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Common tools for obtaining physical density matrices in experimental quantum state tomography are
shown here to cause systematic errors. For example, using maximum likelihood or least squares
optimization to obtain physical estimates for the quantum state, we observe a systematic underestimation
of the fidelity and an overestimation of entanglement. Such strongly biased estimates can be avoided using
linear evaluation of the data or by linearizing measurement operators yielding reliable and computational
simple error bounds.
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Introduction.—Quantum state tomography (QST) [1]
enables us to fully determine the state of a quantum system
and, thereby, to deduce all its properties. As such, QST and
the closely related quantum process tomography (QPT) are
widely used to characterize and to evaluate numerous
experimentally implemented qubit states or their dynamics,
e.g., in ion trap experiments [2,3], photonic systems [4,5],
superconducting circuits [6], or nuclear magnetic resonance
systems [7,8]. The increasing complexity of today’s multi-
qubit or multiqudit quantum systems brought new chal-
lenges but, also, progress. Now, highly efficient methods
allow an even scalable analysis for important subclasses
of states [9,10]. The calculation of errors of QST was
significantly improved, although the errors remain numeri-
cally expensive to evaluate for larger systems [11].
Moreover, QST and QPTwere adopted to detect systematic
errors in the alignment of an experiment itself [12].
A central step in QST is to establish the state from the

acquired experimental data. A direct, linear evaluation
of the data returns, almost for sure, an unphysical density
matrix with negative eigenvalues [13]. Thus, several
schemes have been developed to obtain a physical state
which resembles the observed data as closely as possible
[4,14,15]. From classical statistics, it is known that a
constraint, such as the physicality of a state, can lead to
systematic deviations, called bias, in parameter estimation
for finite statistics [16,17]. However, in quantum tomog-
raphy experiments, this effect has hardly ever been
considered.
In this Letter, we test whether the naive expectation is

met that QST delivers meaningful estimates for physical
quantities. We test this for the two most commonly used
reconstruction schemes—maximum likelihood (ML) [15]

and least squares (LS) [4]—using Monte Carlo simulations.
In detail, we investigate whether or not a possibly occurring
bias of these reconstruction schemes is relevant at all on the
example of some of the most prominent multiqubit quan-
tum states. We find that, due to the constraint of physicality,
both ML and LS return states which deviate systematically
from the true state. Foremost, for small sample sizes, as
they are typical in multiqubit experiments, it leads to
significantly differing estimates for physical quantities as
illustrated for the fidelity with respect to the Greenberger-
Horne-Zeilinger (GHZ) state in Fig. 1 [18]. These devia-
tions depend on the experimental and statistical noise but
are typically larger than commonly deduced errors [19].
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FIG. 1 (color online). Histogram of the fidelity estimates of 500
independent simulations of QST of a noisy four-party GHZ state
for three different reconstruction schemes. The values obtained
via ML (blue) or LS (red) fluctuate around a value that is lower
than the initial fidelity of 80% (dashed line). For comparison, we
also show the result using LIN (green), which does not have this
systematic error called bias.
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We demonstrate that, for linear quantities, one can provide
meaningful confidence regions directly from the raw data
and that it is also possible to compute meaningful lower
(upper) bounds on convex (concave) functions like the
bipartite negativity.
Standard state tomography tools.—The aim of QST is to

find an estimate together with some confidence region for
the initially unknown state ϱ0 of a system via appropriate
measurements on multiple preparations of this state. For
an n-qubit system, the so-called Pauli tomography scheme
consists of measuring in the eigenbases of all 3n possible
combinations of local Pauli operators, each yielding 2n

possible results [4]. In more general terms, in a tomography
protocol, one repeats, for each measurement setting s, the
experiment a certain number of times Ns and obtains csr
times the result r. These numbers then yield the frequencies
fsr ¼ csr=Ns. The probability to observe the outcome r for
setting s is given by Ps

ϱ0ðrÞ ¼ trðϱ0Ms
rÞ. Here, Ms

r labels
the measurement operator corresponding to the result r
when measuring setting s. The probabilities Ps

ϱ0ðrÞwill uni-
quely identify the unknown state ϱ0, if the set of operators
Ms

r spans the space of traceless Hermitian operators.
Provided the data f, i.e., the experimentally determined

frequencies fsr, one requires a method to determine the
estimate ϱ̂≡ ϱ̂ðfÞ of the unknown state ϱ0. Simply
inverting the relations for Ps

ϱ0ðrÞ we obtain

ϱ̂LIN ¼
X
r;s

As
rfsr; ð1Þ

where As
r are determined from the measurement operators

Ms
r [8,20]. Note that there is a canonical construction of As

r
even for the case of an overcomplete set ofMs

r, see SM 1 in
the Supplemental Material (SM) [21]. This reconstruction
of ϱ̂LIN is computationally simple and has become known
as linear inversion (LIN) [23]. In principle, Gaussian
error propagation could also be used here to determine
confidence regions.
Yet, due to unavoidable statistical fluctuations, the

estimate ϱ̂LIN is not a physical density operator for typical
experimental situations; i.e., generally some eigenvalues
are negative. Apart from causing issues related to a physical
interpretation of such a “state”, negative eigenvalues
impedes the evaluation of interesting functions like the
von Neumann entropy, the quantum Fisher information, or
an entanglement measure like the negativity, as these
functions are defined, or meaningful, only for valid, i.e.,
positive semidefinite, quantum states.
For this reason, different methods have been introduced

that mostly follow the paradigm that the reconstructed state
ϱ̂ ¼ argmaxϱ≥0TðϱjfÞ maximizes a target function TðϱjfÞ
within the set of valid density operators. This target
function, thereby, measures how well a density operator
ϱ agrees with the observed data f. Two common choices
are ML [15] where TML ¼ P

r;sf
s
r log½Ps

ϱðrÞ�, and LS [4]
where TLS ¼ −

P
r;s½fsr − Ps

ϱðrÞ�2=Ps
ϱðrÞ. We denote the

respective optima by ϱ̂ML and ϱ̂LS. From these estimates,
one then easily computes any physical quantity of the
observed state, e.g., the fidelities F̂ML ¼ hψ jϱ̂MLjψi and
F̂LS ¼ hψ jϱ̂LSjψi with respect to the target state jψi.
Numerical simulations.—To enable detailed analysis of

the particular features of the respective state reconstruction
algorithm and to exclude influence of systematic exper-
imental errors, we perform Monte Carlo simulations.
For a chosen state ϱ0, the following procedure is used:
(i) Compute the single event probabilities Ps

ϱ0ðrÞ, (ii) toss
coins to get frequencies distributed according to the
multinomial distribution determined by Ps

ϱ0ðrÞ and Ns,
(iii) reconstruct the state with either reconstruction method
and compute the functions of interest, (iv) carry out steps
(ii) and (iii) 500 times. Note that the optimality of the
maximizations for ML and LS in step (iii) is certified by
convex optimization [10,24].
First, we consider the four-qubit GHZ state jGHZ4i ¼

ðj0000i þ j1111iÞ= ffiffiffi
2

p
mixed with white noise, i.e., ϱ0 ¼

pjGHZ4ihGHZ4j þ ð1 − pÞ1=16 where p is chosen such
that the fidelity is hGHZ4jϱ0jGHZ4i ¼ 0.8. This state is used
to simulate the Pauli tomography scheme. Figure 1 shows
a typical histogram of the resulting fidelities for Ns ¼ 100
measurement repetitions, which is a typical value
used for various multiqubit experiments. The fidelities
obtained via LIN reconstruction fluctuate around the
initial value (F̄LIN ¼ 0.799� 0.012). (The values given
there are the mean and the standard deviation obtained
from the 500 reconstructed states). In stark contrast, both
ML (F̄ML ¼ 0.788� 0.010) and even more LS (F̄LS ¼
0.749� 0.010) systematically underestimate the fidelity,
i.e., are strongly biased. Evidently, the fidelities of the
reconstructed states differ bymore than 1 standard deviation
for ML and even more than 5 standard deviations for LS.
The question of how these systematic errors depend on the
parameters of the simulation arises. Let us start by inves-
tigating the dependence on the number of repetitions Ns.
Figure 2(a) shows the mean and the standard deviations
of histograms like the one shown in Fig. 1 for different Ns.
As expected, the systematic errors are more profound for
low numbers of repetitions Ns per setting s and decrease
with increasingNs. Yet, even forNs ¼ 500, a number hardly
used in multiqubit experiments, F̄LS still deviates by 1
standard deviation from the value for the initial state. The
effect is also, by no means, special for the GHZ state but
was equally observed for other prominent four-party states,
here, also, chosen with a fidelity of 80%, see Figs. 2(b)–2(d)
and the SM [21].
The systematic deviations also vary with the number of

qubits or the purity of the initial state. Figure 3(a) shows the
respective dependencies of the fidelity for n-qubit states
ϱ0 ¼ pjGHZnihGHZnj þ ð1 − pÞ1=2n (for Ns ¼ 100).
Here, a significant increase of the bias with the number
of qubits is observed especially for LS. Also, when varying
the purity or fidelity with the GHZ state, respectively,
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we observe a large deviation for ML and LS estimators
[Fig. 3(b)]. If the initial fidelity is very low, the effect is
negligible, but large fidelity values suffer from stronger
deviations, especially for LS.
The reliability of the estimates ϱ̂ or of physical quantities

deduced thereof are quantified by the size of confidence
regions which commonly are deduced by bootstrapping
methods [19]. Starting either from the estimate ϱ̂EST
(EST ∈ fML;LSg) or the observed data set f, this error
is typically accessed by Monte Carlo sampling: One
repeatedly simulates data fðiÞ according to the state ϱEST
or f together with a reasonable noise model for the
respective experiment and reconstructs the state ϱ̂ðfðiÞÞ.
From the resulting empirical distribution, one then reports
the standard deviation (or a region including, say, 68%
of the simulated states) for the matrix elements or for
quantities of interest [19], see also SM 3. However, the
problem with such error regions is that they are typically
too small since they reflect only statistical fluctuations of

the biased estimate, which can easily be smaller than the
systematic error [26].
In summary, we observe systematic errors, which depend

on the state reconstruction method and the strength of the
statistical fluctuations of the count rates. Any manual
correction of the bias and the statistical fluctuations [17]
seems out of reach, since the effect depends on the
unknown initial state which cannot be calculated from
the observed data [16]. Let us emphasize that in most cases
the initial value differs by more than the statistical error
determined via bootstrapping (cf. SM 3 [21]).
Biased and unbiased estimators.—The systematic offset

discussed above is well known in the theory of point
estimates [26]. Expressed for QST, an estimator ϱ̂ is called
unbiased if its fluctuations are centered around the true
mean, such that, for its expectation value,

Eϱ0ðϱ̂Þ≡
X
f

Pϱ0ðfÞϱ̂ðfÞ ¼ ϱ0 ð2Þ

holds for all possible states ϱ0 with Pϱ0ðfÞ the probability
to observe the data f. An estimator that violates Eq. (2) is
called biased. Similar definitions hold, for instance, for
fidelity estimators, Eϱ0ðF̂Þ ¼ hψ jϱ0jψi≡ F0. This termi-
nology is motivated by the form of the mean squared error,
which decomposes, for example, for the fidelity into

Eϱ0 ½ðF̂ − F0Þ2� ¼ Vϱ0ðF̂Þ þ ½Eϱ0ðF̂Þ − F0�2; ð3Þ

where VðF̂Þ≡ EðF̂2Þ − EðF̂Þ2 denotes the variance.
Equation (3) consists of two conceptually different parts.
The first is a statistical term quantifying the fluctuations of
the estimator F̂ itself. The second, purely systematic term,
is called bias and vanishes for unbiased estimators [27].
Note that, since the expectation values of the frequencies
are the probabilities, Eϱ0ðfsrÞ ¼ Ps

ϱ0ðrÞ, and because ϱ̂LIN as
given by Eq. (1) is linear in fsr, the determination of a
quantum state using LIN is unbiased. However, as shown
below, for QST, the bias is inherent to estimators con-
strained to giving only physical answers.
Proposition.—A reconstruction scheme for QST that

always yields valid density operators is biased.
Proof.—For a tomography experiment on the state jψ ii

with finite measurement time, there is a set of possible data
Si ¼ ffijPjψ iiðfiÞ > 0g, with Pjψ iiðfiÞ the probability to
obtain data fi when observing state jψ ii.
Consider two pure nonorthogonal states jψ1i and jψ2i

(hψ1jψ2i ≠ 0). For these two states, there exists a nonempty
set of data S12 ¼ ff0jPjψ1iðf0Þ · Pjψ2iðf0Þ > 0g ¼ S1∩S2,
which can occur for both states.
Now, let us assume that a reconstruction scheme ϱ̂

provides a valid quantum state ϱ̂ðfÞ for all possible
outcomes f and that Eq. (2) is satisfied for jψ1i, i.e.,P

S1
Pjψ1iðf1Þϱ̂ðf1Þ ¼ jψ1ihψ1j. This incoherent sum over

all ϱ̂ðf1Þ can be equal to the pure state jψ1ihψ1j only for the
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(already pathological) case that ϱ̂ðf1Þ ¼ jψ1ihψ1j for all
f1 ∈ S1. This means that the outcome of the reconstruction
is fixed for all f1 including all data f0 ∈ S12. As these
data also occur for state jψ2i, there exist f2 ∈ S12 with
ϱ̂ðf2Þ ¼ jψ1ihψ1j ≠ jψ2ihψ2j. Thus, in Eq. (2), the sum
over all reconstructed states now is an incoherent
mixture of at least two pure states, and the conditionP

S2
Pjψ2iðf2Þϱ̂ðf2Þ ¼ jψ2ihψ2j is violated for jψ2i. Hence,

ϱ̂ does not obey Eq. (2) for jψ2i and is, therefore,
biased [28].
This leaves us with the tradeoff: Should one necessarily

use an algorithm like ML or LS to obtain a valid quantum
state but suffer from a bias, or should one use LIN which
is unbiased but typically delivers an unphysical result?
In the following, we propose a scheme using linearized
operators to provide a valid, lower or upper bound and
an easily computable confidence region for many quantities
of interest.
Parameter estimation by linear evaluation.—Many rel-

evant functions are either convex, like most entanglement
measures or the quantum Fisher information, or concave,
like the von Neumann entropy. Thus, these operators can be
linearized around some properly chosen state in order to
obtain a reliable lower (upper) bound. Note that, typically,
a lower bound on an entanglement measure is often suited
for evaluating experimental states, whereas an upper bound
does not give much additional information.
Recall that a differentiable function gðxÞ is convex if

gðxÞ ≥ gðx0Þ þ∇gðx0ÞTðx − x0Þ holds for all x; x0. In our
case, we are interested in a function gðxÞ ¼ g½ϱðxÞ� where x
is a variable to parametrize a quantum state ϱ in a linear
way. From convexity, it follows that it is possible to find an
operator L, such that

trðϱ0LÞ ≤ gðϱ0Þ ð4Þ
holds for all ϱ0 (similarly an upper bound is obtained for
concave functions). This operator L can be determined
from the derivatives of gðxÞ with respect to x at a suitable
point x0, from the Legendre transformation [29], or directly
inferred from the definition of the function gðxÞ [30].
A detailed discussion is given in SM 5 [21].
For this bound, a confidence region, i.e., the error region

for the frequentistic approach, can be calculated. For
example, a one-sided confidence region of level γ can
be described by a function Ĉ on the data f such that
Probϱ0 ½Ĉ ≤ gðϱ0Þ� ≥ γ holds for all ϱ0 [26]. According to
Hoeffding’s tail inequality [31] and a given decomposition
of L ¼ P

lsrMs
r into the measurement operators Ms

r, a
confidence region, then, is

Ĉ ¼ trðϱ̂LINLÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2j logð1 − γÞj

2Ns

s
; ð5Þ

where h2 is given by h2 ¼ P
sðlsmax − lsminÞ2, and lsmax =min

denotes the respective extrema of lsr over r for each

setting s. Although not optimal, such error regions are
easy to evaluate and valid without extra assumptions.
Since we directly compute a confidence region on gðxÞ,
we obtain, generally, a tighter result than what would be
obtained from a “smallest” confidence region on density
operators which tend to drastically overestimate the error
(see SM 4 [21] for an example).
In the following, we show how to use a linearized

operator on the example of the bipartite negativity [30].
(For the quantum Fisher information [32] and additional
discussion, see SM 5 [21].) A lower bound on the
negativity NðϱABÞ of a bipartite state ϱAB is given by
NðϱABÞ ≥ trðϱABLÞ for any L satisfying 1 ≥ LTA ≥ 0,
where the superscript TA denotes partial transposition
[33] with respect to party A. This bound is tight if L is
the projector on the negative eigenspace of ϱTA

AB. Using this
linear expression, one can directly compute the lower
bound on the negativity and, by using Eq. (5), the one-
sided confidence region. Any choice of L is, in principle,
valid, but, for a good performance, L should be chosen
according to the experimental situation. We assume, how-
ever, no prior knowledge and rather estimate L independent
of the tomographic data by the projection on the negative
eigenspace of ϱ̂TA

ML deduced from an additional tomography,
again withNs ¼ 100 counts per setting. One can, of course,
also start with an educated guess of L motivated by the
target state one wants to prepare.
Figure 4 shows the distributions of the negativity

between qubits A ¼ f1; 2g and B ¼ f3; 4g for the four-
qubit GHZ state and for the separable four-qubit state
jψ sepi ∝ ðj0i þ jþiÞ⊗4, with jþi∝ ðj0iþ j1iÞ, each mixed
with white noise such that the fidelity with the respective
pure state is 80%. In both cases, we observe that ML and
LS overestimate the amount of entanglement. Even if no
entanglement is present, ML and LS clearly indicate
entanglement. In contrast, the lower bound of the negativity
does not indicate spurious entanglement. As negativity
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FIG. 4 (color online). Lower bound obtained by linearizing
bipartite negativity (LBL) for the GHZ (left) and a four-qubit
product state (right) both mixed with white noise resulting in 80%
fidelity. The ML and LS reconstruction leads to a systematic
overestimation of the negativity, while the lower bound yields a
valid estimate.
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gives lower bounds of other entanglement measures, those
would overestimate entanglement of a state, too [34].
Conclusion.—Any state reconstruction algorithm enforc-

ing physicality of the result suffers from systematic devia-
tions. We have shown that, for the commonly used methods,
this bias is significant for data sizes typical in current
experiments. Quantities that are computed from such a point
estimate can easily inherit this bias and lead to erroneous
conclusions, as shown here on the examples of the fidelity,
the negativity, and the Fisher information. Equivalent
statements can be inferred for process tomography.
Recently, methods have been used to obtain confidence

regions via the likelihood function. However, these are
notoriously difficult to compute. The linearization method
developed here yields a well defined confidence region
for interesting quantities. This quantity is easily calculable,
yet pessimistic. The quest is, thus, open for finding tighter,
but still computationally accessible, confidence regions.
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