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Abstract Qudit entangled states have proven to of-
fer significant advantages with respect to qubit states
regarding the implementation of quantum cryptography
or computation schemes. Here we propose and experi-
mentally implement a scalable scheme for preparing and
analyzing these states in the time-energy degree of free-
dom of two-photon pairs. Using the scheme the entan-
glement of 2× 4 dimensional states is demonstrated.

1 Introduction

Entanglement is an intrinsic property of quantum me-
chanics which has enabled the realization of classically
impossible tasks, such as the implementation of more ef-
ficient computation algorithms, provably secure crypto-
graphic schemes, and the teleportation of quantum par-
ticles. Compared with qubits, the application of qudits,
i.e. states defined in a d dimensional Hilbert space of-
fers interesting alternatives. For example, they allow the
reduction of elementary gates, and consequently of the
number of physical information carriers necessary to per-
form quantum computational tasks [1]. Moreover, the
number of classical bits transmitted per photon pair can
be increased by resorting to high dimensional superdense
coding schemes [2], and the fault-tolerance bounds for
quantum cryptography schemes can be significantly in-
creased, e.g. to error rates of 35% for 4d encoding [3]. In
this context we propose and experimentally implement
a scalable scheme for preparing and analyzing high di-
mensional states in the time-energy degree of freedom of
entangled two-photon pairs.
This paper is structured as follows: A short introduction
of the theoretical framework will be given in the follow-
ing. Chapter 2 describes in detail the experimental setup,
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with a special focus on the stabilization scheme used. Fi-
nally, experimental results demonstrating entanglement
between two ququats (d = 4) will be presented in 3.

Since the first proposal for creating time-energy cor-
related quantum states by Franson [4], they have been
used for long distance distribution and teleportation of
entangled states [5,6] or for the implementation of QKD
schemes [7]. As described schematically in Fig.1, a source
of time-energy entangled photons can be any process,
which coherently emits pairs of photons. Spontaneous
parametric down-conversion (SPDC) driven by a source
of coherent pump photons is such a process. Within the
coherence time of each pump photon a continuous su-
perposition of two-photon states |Ψ⟩ =

∫
t′
|t⟩|t⟩dt de-

fined for an emission time t is created. For the analysis
of the state, each photon of a pair is distributed to the
two observers Alice and Bob, which are provided with
unbalanced interferometers implementing the very same
time delay ∆T and an additional phase shift ϕA and ϕB.

If ∆T surpasses each SPDC photon’s coherence time
tc,ph, the local phase shifts ϕA and ϕB will not determine
the relative intensities at the outputs of the interferom-
eters. Yet, if both parties agree to analyze coincident
detections with 0 time delay, they will project the initial
state |Ψ⟩ onto a superposition of the two-photon states
|0⟩A|0⟩B (both photons arrived at the detectors along
the short arm) and |1⟩A|1⟩B (arrival via the long arm):

|Ψ⟩0∆T
2D =

1√
2
(|0⟩A|0⟩B + ei·(ϕA+ϕB)|1⟩A|1⟩B). (1)

They will observe a variation of the coincidence rates
in dependence of the relative phases their photons ac-
quire at their respective interferometers according to

C0∆T
2D = cos2 (ϕA + ϕB) (2)

This behaviour can only be attributed to second or-
der interference between the two-photon states |0⟩A|0⟩B
and |1⟩A|1⟩B , resulting in the non-classical correlations
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Fig. 1 Scheme for analyzing time-energy entangled two-
photon states in 2 dimensional Hilbert spaces. A coherent
photon pair source is required to produce photon pairs within
a continuous range of two-photon emission times. The par-
ties Alice and Bob are provided each with a photon and
an interferometer system. A 2d entangled state can be ana-
lyzed by performing projection measurements for a time de-
lay tA − tB = 0 between the detected photons. Each photon
can be detected at any of the outputs ± of the respective
interferometer system.
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Fig. 2 Scheme for analyzing time-energy entangled two-
photon states in higher dimensional Hilbert spaces. Extend-
ing the 2 dimensional configuration, the parties Alice and Bob
use a double loop interferometer configuration to project onto
a superposition of 4 two-photon detection times |0⟩A|0⟩B ,
|1⟩A|1⟩B , |2⟩A|2⟩B and |3⟩A|3⟩B of a 4 dimensional entangled
state.

between the measurement results.

Evidently, such a scheme is not limited to only two
possible arrival times. As long as the sum of the delays is
sufficiently shorter than the pump coherence time the ef-
fective dimensionality of the state is defined only by the
number of delays used in the analyzers [8–10]. Fig. 2 de-
picts how a 4 dimensional state can be observed. Here,
a time-energy correlated state is analyzed by choosing
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Fig. 3 Time distribution of the coincidence count rates as
a function of tA − tB , Alice’s and Bob’s photon detection
times. For a time delay of 0, coincidence count rates associ-
ated to a 4d entangled state can be selected. For delays ±∆T
and ±2∆T a projection onto states with a superposition of
3 and 2 two-photon probability amplitudes is realized, dis-
playing correlations of 3 and 2 dimensional entangled states,
respectively. No correlations can be observed in the coinci-
dence windows ±3∆T , corresponding to a projection on a 1d
state.

the emission time delays (in multiples of ∆T ) |0⟩, |1⟩,
|2⟩ and |3⟩ within the coherence time of a pump photon
as the 4d computational basis. In analogy to the 2d con-
figuration, spontaneous parametric downconversion can
be used to produce two-photon pairs.

They can be analyzed if one photon of a pair is sent
to Alice and the other to Bob who are provided with
multiple-path interferometer systems designed to project
onto the 4 respective emission times. Here, the interfer-
ometers are constructed by loops with respective delays
∆T and 2∆T such that the probability of a photon ac-
quiring a time delay i∆T , with i ∈ [0, 3], is equal. They
allow to project onto the two-photon states |0⟩A|0⟩B,
|1⟩A|1⟩B, |2⟩A|2⟩B and |3⟩A|3⟩B which are indistinguish-
able for a detection time delay tA − tB = 0 (see Fig.3).
If the maximal time delay fulfills 3∆T << tc, a coherent
superposition can be observed:

|Ψ⟩0∆T
4D =

1

2
(|0⟩A|0⟩B + ei·(ϕA,1+ϕB,1)|1⟩A|1⟩B

+ei·(ϕA,2+ϕB,2)|2⟩A|2⟩B
+ei·(ϕA,1+ϕB,1+ϕA,2+ϕB,2)|3⟩A|3⟩B) (3)

The coincidences between, say, the + output of each
interferometer (Fig. 2) show a variation according to

C0∆T
4D =

1

4
cos2 (

ϕA,1 + ϕB,1

2
) cos2 (

ϕA,2 + ϕB,2

2
) (4)

as a function of their respective relative phase settings
ϕA,1, ϕA,2, ϕB,1 and ϕB,2 at the ∆T and 2∆T loops.
Similarly, both parties can agree on measuring coinci-
dence count rates with different time delays which al-
lows them to project onto two-photon superpositions
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with a varying number of terms. Here, states with the
same computational basis as the four dimensional state
but with their respective coincidence functions showing
an intrinsic dependence of 3- and 2 dimensional states
are analyzed (see Fig. 3). A projection onto time delays
tA − tB = ±∆T and tA − tB = ±2∆T allows to project
onto the 3d and 2d maximally entangled states

|Ψ⟩∆T
3D =

1√
3
(|1⟩A|0⟩B + ei·(ϕA,2+ϕB,1−ϕA,1)|2⟩A|1⟩B

+ei·(ϕA,2+ϕB,2)|3⟩A|2⟩B)(5)

|Ψ⟩−∆T
3D =

1√
3
(|0⟩A|1⟩B + ei·(ϕB,2+ϕA,1−ϕB,1)|1⟩A|2⟩B

+ei·(ϕA,2+ϕB,2)|2⟩A|3⟩B)(6)

|Ψ⟩2∆T
2D =

1√
2
(|2⟩A|0⟩B + ei·(ϕA,1+ϕB,1)|3⟩A|1⟩B) (7)

|Ψ⟩−2∆T
2D =

1√
2
(|0⟩A|2⟩B + ei·(ϕA,1+ϕB,1)|1⟩A|3⟩B). (8)

For a projection onto the + outputs at the respective
interferometers and normalized to the total coincidence
count rates the following rates are obtained for delays
tA − tB > 0:

C∆T
3D =

1

64
(3 + 2 cos (ϕA,1 − ϕB,1 − ϕA,2)− 2 cos (ϕA,2 + ϕB,2)

−2 cos (ϕA,1 − ϕB,1 + ϕB,2)) (9)

C2∆T
2D =

1

16
(1− cos (ϕA,1 + ϕB,1)) (10)

In order to expand the dimensionality of the ana-
lyzed states, additional interferometer loops are required
to double the previous time delays. As an advantage, the
construction allows to increase the number of analyzed
emission time delays, and consequently the dimension-
ality exponentially ∝ 2N (instead of linearly ∝ N for
similar interferometer proposals [10]) with N , the num-
ber of interferometer arms). As a drawback, the number
of independent phase settings is smaller than the dimen-
sionality of the states. Ultimately, only the pump laser
coherence time and the minimal time resolution of the
detection system limits the number of degrees of free-
dom and consequently the Hilbert space dimension as
they impose constraints on the time delays ∆T to be
chosen. Alternatively, one can employ time-bin encod-
ing by using a short pump pulse and an interferometric
setup for the pump laser equivalent to the analyzer ones
[11] or the many mutually coherent pulses of a mode-
locked laser [12] 1.

1 For time-bin entangled states an additional phase mod-
ulator between the source and the interferometers could be
added. Here, time dependent phase shifts enable to apply the
phase shifts missing in (3), etc.
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Fig. 4 Experimental setup. Photon pairs are created by
pumping a periodically poled KTP crystal using parametric
downconversion. The photons are separated at a polarizing
beamsplitter and sent to the respective interferometer system
both parties (Alice and Bob) require to analyze the shared
entangled states. The interferometers are constructed by us-
ing fused fiber couplers (FFC) as beamsplitters and a free
space path to implement the required time delays. Finally,
single photon avalanche detectors (APDs) are used to detect
the photons at each interferometer output

2 Experimental Implementation

2.1 General Setup

A high brightness SPDC photon pair source based on a
periodically poled KTP crystal is chosen to produce the
entangled photons [13]. A poling period of 9.67µm and
type II degenerate phase matching is used to produce
photon pairs with an efficiency of η = 49000(s ·mW )−1

at a central wavelength of 805.9nm and with a band-
width of ∆λ < 1.1nm (corresponding to a coherence
time of ≈ 2ps). The photon pairs are emitted collinearly
and the H and V polarized photons are separated and
coupled into single mode fibers respectively.

The implementation of the generic scheme (Fig.2)
was based on various considerations. Fused fiber cou-
plers (FFC) are used as beamsplitters as they warrant a
better spatial mode overlap between the different paths.
This enables a significantly better interference visibility,
while requiring only a passive temperature stabilization
[5]. As a drawback, the FFC are less suited for the near
IR wavelength regime used here than for the telecom
wavelengths for which chromatic dispersion can be com-
pensated routinely. Dispersion is particularly disturbing
in this type of interferometers due to the different path-
lengths in the combined interferometers. Therefore, a
hybrid interferometer configuration consisting of a fibre
and a free space path implementing the time delay is
chosen, such that both arms of the interferometer share
the same path length made of fiber. Polarization mode
dispersion between the different interferometer paths is
less severe and is compensated by manual polarization
controllers.
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The minimal time delay required to distinguish be-
tween the different two-photon amplitudes in Fig.3 de-
pends on the timing resolution of the single photon de-
tection devices. Recently, CMOS based APDs are re-
ported to reach FWHM timing resolutions down to 50ps
[14]. However due to the higher detection efficiency in
the NIR we choose the standard reach-through SPAD
(Perkin Elmer, AQ4C-SPCM) with a typical resolution
of 500ps. In order to make the overlap of the two-photon
detection signals negligible we thus choose ∆T > 2.4ns.
A computer controlled time correlation module with a
specified resolution of 82ps (ACAM TDC-GPX) is used
for measuring the time differences between the detec-
tions at the outputs of each interferometer using 4 inde-
pendent APDs. It is believed that further improvements
in the detection efficiency and timing resolution of APDs
will lead to a significant miniaturization and further scal-
ability of the scheme. Furthermore, the minimal time de-
lay ∆T imposes a strict lower bound for the coherence
time of the SPDC pump laser. For that purpose we use
a grating stabilized blue laser diode at 402.8nm offering
a coherence time of 2.58µs >> ∆T .
Alice’s and Bob’s interferometer delays ∆T and 2∆T are
equalized with respect to each other within the coherence
time of their photons to enable the indistinguishability of
the respective two-photon probability amplitudes. Simi-
lar adjustments are made to equalize the 2∆T delays to
the double of ∆T .

2.2 Interferometer Stabilization

In order to warrant a stable phase relation in the interfer-
ometers over longer measurement times, a stabilization
scheme compensating thermal and mechanical drifts of
each interferometer has been developed.

2.2.1 Polarization multiplexing scheme As described be-
fore, time-energy correlated states offer an intrinsic in-
sensitivity to the global phase acquired during the trans-
mission of the photons to the respective analysis devices.
Nevertheless, the fluctuation of the various phases of
the unbalanced interferometers during the measurement
time will cause a reduction or even loss of interference
visibility. The variation ∆ϕ of the relative phases de-
pends on the fluctuation of the path length difference
∆L and wavelength variation ∆λp of the pump laser. As
temperature drifts and vibrations of the optical compo-
nents will cause a variation of both parameters ∆L and
∆λp total path length differences of up to 2m require a
stabilization scheme.
∆λp is minimized by referencing the pump laser diode to
a stabilized reference cavity using the Hänsch-Couillaud
locking scheme. The cavity itself is stabilized by a grat-
ing stabilized laser diode at 780nm locked itself to a
frequency comb mode (250kHz FWHM, 780nm central
wavelength, Maser referenced) [15]. The same laser diode

PBS

-

BSBS

PC

PC

Locking:

Fig. 5 Interferometer stabilization scheme using polariza-
tion multiplexing. An error signal dependent upon the inter-
ferometer phase is extracted by ensuring that the polariza-
tion transformation for a reference laser is orthogonal in both
arms, while the the SPDC photons share the same polariza-
tion state at the output. It can be used to drive a feedback
loop adjusting the relative phase αSL to a constant value
while a change αλ/2 of the analysis λ/2 waveplate allows to
vary the relative phase acquired by the SPDC photons with-
out any shift of the components inside the interferometer.

is used to stabilize each interferometer to a subwave-
length accuracy by using polarization multiplexing (de-
picted in Fig. 5).

Polarization multiplexing can be used for stabilizing
standard interferometers as well as for the system im-
plemented here, for which the reference laser and pho-
ton mode spatially overlap [16]. For similar methods,
fringe locking on the reference laser interference signal
would limit the range over which a stable interferometer
phase change is possible, and also requires the measure-
ment of the intensities at both outputs of the respective
interferometer. Instead, for polarization multiplexing it
suffices to make the polarization state of the stabiliza-
tion laser in both arms mutually orthogonal, while the
polarization state of the SPDC photons should not be
changed (in this example H). Thus, manual fiber polar-
ization controllers (PC) are used first for equalizing the
polarization of the SPDC photons in the respective inter-
ferometer paths. The stabilization laser is then coupled
into one input of the interferometer polarized with 45◦.
The rotation of its polarization vector to −45◦ is induced
along the long arm (red) using a birefrigent crystal (here
an Y V O4) with optical axes orientation along H. This
leaves the SPDC photon’s polarization H unchanged.

In this experiment wavelengths of 780nm and 806nm
are chosen for the stabilization laser and SPDC photons
respectively, allowing separation by a dichroic beamsplit-
ter. The polarization analysis of the stabilization laser
consists of an Y V O4 crystal used to compensate for an
additional phase ϕ acquired in the fibers and the dichroic
beamsplitter and a λ/2 waveplate before projecting onto
a polarizing beamsplitter (PBS) which reflects V (ver-
tical) and transmits H (horizontal) polarized light. The
polarization change by the waveplate rotation adds to
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Fig. 6 Time-multiplexing scheme of stabilization laser inten-
sities SL1 and SL2 for stabilizing of different interferometer
loops independently. The electronically demultiplexed error
signals depend only on the respective phase settings ϕ1 and
ϕ2 of the delays ∆T and 2∆T , allowing an independent sta-
bilization and variation of the relative phases acquired by
the photons. Here the interferometer delay 2∆T is added by
using an optical delay line between two mirrors.

the interferometer phase resulting in the error signal
E(ϕSL, ϕλ

2
) ∝ cos (ϕSL − 2ϕλ/2) extracted by measur-

ing the difference of the intensities H/V at both out-
puts of the PBS (ϕSL is the relative phase difference
mod 2π between the interferometer arms, and ϕλ/2 is
the rotation angle of the λ/2 analysis waveplate). A P-I
feedback control is applied to piezoelectrically lock the
phase ϕSL to 0, such that a rotation of ϕλ/2 will con-
tribute to an effective phase change −ϕλ/2 acquired by
the 806nm photons. Using this method we observe fluc-
tuations of the error signal of each interferometer loop
with ∆ϕSD ≤ ±0.02π, resulting in a relative stability of
all four loops of ∆ϕSD ≤ ±0.059π as determined from
coincidence measurements over one hour (See Fig. 7).
We want to emphasize that for our method the phase
change speed is ultimately limited by typical millisec-
ond piezoactuator response times, while the probability
of fringe skipping is minimized with respect to other sta-
bilization schemes. More importantly, no optical compo-
nent is placed in the path of the photons in order to
vary their phase, therefore avoiding transmission losses
and mode aberrations for the SPDC photon modes.

2.2.2 Time-multiplexing scheme for stabilization of dif-
ferent interferometer arms. Fig. 6 describes how the
polarization multiplexing scheme can be applied in or-
der to extract error signals dependent on the respective
phases ϕ1 and ϕ2 caused by the two interferometer loops
∆T and 2∆T .
TheH polarized photons obtained from the SPDC source
are coupled into one input, and fiber polarization con-
trollers are placed in each path to obtain H polarization
at each output of the fibers. In order to obtain indepen-
dent error signals SL1 and SL2, the stabilization laser

intensity is split up into two modes.

The first component (SL1) used to stabilize ∆T is
coupled into the free interferometer input and extracted
at the long path of the 2∆T interferometer using a dichroic
beamsplitter with ideal transmitivity for 806nm and a
30% − 70% splitting ratio for 780nm. The error sig-
nal E(ϕ1, ϕ1,λ2

) ∝ cos (ϕ1 + ϕ1,λ2
) can be extracted by

applying the scheme described in Fig. 5. For referenc-
ing 2∆T the intensity SL2 is coupled through the free
space path of the first interferometer using a dichroic
beamsplitter with the same characteristics. The inten-
sities for SL2 are extracted by interference filters after
their overlap at the last beamsplitter. The correspond-
ing error signal displays a dependence only on the phase
ϕ2 acquired at the 2∆T interferometer: E(ϕ2, ϕ2,λ2

) ∝
cos (ϕ2 + ϕ2,λ2

). The variation of ϕ1,λ2
and ϕ2,λ2

allows

an independent variation of the relative phases acquired
by the SPDC photons in both interferometer arms.

As the stabilization light for the two loops would mu-
tually disturb the generation of the error signals, they
are time multiplexed (100Hz frequency, offset > 20ms)
by transmitting each mode through alternating blades of
an optical chopper before feeding the laser light into the
interferometers. For demultiplexing the respective error
signals depending on the phases ϕ1 and ϕ2 the P-I feed-
back electronics are driven by analog sample-and-hold
circuits triggering a feedback loop only at the times at
which the respective stabilization signals are detected.
Despite the chromatic filtering between the stabilization
laser and the SPDC photons, non-negligible background
counts are still measured on the wavelength of 806nm. It
is believed that they can be associated to scattering pro-
cesses of the stabilization laser in the fibers and other op-
tical components. For this reason the detection of SPDC
photons and the transmission of both reference signals
SL1 and SL2 are also time multiplexed with respect to
each other, by transmitting the SPDC photons through
a further set of blades of the same optical chopper. To
minimize losses in the photon coincidence count rates the
time-averaged transmission rate of the SPDC photons is
set to ≈ 75% while the stabilization signals share ≈ 25%
of the time. The scheme is scalable and can be applied
on additional interferometer arms used to expand the
dimensionality of the analyzed states.

3 Experimental Results

First, we evaluate the performance of the stabilization
scheme by analyzing the time dependent variation of the
coincidence count rates for the 4d state. Typical phase
deviations for measurement times of up to 50min and
integration times of 10s are displayed in Fig. 7. Average
standard deviations of ∆ϕ4D = ±0.059π are observed,
≈ 3 times larger than for the single interferometer sta-
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Fig. 7 Phase fluctuation of the 4d coincidence rate over mea-
surement times of up to 1 hour. Routinely a standard devia-
tion of ∆ϕ = ±0.059π is observed.
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Fig. 8 Coincidence count rate variation for a simultaneous
scan of phases ϕA,1 and ϕA,2 in both interferometer arms
of Alice. The function C0∆T

4D is fitted to the experimental
data while C2∆T

2D corresponds to the theoretical coincidence
function for a 2 dimensional state.

bilization scheme of ∆ϕPM = ±0.02π described in 2.2.1,
but still sufficiently small for further measurements. The
main contribution to this value is due to the independent
fluctuations of four interferometer phases (Eq.3) and due
to the additional phase uncertainty resulting from the
short time span used for stabilization (≈ 8%).

In order to characterize and to evaluate the setup,
first the dependence of the coincidence count rates (4),(9)
and (10) for different dimensions is tested for phases
ϕ1 and ϕ2 for each party. An illustrative way to dis-
play the difference between 2d and 4d entangled states
is to simultaneously scan the phases ϕA,1 and ϕA,2 of
Alice’s interferometers (ϕB,1 = ϕB,2 = 0). Then the co-
incidence functions as given in Eq. 3 and 9 simplify to
C0∆T

4D ∝ cosϕ4 and C2∆T
2D ∝ cosϕ2, respectively. As il-

lustrated in Fig. 8, the coincidence count rates clearly
show an excellent overlap with the function C0∆T

4D . As
described in [17,18] these characteristics can be used to
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Fig. 9 Experimental and theoretical coincidence probabili-
ties for 4d, 3d and 2d states as a function of ϕA,2 (a) and b))
and ϕA,1 (c) and d)).

define dimensional witnesses.

Next, we analyze the coincidence count rates ob-
served for states of different dimensions by comparing
the experimental data with the corresponding theoreti-
cal predictions. In Fig. 9 the coincidences for the +,+
detector combination are shown as a function of ϕA,2

for a) and b) and in dependence of ϕA,1 for c) and
d) while keeping the respective other phases constant
at 0. In a) and b) the fringe visibility for the 4d data
(blue) amounts to V4D = 0.981(8)% while the corre-
sponding value for the 3d state (green) only amounts to
V3D = 0.654(7)% and vanishes for the 2d state (red),
in close correspondence with the theoretical predictions
of V4D,th = 1, V3D,th = 7/9 = 0.78 and V2D,th = 0
according to equations (3),(8) and (9). The phase dif-
ference between both coincidence count rates of ∆ϕ =
ϕ3D − ϕ4D = 1.024(2)π corresponds closely to the the-
oretical expected value of π. In contrast, when varying
ϕA,1 (Fig. 9 c) and d)) the 3d coincidence function re-
mains constant at 1/9 of the maximal probability, while
the 2d coincidence count rate displays a visibility of
V2D = 0.919(11)% in clear correspondence with the the-
oretical expectations (V2D,th = 1). Again, the phase dif-
ference ∆ϕ = ϕ2D − ϕ4D = 1.013(2)π displays the good
reproducibility of the interferometer setup. The periods
of all curves show a deviation of less than ≈ 4% with
respect to the ideal value. A contribution of accidental
coincidence count rates in the range of 1% of the max-
imal count rates of the 4d state is observed, resulting
in a negligible reduction of its interference visibility. For
the 2d state the count rates are reduced by a factor of 4
as compared to the 4d state (See Eq. 9) the same back-
ground causes a significantly lower signal/noise ratio and
a higher reduction of the visibility.
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Fig. 10 Coincidence count rate of the 4d entangled state
scanned as a function of the phase ϕA,1 of Alice’s short in-
terferometer.

A figure of merit for the suitability of the setup for
preparing higher dimensional time-energy entanglement
is the interference visibility of the coincidence curves.
Following the considerations given in [19] a Bell inequal-
ity can be defined [18], which is violated only by 2 × 4
dimensional entangled states. Here, the bound I ≤ 2
can be translated into a minimal fringe visibility of Vc =
78, 4% to allow a violation of local realism for the state
space spanned by our interferometer system. The ex-
perimentally determined visibility (Fig. 10) of Vexp =
0.975(16)% surpasses the bound by 12 standard devia-
tions offering the potential for a violation of higher di-
mensional Bell inequalities [18].

4 Conclusion

We introduced an experimental scheme which is suited
for the preparation and analysis of 4d entangled pho-
tons. The experimental results exhibit high visibilities
and are in good agreement with the described theoret-
ical predictions, enabling the expansion of the scheme
to entangled states of even higher dimensions. From the
viewpoint of fundamental research they offer the oppor-
tunity for studying the increased non-classicality of high
dimensional states as characterized by the violation of
Bell tests [20,18] or allow studies on the non-contextual
nature of quantum mechanics [21–23]. With increasing
dimensionality of the encoded states, the application of
mutually unbiased bases allows to increase the secu-
rity bounds of quantum cryptography schemes [20] while
minimizing the experimental effort for full state determi-
nation [24] with respect to standard tomographic tech-
niques. It is thus of high relevance to utilize the benefits
of the scheme demonstrated here and to further increase
the dimensionality of qudit states.
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