it is possible to examine the interaction of light with matter at high field
strength. These experiments have lead to the discovery of so called nonlin-
ear effects like parametric fluorescence[2].For this phenomenon also, quantum
mechanics provides a rather elegant description in the second quantized lan-
guage[3]
Nonlinear optics and classical computation are very important mosaics in the
field of quantum information. Quantum information emerged from the try
to find new methods of computation. Having developed for the last fourty
years, quantum information has become a rich and interesting realm of mod-
ern physics. It contains many fields of interest1. One of them deals with
the search for efficient bit encoding. In classical computation, one bit, car-
rying the information ”one” or ”zero”, may for example be represented by
”current” and ”no current”. Therefore, one bit always carries defined infor-
mation, either ”one” or ”zero”. In quantum information, one approach is to
use as bits photons with their two possible orthogonal polarizations. Even
more, one tries to encode the information in pairs of photons. It turns out

1A general treatment on the fundamentals of quantum information is provided in [4]
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that photon pairs can be prepared in highly correlated states, called entan-
gled states, in which they can carry more information per particle, than in
any classical case[5]. This motivates the search for efficient sources of entan-
gled photon pairs. The problem is actually twofold. First, one has to search
for an appropriate method to produce these pairs. Research has developed
many different methods of quite high efficiency, mainly based on paramet-
ric fluorescence. Second, one needs experimental tests, to prove the actual
existence of the desired correlations between the photons of a pair. Many
criteria have been proposed, from which experimental tests can be designed
to detect the produced entanglement.

Abstract On the one hand, this work deals with creation and detection of
entangled two-photon states. To produce entangled photon pairs, a very effi-
cient source was used, based on a particular kind of parametric fluorescence.
It shall be discussed, under what conditions entanglement will be produced.
The successful production is to be proven by application of several exper-
imental tests. On the other hand, the notion of decoherence of entangled
states will play an important role in course of this work. It shall be illus-
trated, how the correlations between the photons of a pair can be diminished
in a controlled way, to finally destroy entanglement.

Structure The structure of this work can be divided into three parts.
The first part contains a detailed description of the quantum mechanical foun-
dations, on which this study is based. The representation of physical states
as vectors in Hilbert space is central in this treatment. A definition of sep-
arability, and an identification of entangled states with non-separable states
is provided. Furthermore, the famous EPR paradox and the Bell inequalities
are discussed. Moreover, a treatment on density operators is included. The
first part is concluded by a synopsis of criteria, which were used to detect
entanglement of the states prepared in this study.
The second part shall serve as a detailed overview of the experimental con-
cepts on which this sudy is built up. The creation of correlated photon
pairs is described, where value is placed on typ I SPDC, since it was central
in this work. Next to that, an extensive description of state tomographies
is incorporated. Within, besides an explanation of the basic principles of
state tomography, the representation of two-photon polarization states is in-
troduced. As a special case of the class of projection measurements, the
projection on separable two-photon polarization states is discussed in great
detail. These projections form the basis of the tomographies carried out in
this study. The second part is completed by a treatment on the walk-off
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effects in uniaxial crystals.
A detailed presentation of the experiments performed in course of this work
is subject of the third part. To start with, the experimental setup, which
was used in this work, is described in great detail. Great importance was
attached to the preparation of entangled states in this implementation. Here-
after, the depiction of a correlation measurement on the two-photon state is
supplied. Subsequently, an experiment carried out to violate the CHSH in-
equality is outlined. In both experiments the results and their interpretation
are exposed as well. Subsequently, the state tomography performed to reveal
the form of the prepared state is presented. The application of entanglement
criteria to the prepared state is described. The third part is concluded with
the decoherence experiment, which was performed to show the connection
between temporal separation of the photon pairs and destruction of entan-
glement.

2 Foundations of quantum mechanics

2.1 State vector representation of quantum states

Physical states as vectors in Hilbert space In quantum theory, phys-
ical states are postulated to correspond to normalizable vectors |φ〉 on a
Hilbert space H[6]. Note that Hilbert space is a special case of linear vec-
tor spaces. The dimensionality of the space equals the number of physically
allowed distinct configurations of the described system. In the case of only
two possible configurations, one can describe the system in the orthonormal
basis {|a〉 , |b〉}. Since H is a vector space, also any normalized superposition

|φ〉 = α |a〉+ β |b〉 , |α|2 + |β|2 = 1 (1)

is an element of H and can therefore, according to quantum mechanics,
describe a physical state of the system2. Note that it is indeed possible to
prepare the system in such a superposition state. One important remark
must be made on the physical nature of such a state.
Consider a measureable quantity, like the energy E. Assume that the system
has energy E = Ea in the state |a〉, and energy E = Eb in the state |b〉. Now,
the system shall be prepared in a superposition state of the form (1). If one
measures the energy of the system, one will obtain E = Ea and E = Eb
with probabilities |α|2 and |β|2. That means, that although the state of the

2In course of this study, all state coefficients are complex numbers and meet the nor-
malization requirement
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system is still perfectly well defined, the outcome of measurements is not
deterministic!

Tensor product of Hilbert spaces Consider n non-interacting systems
Si, which may be represented by state vectors |Si〉 in Hilbert spaces HSi

. To
treat the systems Si as a single compound system S, one must specify a rule
how to assign a state vector to S. The notion of tensor products provides
such a rule[4]. The following property of the tensor product is fundamental
for the subsequent discussion.

Consider two Hilbert spaces H1,H2. Then the tensor product, denoted by
H1 ⊗H2, can be constructed. The following property of the tensor product
is fundamental for the subsequent discussion.
Let H1,H2 two Hilbert spaces, on which bases {|i1〉} , {|j2〉} can be estab-
lished. Then |i1〉 ⊗ |j2〉 is a basis of the tensor product H1 ⊗H2.
Therefore, there can be assigned a state vector to S, which is defined on the
multiple tensor product H1 ⊗H2 ⊗ ...⊗Hn, and takes the following form

|S〉 = |S1〉 ⊗ |S2〉 ⊗ ... |Sn〉 := |S1, S2, S3, ..., Sn〉 (2)

Separability and entanglement Note that it is not in general possible to
factorize the state |S〉 of a given compound system S into the form (2).This
motivates the following definition.

Consider a system S, built up of subsystems Si, in the state |S〉. |S〉 is
called separable, if it is possible to factorize |S〉 into a product of subsystem
states |Si〉. Otherwise it is called non-separable.

As an example of a non-separable state of a bipartite system, consider the
so called singlet state3

|φ〉 =
1√
2

(|a, b〉 − |b, a〉) (3)

The states |a〉 , |b〉 represent ”spin up” or ”spin down”, respectively. The
physical meaning of the state introduced in (3) is the following.

Consider a bipartite system in this state. Assume that a spin measurement
of one of the particles, performed in a chosen spatial direction, yields the

3More precisely, the spin singlet of a bipartite spin 1
2 system.
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result ”up”. Then one can predict with certainty the outcome of a spin mea-
surement of the other particle, carried out in the same direction. The other
particle will, independent of the chosen direction, always come out ”down”.

Therefore, the particles exhibit very strong correlations, and Erwin Schrödinger
introduced the new notion of entanglement[7] to describe such kind of corre-
lations. The meaning of entanglement can be explained in a prosaic way.

If in a compound system the subsystems may have interacted in the past,
the state of the compound system is in general not separable. If there ex-
ists or existed interaction between the subsystems, the subsystems cannot be
described independently of each other. They are entangled.

2.2 EPR paradox and Bell inequalities

The EPR paradox In 1935, EPR4 published a paper in which they sus-
pected the completeness of quantum theory. They queried whether quantum
theory could provide a full description of physical reality in nature. Their
reasoning can be explained, if one sets up from the previous spin experiment.
Consider again a measurement of spin in a certain direction. Quantum me-
chanics tells us only how to compute the probability to measure one of the
both particles to be ”spin up”. It negates the possibility, that this result may
be already uniquely predetermined and is only revealed in the measurement.
Nevertheless, if we measure the spin of one particle in some direction and
get a certain result, we know for sure that, for the other particle the oppo-
site result would have been found. This seemed somewhat paradox to EPR.
They were convinced that any complete physical theory must incorporate
the principles of reality and locality, which read, applied to the concerned
experiment[4]

1. principle of reality. Both particles of the considered bipartite systems
have intrinsic values of any measurable physical quantity, independent
of measurements.

2. principle of locality. A measurement on one particle can only influence
the intrinsic values of the other particle in a causally connected way.

EPR concluded that, to ensure completeness, quantum mechanics must in-
corporate According to EPR, to ensure completeness of quantum theory,

4Albert Einstein, Boris Podolsky and Nathan Rosen, [8]
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it must therefore incorporate so called hidden5 variables, from which these
intrinsic values can be computed.

Bell Inequalities Therefore, the search for such LHV6 theories subse-
quently became a central subject of research. Nevertheless, there was no
apparent method to check experimentally the principles of reality and local-
ity in this context. In 1964, however, John Bell found his famous theorem,
in which he proved the existence of inequalities, which have to be satisfied
within any LHV theory[9]. A further step was made in 1969, when Clauser,
Horne, Shimony and Holt proposed an experiment designed to ask nature for
a decision between quantum mechanics and the class of LHV theories[10].
The experiment is based on the so called CHSH inequality. This inequality
relates expectation values, which shall be obtained experimentally in a two-
photon polarization measurement. A violation of the CHSH inequality would
violate human intuition as well, since it would imply that either locality or
reality, if not both, must be rejected as fundamental features of nature. A
detailed description of this test is reserved for the experimental part of this
work.

2.3 Density operator representation of quantum states

The state of a physical system S is fully determined by the knowledge of the
density operator ρS. To represent systems by their density operator is often
useful and in some sense more practical than the representation by state
vectors. Even more, there actually exist situations in which it is impossible
to assign a state vector to S, which correctly represents the state of the
system. This system is then said to be in a mixed state. In such cases, only
the concept of density operators provides a full description of S. As already
mentioned, the notion of density operators is central in this study. This
motivates a detailed treatment on density operators, which reaches from a
compilation of the general properties, over the cases of pure and mixed states,
to an important discussion on quantum correlations.

General properties of density operators Density operators must fulfill
the following conditions.

1. Normalization: Tr(ρ) = 1

2. Hermiticity: ρij = (ρji)
∗

5not directly measurable
6local hidden variables
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3. Non-negative definiteness: ∀ |Ψ〉 : 〈Ψ |ρ |Ψ〉 ≥ 0

Pure states A physical system C is in a pure state, if it can be completely
described by a state vector |ΨC〉. In this case the density operator of C equals
the projector on this state.

ρC = |ΨC〉 〈ΨC | (4)

It follows that for pure states

Tr(ρ2) = Tr(ρ) = 1 (5)

An advantage of using the density operator for the description of a pure state
|ΨC〉, lies in the fact that it remains the same for states which differ from
|ΨC〉 only by a global phase factor eiφ. Global phases are unobservable and
have no physical relevance. Expectation values for measurements of some
observable A are then given by

Â = Tr(ρA) (6)

Mixed states A system S is said to be in a mixed state, if there exist a
convex set of {pi}, pi ≥ 0,

∑
pi = 1, such that

ρS =
∑

piρi (7)

where the ρi are projectors onto distinct, but not necessarily orthogonal
states. This expression is interpreted as follows. Assume an infinite number
of identical copies of S, which are non-interacting. This infinite number of
identical copies constitutes an ensemble in statistical physics. If a measure-
ment of the state of all members of the ensemble is performed, a fraction pi
will appear to be in state ρi. Note that the expression for expectation values
given in the pure case still holds for mixed states, but is now termed ensem-
ble average since the value is found by twofold averaging. The expectation
values in the states ρi must be computed and then be averaged with respect
to the weights {pi}.

Quantum correlations in entangled states The existence of quantum
correlations is one feature of entangled states, which may serve as a alter-
native definition of non-separability. Quantum correlations, which are often
refered to as coherences, shall be defined in this work as follows[6].

Quantum correlations or coherences are non-diagonal entries of the state
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operator ρ, which cannot be removed by basis changes.

To illustrate the meaning of this definition, consider first the linear superpo-
sition (1) and construct the density operator of this state. Note that (1) is a
pure state. Note further that any comlex number Z = A+ iB can be written

Z = z̃ · eiφ (8)

where z̃ :=
√
A2 +B2 and φ is an appropriate real phase. Then the density

operator ρ is readily computed to be

ρ = α̃2 · |a〉 〈a|+ β̃2 · |b〉 〈b|+ α̃β̃eiφ · |a〉 〈b|+ α̃β̃e−iφ · |b〉 〈a| (9)

There contribute two kinds of terms to ρ, which have very different mean-
ings. The first two terms on the right side of (8) are called populations7. The
last two terms display quantum interference effects. It is apparent that this
interference occurs only if the state of the system is in some superposition.
Note that the interference can be removed in the considered case by a change
of basis. One can choose a basis |c〉 , |d〉, where |c〉 = α |a〉+ β |b〉. The same
argument can be carried over to a general product state as follows. There
certainly exists a set of basis transformations, one defined on each of the
subspaces, such that the considered product state takes diagonal form in the
new product basis. Therefore the coherences have no invariant meaning in
the case of product states. They can always be removed by some appropriate
change of basis. Nevertheless, this is not possible for entangled states. Fol-
lowing the definition of separability, there exists no product basis to describe
entangled states. Therefore it is meaningful to speak of quantum correlations
in this cases, since they only occur within quantum theory.

2.4 Entanglement criteria

To prove that a system was prepared in an entangled state, several criteria
can be used. On the one hand, there exist criteria based on direct analysis
of the density operator of the system. To apply such kind of criterion, the
density operator of the system must be measured, what is done by use of
so called state tomographies. On the other hand, the class of correlations
measurements provide a method to detect quantum correlations and thus
the non-separability of the state without direct knowledge of the density
operator. As to be shown, measures of the quality of the produced state are
available as well.

7recall the interpretation of the coefficients α̃2 and β̃2
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Correlations measurements As already discussed, entangled states show
particularly strong correlations, independent of the basis in which the anal-
ysis is carried out. It follows that if measurements are performed in a given
basis and correlations are found, the same measurements can be repeated
in different bases to check if the correlations stay present. This procedure
therefore serves as a first criterion of separability and will be took up again
in the experimental part of this work.

Peres-Horodecki criterion Since this study is only concerned with two-
photon states, only bipartite systems are considered. In this case the criterion
is necessary and sufficient[11]. It is based on positive partial transpose(PPT).
Before the criterion is posed, the underlying mathematical notions are re-
viewed. In a given product basis, every bipartite density operator can be
written

ρ =
∑
i,j

∑
k,l

ρij,kl |i〉 〈j| ⊗ |k〉 〈l| (10)

Partial transposition is defined as the transposition of ρ with respect to one
subsystem. For example, ρTa is defined

ρTa =
∑
i,j

∑
k,l

ρji,kl |i〉 〈j| ⊗ |k〉 〈l| (11)

PPT then means that the transposition with respect to one subsystem is
positive semidefinite. Peres and Horodecki proved the following.

A bipartite state ρ is separable, if and only if ρ is PPT.

This is a very strong criterion,since it provides a complete characterization
of bipartite entanglement.

Fidelity To determine the overlap between the measured state, ρ, and a
theoretical predicted state, |Ψ〉, the fidelity is a good criterion. It is defined

F = 〈Ψ|ρ|Ψ〉 (12)

Purity The purity p is defined under the assumption, that in the experi-
ment the state

ρ = p |Ψ〉 〈Ψ|+ (1− p)σ (13)

was prepared, where |Ψ〉 is the desired state and σ represents some noise.
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Measure of mixture The trace of ρ2 is a measure of mixture. It provides
a criterion to determine to what extend the prepared states fails to be pure.
However, it tells nothing about entanglement.

3 Basic experimental concepts

3.1 Creation of correlated photon pairs in SPDC

In the future, entangled two-photon polarization states may be used for quan-
tum information. Therefore, it is a topic of current research to develop high
efficient sources of correlated photon pairs. One obtains highly correlated
pairs of particles in decays. This is because such decays obey a number of
conservation laws. It is thus natural, to look for decays in which photon pairs
are produced. The most appropriate decay by far is spontaneous parametric
down-conversion (SPDC). Provided that certain requirements are met, pho-
tons can decay in dielectrics into a pair of secondary photons of lower energy.
In the following, these requirements are discussed in some depth.

Nonlinear media Consider a dielectric medium which is exposed to a
laser beam. The electric field propagating with the laser beam leads to a
polarization of the dielectric[2]. Since SPDC appears to be a nonlinear effect,
it can occur only if the second-order contribution to the polarization of the
medium is nonzero. This implies a finite second-order suszeptibility of the
medium and sufficiently high field strength. Media which possess nonzero
second-order suszeptibility, are called nonlinear.

Conservation of energy Energy conservation implies, that the energy
of the produced photon pair equals the energy of the disintegrated photon.
Therefore,

ω0 = ω1 + ω2 (14)

Figure 1: energy conservation
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Phase matching SPDC can only be observed if the phases between the
interacting fields8 are matched. Otherwise, down-conversion at any place in
the medium will interfere destructively with down-conversion at some other
place. That means that there does no SPDC will happen at all. The phase
matching condition can be written in the form of the wave vectors

~k0 = ~k1 + ~k2 (15)

There exist several possibilities to achieve phase matching[3]. In this study,
Beta-barium borate, which is a negative uniaxial crystal which exhibits strong
birefringence, is used. In that case, phase matching is ensured if the pump
photon is extraordinary polarized and the downconversion photons emerge
either both ordinary polarized (type I SPDC) or orthogonal to each other
(type II SPDC). Typ I phase matching can be obtained over quite broad
spectral range and is therefore easier to realize than type II[3]. Therefore,
the former possibility was chosen in this study. The implementation used
will be described in detail in the experimental part of this work.

3.2 State tomography of two-photon polarization states

Consider a collection of n photons constituting a physical system, which is
prepared in some polarization state Φ. If one aims at detecting this state,
one certainly needs n polarization analyzers. A rule is required which defines
what measurements must be performed. One the one hand, this rule should
be efficient in the sense that the number of measurements be as small as pos-
sible. On the other hand, it should be simple with respect to the calculations,
which are eventually needed to reconstruct the state from the results of the
measurements. There exist such rules called state tomographies, based on a
complete set of projective measurements, which are applicable to any number
of photons. In this study, however, only two-photon states are considered9.
The state tomographies in this work are carried out according to the method
proposed in []. The idea is to reconstruct the density operator from the re-
sults of a complete set of 16 projective measurements, which constitute the
components (nν) of a so called polarization vector of the system. A set of

16 matrices
(
M̂µ

)
, based on tensor products of the complete set of pauli

matrices, is established such that the density operator ρ is given in terms

of the matrizes
(
M̂ε · nε

)
. To apply this method, one first needs to know

8Interactions between pump field and fields of the down-conversion photons
9The discussion carries over directly to the description of any number of photons in the

system
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how to represent such two-photon polarization states quantum-mechanically.
Furthermore, information is needed on how to set up any of the projections
experimentally by use of optical devices. This subsection shall provide a
general treatment on representation of two-photon polarization states. This
is followed by a quantum-mechanical description of projections on separable
two-photon polarization states. Subsequently, the polarization states to be
prepared in the experiments are used as an example to show, how such a
projection measurement works.

3.2.1 Two-photon polarization states

Single photon polarization Photon polarization states may be described
on a two-dimensional Hilbert space H by vectors

|Ψ〉 = h |H〉+ v |V 〉 (16)

where |H〉 and |V 〉 characterize horizontally and vertically polarized photons,
respectively. The orientation of the H-axis in space is arbitrary.

Figure 2: arbitrary choice of polarization basis

It turns out that one can describe the polarization in terms of linear and
circular polarized states, dependent on the basis chosen. The most convenient
bases, which are also central in this work, are the following.

1. HV linear {|H〉 , |V 〉}

2. DD̄ linear
{

1√
2

(|H〉+ |V 〉) , 1√
2

(|H〉 − |V 〉)
}

3. RL circular
{

1√
2

(|H〉 − i |V 〉) , 1√
2

(|H〉+ i |V 〉)
}
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Two-photon polarization Since this study is concerned with the creation
of photon pairs, it is important to define the representation of two-photon po-
larization states. Consistent with previous discussion, any two-photon state
can be expressed in the tensor product H⊗H in terms of the basis vectors
{|HH〉 , |HV 〉 , |V H〉 , |V V 〉}, where the first and second entries correspond
to photon one and two, respectively. The most general state is given by

|Ψ〉 = a |HH〉+ b |HV 〉+ c |V H〉+ d |V V 〉 , (17)

3.2.2 Projections on separable two-photon polarization states

Consider a two-photon system in state |Ψ〉. Then polarization projections
consist of two polarization analyzers, PA. Any photon passing such a PA will
be detected behind the PA. The PA are placed such that one photon of the
systems wents to the first PA and the other photon goes to the second PA.
Both photons are assumed to reach the detectors simultaneously, if they have
passed the PA. Now, both PA are orientated such that only photons with a
certain polarizations can pass and thus be detected. That means that the
both PA together can form a projection onto any state of the form

|ξ〉 = p1 |p1〉 ⊗ p2 |p2〉 (18)

where |pi〉 corresponds to the single state of photons which can pass the PA
number i, and the pi must obey the normalization condition.

Assume now that the detection is such that only if both photons of a
system pass their PA, this is recorded by the detectors. Such an recording
event shall be called coincidence. Consider further that an large number N
of systems in state |Ψ〉 is sent to the PA. The number of coincidences C can
be calculated as a fraction of N to be

C = N · | 〈ξ|Ψ〉 |2 (19)

3.2.3 Coincidences in projection measurements

It is important to know what value of C one expects in a certain projection
measurement, if one makes the assumption that the system is described by
the state vector |Ψ〉. This motivates the following general calculation of
components of the polarization vector. Each projection can be written as a
normalized vector

|ξ〉 =
(
aeiα |H〉+ beiβ |V 〉

)
⊗
(
ceiγ |H〉+ deiδ |V 〉

)
(20)

Now one computes the absolute square of the scalar product of this projec-
tion state with any two-photon polarization state |Ψ〉 one can think of to
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obtain the quantum-mechanical predictions for the coincidences. However,
in this work only states of the following form need to be considered due to
experimental circumstances.

1. |Ψ〉 = 1√
2

(
|HH〉+ eiφ |V V 〉

)
2. |Ψ〉 = |HH〉

3. |Ψ〉 = |V V 〉

The calculations in each of the above cases lead to the following predic-
tions. Set ε = C

N
.

1. ε = (ac−bd)2

2
+ 2abcd cos2(Θ

2
)

2. ε = (ac)2

3. ε = (bd)2

In the first expression, Θ := α+ γ − β − δ− φ. To illustrate this expression,
consider the projection onto the state |DD〉, which may be denoted by DD.
In this case (a = b = c = d = 1√

2
), and (α = γ = β = δ = 0). Therefore one

obtains ε = cos2 Θ. From this relations, provided that a state of the first kind
was really prepared, one can determine the phase φ in the state by only one
projection measurement. It appears that for φ = 0 one expects maximum
coincidences in the DD projection, and no coincidences at all for φ = π.

Figure 3: cincidences prediction in DD projection measurement
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3.3 Compensation of walk-off effects in uniaxial crys-
tals

3.3.1 Dispersion and birefringence

Consider a photon wavepacket, which travels through a uniaxial crystal. The
birefringent nature of the crystal together with dispersion may lead to relative
walk-off between photons which differ in energy, polarization and proagation
direction.

Dispersion of the group velocity The refractive index n in dielectric
media is a rather complicated function of the wavelength, which can be ap-
proximated by the Sellmeier equations n = n(λ)10[2]. The group velocity is
defined[13]

vgroup :=
dω

dk
(21)

Note that k = 2π
λ

. Therefore, the group velocity depends on the refractive
index. Accordingly, low- and high-energy photons travel at different speed in
the medium. This can be illustrated in an suggestive way, if one assumes a
wavepacket with finite bandwidth. Due to dispersion, the packet will spread
when it moves through the medium (Figure 1).

Figure 4: spread of wave packet

10note that λ in this context denotes the wavelength in vacuum
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The group velocity can also be expressed in terms of the wavelength and
the refractive index.

1

vgroup
=

1

c
(1− λ · dn

dλ
) (22)

Birefringence of uniaxial crystals A crystal is called uniaxial crystal if
it possesses a particular direction, Z, which is called the optical axis of the
crystal. Consider first a light beam which travels through such a crystal.
The direction of propagation, ~K, together with the optical axis sets up a
plane, which is called principal plane. Then, photons which are polarized in
this plane, are called extra-ordinary or simply e-polarized. Photons polarized
normal to the plane are said to be ordinary or o-polarized (Figure 2).

Figure 5: definition of o- and e-polarization[3]

Figure 6: index ellipsoid of uniaxial crystal[3]

The optical axis is special in the following sense. While the refractive
index of o-light, no, does not depend on the propagation direction, the re-
fractive index of e-light, ne, does. This effect is called birefringence. It is
explained by the anisotropy of the crystal, which leads to a tensorial nature
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of the refractive index. The dependence of ne on the angle between optical
axis and propagation direction, Θ, can be written

1

(ne)2
=

sin2(Θ)

ne2
+

cos2(Θ)

no2
(23)

where ne must not be confused with ne, which is given by ne := ne(π
2
)[12].

The birefringence is defined

∆n := ne − no (24)

and the crystal is said to be positive, if ∆n > 0 holds, and negative otherwise.
Note that the equation for ne is of elliptical form. The refractive index of
the uniaxial crystal can therefore be represented by an ellipsoid (Figure 3).
Note that cuts of the ellipsoid perpendicular to the optical axis are circles,
due to the fact that the refractive index for o-light does not depend on the
direction of propagation.

3.3.2 Description of walk-off effects

Consider a beam of photons containing a fraction of e- and a fraction of o-
polarized photons. If this beam travels through a birefringent crystal, three
effects will occur. These are spatial and temporal separation on the one hand,
and phase shift on the other hand. In the following, only normal incidence on
the crystal surface is considered. This is a loss of generality,since refraction
processes are not being accounted for, which necessarily occur in the case of
skew incidence. It turns out, however, that in the experiments of this study
angles of incidence can be considered small, in the sense that refraction does
not significantly affect the walk-off effects.

spatial separation Dependent on the propagation direction, the e-polarized
photons are deflected from the o-polarized photons by an angle γ, which is
given by

γ = ± arctan[(
no
ne

)2 · tan Θ]∓Θ (25)

where the upper and lower sign refer to negative and positive crystals, re-
spectively[NIKOGY]. This accumulates to a spatial separation at the output
of the crystal, ∆l = l · tan γ. It turns out that this effect is negligible in the
performed experiments and was mentioned for completeness.
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Temporal separation Because the refractive indices for e- and o-light
differ by ∆n, e-photon and o-photon travel at different speed in the crys-
tal. This results in a temporal separation between the both. The temporal
separation per crystal length l in the case of normal incidence is equal to

∆t

l
=

1

vo
−
√

1 + tan γ

ve
(26)

where vo = vgroup(no, λ) and ve = vgroup(n
e, λ). Temporal separation is a

critical effect, since it can lead to decoherence of the entangled two-photon
states. This will be discussed in detail in due course.

Phase shift The phase velocity of a wave in the crystal is equal to

vphase =
c

n
(27)

and is thus different for o- and e-waves. Therefore, a o-polarized wave will
suffer a phase shift ∆φ relative to a e-polarized wave, which is found to be

∆φ =
2πl

λ
· (no − ne ·

√
1 + tan γ) (28)

This effect affects only the relative phase in the states. It can actually be
used to adjust the phase in the states in a simple way, as explained in

3.3.3 Compensation of temporal separation

Consider two negative uniaxial BBO crystals in the arrangement shown in
(Figure 7). Assume that a H-polarized and a V-polarized photon, of the same
energy, λ = λ0, enter the crystals simultaneously. Assume further that both
photons undergo SPDC in type I phase matching. The goal is to compute
the time interval ∆t between the arrival times of the down-converted photon
pairs at the output of the second crystal, within a simple model.

Suppose that the SPDC is degenerated in the sense that for the wave-
length of the down-converted photons λ = 2λ0. Additionally, the appearing
angles may be considered small, in the sense that all refraction effects are
negligible. The photons may all travel along straight lines parallel to the
normal incidence direction. In particular, the walk-off angle γ = 0. We may
treat the H-photon first. The H-photon is ordinary polarized in the first
crystal and travels therefore at speed vo1 = vgroup(no, λ0). It is extraor-
dinary polarized in the second crystal and travels at ve1 = vgroup(ne, λ0).
After down-conversion has occured, the down-converted V-pair travels at
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Figure 7: temporal separation in typ I down-conversion

vo2 = vgroup(no, 2λ0). Analogue reasoning goes for the V-photon. Using the
illustration, one obtains for the time interval ∆t the following expression.

∆t = d · ( 1

vo1
+

1

vo2
− 1

ve1
− 1

ve2
) + (x2 − x1) · ( 1

ve1
− 1

v02

) (29)

It may be assumed that SPDC occurs equally likely on each point in the
crystal. Then one finds the average time interval ∆̄t to be

∆̄t = ε · d (30)

where ε := 1
vo1
− 1

ve2
. This is not zero in general. Therefore the temporal walk-

off leads to an average arrival delay between H-pairs and V-pairs. This can be
compensated in a straightforward manner. One may place another uniaxial
crystal into the path of the photons, such that the temporal separation in this
so called compensation crystal is equal to ∆̄tcomp = ∆̄t. To avoid SPDC in
the compensation crystal, one has to ensure that the phases are not matched.
This is achieved in this example if one uses negative uniaxial crystals such as
YVO4. We will come back to this compensation problem in the experimental
part.

4 Presentation of the Experiments

The experimental work can be devided in three stages. First, in a Typ I
SPDC setup, entangled two-photon states of the form |Ψ〉 = 1√

2

(
|HH〉+ eiφ |V V 〉

)
are prepared. Second, several measurements are performed to prove the ac-
tual production of entanglement. Third, it is shown that decoherence of the
entangled state can be obtained by temporal separation.
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4.1 Preparation of maximally entangled states

For the experiments of this study, a readily implemented setup was used,
which is phase-matched for TYP I SPDC. This subsection shows how the
components of the setup contribute to the preparation of maximally entan-
gled states.

Figure 8: experimental setup

4.1.1 SPDC source

Laser diode As a source of polarized photons, a laser diode is used which
produces H-polarized11 photons at wavelength λ0 = 405nm with a bandwidth
of 3nm. The coherence length lc of this laser diode was not measured directly
but is only of order of a few hundred µm. Thus, although it is not a pulsed
laser, the diode can be considered as pulsed to a good approximation. Lenses
are used to properly collimate the beam.

BBO crystals As medium for SPDC to occur, two BBO crystals of thick-
ness d = 0.7mm are exposed to the laser beam such that one optical axis
of the crystals is orientated in horizontal(H) direction and the other axis is

11per definition
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orientated vertically(V). Due to phase-matching conditions, SPDC can now
only occur in the V-orientated crystal. Therefore, one only produces pairs of
H-polarized photons.

Half-wave plate A half-wave plate, HWP, is then placed directly behind
the aperture of the laser such that it rotates the polarization of the beam
from H to D. Therefore, SPDC will now occur in both crstals with equal
probability, because the beam now behaves in the crystals like a mixture of
an equal number of H- and V-polarized photons.

Spatial distribution of the down-conversion photons The implemen-
tation is such that the downconversion photons emerge with equal energy.
Due to birefringence of the BBO crystals and phase-matching conditions, the
down-conversion photons come out on cones with circular cross-section.

Figure 9: Cone of down-converted photons[3]

The cones are widened up a bit due to the finite bandwidth of the pump
photons. There will appear two cones, one from each crystal, which can made
overlap by adjusting the relative orientation of the crystals. Note that due
to momentum conservation, the two photons from a certain decay come out
on opposite points on the cones.

Collection of correlated photon pairs To collect correlated photon
pairs, one has to focus two fiber couplers onto points on the cones, which are
directly opposite. Otherwise, two simultaneously collected photons would
not be correlated, since they emerged from different decays. The adjustment
of the couplers has to be done very precisely. It is very important that both
couplers ”see” the same amount of down-conversion light from both crystals.
A dysbalance will lead to reduction of the correlations.
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Compensation The idea of this experiment is that entanglement arises
from the indistinguishability of HH and V V pairs prior to the polariza-
tion measurement. If it is not possible to predict a priori, from which
crystal a certain photon pair has emerged, for example by measuring ar-
rival times of the pairs on the crystal output, then a state of the form
|Ψ〉 = 1√

2

(
|HH〉+ eiφ |V V 〉

)
is always prepared. Until now, the produced

two-photon polarization states are not in general entangled. Birefringence
and dispersion give rise to the effect of temporal separation. If the temporal
separation is larger than the coherence time of the laser diode, there would be
no phase relation between the photon pairs and this leads to distinguishabil-
ity and therefore destroys the entanglement of the state. To ensure, that the
photon pairs keep being indistinguishable, the concept of compensation has
to be applied. With the Sellmeier equations for BBO, one obtains the average
temporal separation at the crystal output ∆̄t = 5 · 10−13s. If one assumes a
coherence length of the laser diode of about 100µm, this would imply a co-
herence time of tc = lc

c
= 10−12s. The temporal separation is of order of the

coherence length and should therefore be compensated. The compensation
shall be achieved by an additional compensation crystal. YVO4 was chosen
for several reasons. It exhibits strong birefringence, and needs therefore not
to be very thick. Since it is positive uniaxial, there will not occur SPDC in
the crystal. The required thickness is obtained to be dcomp = 0.34mm. Since
100µm is considered as a lower bound on the coherence length, a YVO4
crystal of thickness 0.20mm is used. If it is possible to prepare maximally
entangled states in this setup, this would imply a higher lower bound on the
coherence length. This question will be answered in due course.

Phase adjustment In this work, the state |Ψ+〉 = 1√
2

(|HH〉+ |V V 〉) shall
be produced. The total relative phase shifts between H- and V-light in the
optical components is not zero in general as it must to obtain the state |Ψ+〉.
Nevertheless, it can be adjusted to zero by tilting the compensation crystal
by a small amount.The length of the crystal in the beam direction increases
and therefore the relative phase changes.

4.1.2 Concepts of polarization measurement

Coincidence counts It was already mentioned that two fiber couplers
are set on opposite points on the cones. The fibers tranfer the signals of
incoming photons to an avalanche photo diode. The signals are subsequently
lead to a counter. The counter returns the single rates on each PA. All
measurements in this study are based on coincidence counts. Coincidence is
defined in this experiment by a time interval δτ = 20ns. If both detectors
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are hit by photons during this time interval, the counter treats this event
as a coincidence. Since the time interval is finite, the measurement may be
disturbed by accidental coincidences. A estimate on the influence of such
accidental cacounts is needed to understand the significance of the obtained
results. This estimate is given in terms of the single count rates (n1, n2)as
follows.

ca = δτ · n1 · n2 (31)

In the concerned experiments, the coincidence rates are about 1000/sec and
the single counts are about 30000/sec. Therefore one obtains ca ≈ 18 which
is negligible.

Projection measurements The PA in the performed experiments consist
of a quarter-wave plate, QWP, and a polarizer P. A quarter wave plate can
transform linear polarization into circular polarization and vice-versa. To
project in the right way on the desired states, QWP and P must be positioned
like it is illustrated in (figure). In the following table, settings of the devices
for the needed projection measurements are presented. To be consistent, the
axis of the QWP and the defined H-direction are set to angle zero.

Figure 10: important polarization projections

4.2 Experimental implementation of polarization mea-
surements

4.2.1 Correlations measurement

This experiment is performed to show the existence of non-classical correla-
tions between the two photons of a pair. In the first part of the experiment,
both polarizers are set to H. One polarizer is then subsequently rotated in
steps of ten degrees, and the coincidences are recorded for each setting. That
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means that the analysis is carried out in the HV basis. A sinusoidal depen-
dence of the coincidences is observed, what proves the existence of corre-
lations between the photons of a pair. A measure for the quality of these
correlations is provided by the visibility, which in this case is defined as the
contrast of the sinusoidal curve

v =
nmax − nmin
nmax + nmin

(32)

The expression for the uncertainty in the visibility due to Poisson fluctuations
reads

∆v2 =
4n1ne

(n1 + n2)3
(33)

For the measurement, one obtains v = (94.2 ± 0.7) and therefore very
strong correlations.That shows actually, that both photons of a pair always
have the same polarization. However, this does not prove any non-classical
behaviour, since the same result would have been obtained, if the photon
pairs were in the mixed state 1

2
(|HH〉 〈HH|+ |V V 〈V V |) .

Therefore, the measurement was repeated, but this time one polarizer was
held fixed at D, therefore the measurement was now performed in DD̄ basis.
Again, the same behaviour was observed, with comparable visibility, v =
(98.5 ± 0.3)%. Note that for the mixture suggested above, one would have
recorded a flat curve. This invariance with respect to basis change reflects
the existence of non-classical correlations in the state of the photon pair.
The measured curves are displayed below. Note that the integration time
was 2.0sec.

It is possible to extract from the diagram that the relative phase φ was
not equal to zero in this measurement, if one recalls the predictions for co-
incidences obtained in (2.2). Analysation angle equal to π

4
corresponds to

a DD projection in the blue case. If the relative phase is equal to zero one
expects maximum coincidences for this projection. But the result shows
nearly a minimum for that setting. With the expressions derived one finds
approximately φ ≈ 0.83π.

4.2.2 Violation of the CHSH inequality

The CHSH inequality This deduction follows the treatment in [4]. As-
sume an entangled two-photon polarization state which shall be measured
by projection measurements. Assume further that each of the PA can mea-
sure on ”its” photon two physical quantities (A,B) and (C,D), respectively,
which can take values (±1). Consider the quantity S = AC+BC+BD−AD.
Then, S = ±2. Prior to the measurements, the bipartite system may be in
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Figure 11: correlations measurement in HV (black) and DD̄(blue)

a state where A = a,B = b, C = c,D = d with probability p(a, b, c, d). This
is the principle of reality, and the p(a, b, c, d) can be associated with hidden
variables. Furthermore, it is assumed that both PA measure randomly one
of the two quantities, without influencing each other, so that the principle of
locality is enforced as well. Under these assumptions, the CHSH inequality
is obtained by simple considerations on mean values E of the contributions
to S. CHSH showed that within any LHV theory,

|S| = |EAC + EBC + EBD − EAD| ≤ 2 (34)

holds. What is more, CHSH were able to predict from the previously intro-
duced quantum-mechanical principles, that there exist measurements, which
violate the CHSH inequality by a factor of

√
2, if performed on maximally

entangled states of such kind as the |Ψ+〉.

Measurement settings The four quantities are single photon polarization
bases, which are shifted by π8. The value +1 corresponds to cases in which
coincidences appear, and −1 corresponds to no coincidences. The different
measurements of the left and right PA are presented below in (figure 12).

Results The measurement was performed after the phase was adjusted.
The measurement results were displayed in (figure 13)..

The mean values to be computed are all of the same form. Consider for
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example the case EAC .

EAC =
n0/22.5 − n90/22.5 − n0/112.5 + n90/112.5

n0/22.5 + n90/22.5 + n0/112.5 + n90/112.5

(35)

Very important in this case is a discussion on uncertainties. Again, it is
assumed that the coincidence rates are Poisson distributed. One obtains

(∆S)2 = (∆EAC)2 + (∆EBC)2 + (∆EAD)2 + (∆EBD)2 (36)

(∆EAC)2 =
1− E2

AC

n0/22.5 + n90/22.5 + n0/112.5 + n90/112.5

(37)

The same goes for the other mean value uncertainties.
The evaluation of the measurement results yields S = 2.54± 0.04. That

means that the CHSH inequality was violated by well above thirteen standard
deviations. This serves as a proof that nature cannot be completely described
on grounds of reality and locality. The result of the experiment provides
strong evidence that qauntum theory describes nature very well and is a
dead end for all LHV theories.

Figure 12: CHSH settings

4.2.3 State Tomography

The state tomographies in this work are based on the method proposed
in[14]. The 16 projection measurements set up a polarization vector |P 〉. It
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Figure 13: CHSH results

was possible in the experiments to prepare a |Ψ+〉 state with high accuracy.
Consider first the reconstruction of the density operator.

Figure 14: Tomography of Psi+ state

The fidelity in this case is equal to F = 0.98. Furthermore, Tr(ρ2) = 0.96.

The Peres-Horodecki could have also been checked in this work.It was
omitted for several reasons. First of all, the reconstruction of the density
operator is not necessarily positive semi-definite. Therefore, it could have
negative eigenvalues. This diminishes the meaning of a probable violation of
the PPT criterion. This problem could be solved by performing a maximum
likelihood approximation. This is an algorithm which fits reconstructed den-
sity operators on physical operators if needed. But this approximation was
not part of this study. It is emphasized, however, that the PPT criterion
provides an excellent test of entanglement, since it is necessary and sufficient
in the bipartite case.

4.3 Induced decoherence by temporal separation

Setting up from the discussion on compensation, one can design an experi-
ment to show, that the coherence decreases with increasing temporal separa-
tion of the H- and V-pairs. Starting from the phase adjusted |Ψ+〉 state, first
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the compensation crystal is rotated by an angle of ninety degrees. One then
expects decreasing of the coherences, because the compensation effect now
goes the other way round, leading rather to an amplification of the temporal
separation caused by the BBO crystals. This is because a rotation by ninety
degrees exchanges the roles of H- and V- light in the compensation crystal.

Figure 15: Tomography after rotation of the YVO4 crystal

Indeed a small decreasing of the coherences is observed. The fidelity
has droppes to F = 0.87. Tr(ρ2) = 0.81. As a next step, the 0.20mm
compensation crystal is replaced by a 0.60mm, otherwise identical YVO4
crystal in original compensation orientation. A further diminishing of the
coherences is expected, since the separation is now over-compensated by a
factor of two.

Figure 16: Tomography after exchange of the 0.20 YVO with a 0.60 YVO in
compensation orientation

As predicted, a significant reduction of the coherences appears. The fi-
delity is only F = 0.80, and Tr(ρ2) = 0.70, which shows a non-negligible
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amount of mixture in the state. To fully transform the state into a decoher-
ent mixture of H- and V-pairs the 0.60mm is rotated in a last measurement
by ninety degrees. Now, significant evidence of a mixed state is expected,
since the previous results indicate that the coherence length of the laser diode
does not significantly exceed the scale of several hundred microns. Really,
the state tomography showed a very good result.

Figure 17: Decompensation has lead to decoherence

The coherence has almost vanished. The fidelity is only F = 0.66, and
Tr(ρ2) = 0.60. Therefore, it was possible to show, that the quantum cor-
relations can be contiuously diminished, by controlled change of the com-
pensation. Now, from the last result one can conclude an upper bound on
the coherence length of the laser diode. The separation due to the BBO
crystals, which equals ∆̄t = 5 · 10−13s, is amplified by additional separation
in 0.60mm YVO4. The additional separation is roundabout 8.8 · 10−13s, so
that the total separation is 1.4 · 10−12s. It follows that the coherence length
is certainly less than 420microns. The coherence length is therefore bounded,
within this simple model, between 100 and 400 microns.
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5 Conclusion

In this study, entangled two-photon polarization states were efficiently pro-
duced in a special configuration of Typ I SPDC. The efficient production is
important with respect to communication. It is necessary in communication
to transmit information at a high rate, so one of the cornerstones of quantum
information is the search for very efficient sources, like SPDC has proved to
be one of them. The detection of entangled states was a further part of this
work. Several entanglement criteria and their application in experiment were
explained and used to test experimentally the quality of the prepared states.
It was possible to prove non-classical correlations in the entangled states.
The CHSH inequality was violated. This is a strong evidence of non-locality
and/or non-reality of nature. By reconstruction of the density operator, ad-
ditional proof of the production of the desired entangled state was provided.
Recall, however, that the used method of state tomography was not perfectly
rigorous, since the obtained density operators are not positiv semidefinite per
construction. It shown to be possible to change the relative phase by con-
trolling the relative phase shift between photons of different polarization in
birefringent crystals. Last but not least, decoherence of the entangled state
could be successfully induced by temporal separation. It was shown, starting
from a maximally entangled state, that the coherence drops with increas-
ing temporal separation. This result underlined the importance of precise
compensation in such setups. To summarize the course of the study in one
sentence, a deep insight in the production and detection of entangled states
was obtained as well as knowledge about the phenomenon of decoherence.
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6 Appendix

6.1 Error in Poisson distributed quantities

Error calculations The coincidence counts measured in course of this
study can be considered poisson distributed. That implies, that one cannot
predict with certainty the coincidence counts in a given experiments, even if
all setup configurations are perfectly specified. The counts are uncertain by
an amount yet to be specified.
To draw meaningful conclusions from any performed experiment, error cal-
culations are needed to reveal the degree of uncertainty in the value of any
physical quantity deduced from the measured results. In this study, for ex-
ample, it is intended to show a significant violation of the CHSH inequality
S ≤ 2. Assume that one measures the result S = 2.15 > 2 with uncertainty
∆S = ±0.25. In this case the validity of the CHSH inequality basically can
not be abandoned. Significance of the result in this case would require an
uncertainty ∆S < 0.15.
The conventional procedure to find the uncertainty of any quantity Q de-
duced form measurement results qi, is called error propagation. One deter-
mines the dependence of Q on the qi, and specifies the uncertainty ∆qi in
the values qi. Thus the uncertainty of Q can be written

(∆Q)2 =
∑
k

(
∂Q

∂qk

)2

· (∆qk)2 (38)

Application to Poisson distribution In course of this study, the mea-
surements are based on coincidence counts n, which can be considered Pois-
son distributed. In this case, one specifies the uncertainty ∆n of the coinci-
dence counts to be

∆ni =
√
ni. (39)

With the general expression for the uncertainty of a quantity Q, this uncer-
tainty becomes

(∆Q)2 =
∑
k

(
∂Q

∂qk

)2

·∆qk (40)

This relation is based to all error considerations in course of this study.
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6.2 Optical properties of the used uniaxial crystals

6.2.1 YVO4 crystals

Crystal class positive uniaxial

Sellmeier equations

1. n2
o = 3.77834 + 0.069736

λ2−0.04724
− 0.0108133λ2

2. n2
e = 4.59909 + 0.110534

λ2−0.04813
− 0.01226762

Refractive index at used wavelength

1. no(405nm) = 2.09

2. ne(405nm) = 2.36

6.2.2 BBO crystals

Crystal class negative uniaxial

Sellmeier equations

1. n2
o = 2.7359 + 0.01878

λ2−0.01822
− 0.01354λ2

2. n2
e = 2.3753 + 00.01224

λ2−0.01667
− 0.015162

Refractive index at used wavelength

1. no(405nm) = 1.69

2. ne(405nm) = 1.57

3. ne(810nm) = 1.66

4. ne(810nm) = 1.54
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6.3 Pictures of the setup
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[6] Cohen-Tanoudji, Diu, Laloë, Reid Hemley, Ostrowsky, Ostrowsky
Quantum mechanics 2
Wiley, 1977

[7] Erwin Schrödinger
”Die gegenwärtige Situation in der Quantenmechanik”
Die Naturwissenschaften, 23, (807-812, 823-828, 844-849), 1935

[8] Einstein, Podolsky, Rosen
Can Quantum-mechanical Description of Physical Reality be Considered Com-
plete? Phys.Rev.47, 777, 1935

[9] Bell
On the Einstein-Podolsky-Rosen paradox
Physics 1, 195-200, 1964

35



[10] Clauser, Horne, Shimony, Holt
Proposed experiment to test local hidden-variable theories
Phys.Rev.Lett. 23, 15, 1969

[11] Ghne, Toth
Entanglement detection
arXiv:0811.2803v1 [quant-ph], 2008

[12] Dmitriev, Gurzadyan, Nikogosyan
Handbook of Nonlinear Optical Crystals
Springer, 1999

[13] Zinth,Zinth
Optik
Oldenbourg, 2008

[14] James, Kwiat, Munro, White
Measurement of qubits
Phys.Rev.A, 64, 052312, 2001

36
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