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We experimentally demonstrate a general criterion to identify entangled states useful for the estimation

of an unknown phase shift with a sensitivity higher than the shot-noise limit. We show how to exploit this

entanglement on the examples of a maximum likelihood as well as of a Bayesian phase estimation

protocol. Using an entangled four-photon state we achieve a phase sensitivity clearly beyond the shot-

noise limit. Our detailed comparison of methods and quantum states for entanglement enhanced

metrology reveals the connection between multiparticle entanglement and sub-shot-noise uncertainty,

both in a frequentist and in a Bayesian phase estimation setting.
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The field of quantum enhanced metrology is attracting
increasing interest [1] and impressive experimental
progress has been achieved with photons [2–6], cold or
thermal atoms [7], ions [8], and Bose-Einstein condensates
[9,10]. Several experiments have demonstrated phase
super-resolution [3,8], which, if observed with a high
visibility of the interference fringes, allows us to utilize
the state for quantum enhanced metrology [5,11]. So far,
only a few experiments have implemented a full
phase estimation protocol beating the shot-noise limit

�� ¼ 1=
ffiffiffiffi
N

p
with N > 2, where N is the number of parti-

cles [7–9]. Recently, it has been theoretically shown that
sub-shot-noise (SSN) phase sensitivity requires the pres-
ence of (multi)particle entanglement [12,13]. In this Letter,
we experimentally demonstrate this connection. For an
entangled state and a separable state with N ¼ 4 address-
able photons, we measure the quantum Fisher information
(QFI) FQ [14], which quantifies the amount of entangle-

ment of the state useful for SSN interferometry [12]. We
then show how this entanglement can indeed be exploited
by implementing a maximum likelihood (ML) and a
Bayesian phase estimation protocol, both clearly yielding
SSN phase uncertainty.

The usefulness of an experimental state can be quanti-

fied by the QFIFQ½�; Ĵ� [14]. A probe state � ofN qubits is

entangled and allows for SSN phase estimation if the
condition

FQ½�; Ĵ�>N (1)

is fulfilled [12]. Here Ĵ ¼ 1
2

PN
i¼1 �̂

ðiÞ
~ni
is the linear genera-

tor of the phase shift, and �̂ðiÞ
~ni
¼ ~ni � �̂ is a Pauli matrix

rotating the qubit i along the arbitrary direction ~ni.

The maximal FQ further depends on the hierarchical

entanglement structure of the probe state and genuine
multiparticle entanglement is needed to reach the
Heisenberg limit [13,15], the ultimate sensitivity allowed
by quantum mechanics. With N ¼ 4 qubits, 2-particle
entangled states have FQ � 8, while for 3-particle

entangled states FQ � 10 [13,16]. The ultimate limit is

FQ � N2 ¼ 16 which is saturated by the so-called

Greenberger-Horne-Zeilinger state [12,17,18].
A state fulfilling Eq. (1) allows for SSN phase uncer-

tainty due to the Cramer-Rao theorem, which limits the
standard deviation �� of unbiased phase estimation
as [14,19,20]

�� � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mF�̂½�0; �; Ĵ�

q � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mFQ½�; Ĵ�

q : (2)

The first inequality defines the Cramer-Rao lower bound
(CRLB). Here �0 is the true value of the phase shift, m is
the number of repeated independent measurements, and

F�̂½�0; �; Ĵ� ¼
X

�

1

Pð�j�0Þ
�
dPð�j�Þ

d�

���������0

�
2 � FQ½�; Ĵ�:

(3)

The Fisher information F�̂½�0; �; Ĵ� depends on the condi-
tional probabilities Pð�j�0Þ to obtain the result � in a
measurement when the true phase shift is equal to �0. It
is bounded by the QFI [12,14], the equality being saturated
for an optimal measurement �̂opt. From Eqs. (1) and (2)

and from the bounds for multiparticle entanglement,
we can infer that, if the experimentally obtained FQ

of a N-qubit state exceeds the value for k-particle
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entanglement, one can achieve a phase sensitivity better
than that achievable with any (k� 1)-particle entangled
state of any N qubits [16].

For the experimental demonstration, we use the
symmetric four-photon entangled Dicke state [21,22]

jDð2Þ
4 i ¼ ðjHHVVi þ jHVHVi þ jHVVHi þ jVHHVi þ

jVHVHi þ jVVHHiÞ= ffiffiffi
6

p
and the separable state jc sepi ¼

j þ þþþi observed from multiphoton parametric down-
conversion [23] [Fig. 1(a)]. Here jHHVVi � jHi1 �
jHi2 � jVi3 � jVi4, jHii (jVii) refer to the horizontal
(vertical) polarization of a photon in the spatial mode i,
and j�i � 1ffiffi

2
p ðjHi � jViÞ. From the measured density

matrices (�exp
D and �exp

sep [15]) we deduce a fidelity of

0:8872� 0:0055 for jDð2Þ
4 i and 0:9859� 0:0062 for

jc sepi (errors deduced with Poissonian count statistics)

and also the QFI determining the suitability of the experi-
mentally observed states for phase estimation. For the ideal

Dicke state jDð2Þ
4 i, the QFI reaches its maximum value,

FQ½jDðN=2Þ
N i; Ĵ� ¼ NðN þ 2Þ=2 ¼ 12, when �̂ ~ni ¼ �̂y for

all i (Ĵ � Ĵy) [24]. In the experiment, this choice leads to

FQ½�exp
D ; Ĵy� ¼ 9:999� 0:095, at the maximal value

achievable with 3-particle entanglement. An optimization
over the local directions ~ni [24] leads to the slightly higher

value Fopt
Q ½�exp

D ; Ĵopt� ¼ 10:326� 0:093, detecting useful

4-particle entanglement with 3.5 standard deviations.
Sure enough, using a witness operator it is possible to
prove 4-particle entanglement in a simpler way [15,21].
With only a subset of the tomographic data we obtain a
witness expectation value of �0:2205� 0:0055, proving
4-particle entanglement with a significance of 40 standard
deviations [15]. However, witness operators merely
recognize entanglement, whereas our criterion directly

indicates the state’s applicability for a quantum task. The
separable state jc sepi ideally allows for sensitivity at the

shot-noise limit, FQ½jc sepi; Ĵy� ¼ N ¼ 4. The experimen-

tal density matrix leads to FQ½�exp
sep ; Ĵy� ¼ 3:894� 0:023, a

value close to the expected separable limit (the optimized

value being Fopt
Q ½�exp

D ; Ĵopt� ¼ 4:014� 0:025).

In order to demonstrate that the precision close to the
one predicted by FQ can indeed be achieved in practise,

we experimentally implement a phase estimation
analysis with the input states �exp

D and �exp
sep . Our interfero-

metric protocol transforms the probe state by Uð�0Þ ¼
exp½�i

P
4
k¼1 �̂

ðkÞ
~ni
�0=2� using the half-wave plates and

phase shifts depicted in Figs. 1(a) and 1(b). The unknown
value of the phase shift �0 is inferred from the difference in
the number of particles, 2� ¼ NH � NV (� ¼ �2,�1, 0,
1, 2), in the states V and H. For the ideal states and the
rotation directions ~ni ¼ y, this measurement is optimal,
and hence F�̂ ¼ FQ. Experimentally, the optimized direc-

tion and measurement can be different because of noise
and misalignment. However, for the observed states the
expected improvement would be rather small.
The relation between the phase shift and the possible

results of a measurement is provided by the conditional
probabilities Pð�j�0Þ. These are measured experimentally
and compared with the theoretical ones for both the sepa-
rable and the entangled state, as shown in Figs. 2(a)–2(j). A
fit to the measured conditional probabilities provides
Pexpð�j�Þ, which are used to calculate the Fisher informa-

tion according to Eq. (3) [see Fig. 2(k)]. As expected, our
experimental apparatus can surpass the shot-noise limit
for a broad range of phase values (where Fexp

�̂ > 4), and

can even exploit useful 3-particle entanglement (where
F
exp
�̂ > 8).

The phase shift �0 is inferred from the results,
�1; �2; . . . ; �m, of m independent repetitions of the inter-
ferometric protocol. We will refer to such a collection of
measurements as a single m-experiment. In the experi-
ment, we set the phase shift to 9 known values �0. For
each �0, 12 000 results �i are independently measured and
grouped into vectors of length m to perform the phase
estimation for different values of m ð¼ 1; 10; 100Þ. Using
these data, we implement a ML and a Bayesian phase
estimation protocol. While both have been recently used
in literature for phase estimation [4,25], here they are
compared in detail and applied for the first time to dem-
onstrate SSN phase uncertainty with more than two parti-
cles. To display the quantum enhancement and to compare
the methods, we use the rescaled uncertainty �res defined
below.
In the ML protocol, the estimator �est of the unknown

phase shift is determined as the value maximizing the
likelihood function Lð�Þ ¼ Q

m
i¼1 Pexpð�ij�Þ [19]. For dif-

ferent m-experiments it fluctuates with standard deviation

FIG. 1 (color online). (a) Experimental setup. The source uses
pulsed parametric down-conversion with a type II cut �-barium-
borate crystal (�pump ¼ 390 nm) [15]. After passing an interfer-

ence filter (IF), the photons are symmetrically distributed into 4
spatial modes by using 3 nonpolarizing beam splitters (BS). The

Dicke state jDð2Þ
4 i is observed if one photon is detected in each of

the four output arms [23]. The separable state jc sepi is created
by inserting a jþi polarizer before the first BS. Each polarization
qubit is addressed individually and rotated by exp½�i�̂y�0=2�
(violet �0 box) by a half-wave plate (HWP). Each polarization
analyzer (PA) is composed of a quarterwave plate (QWP), a
polarizing beam splitter (PBS), and an avalanche photodiode
(APD). (b) Schematic of our interferometric setup.
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��est, which has to be calculated by repeating a large
number of single m-experiments. For large m, the
distribution of �est approaches a Gaussian centered on �0
and of width ��est saturating the CRLB [Eq. (2)] [19].

Figure 3 shows the distributions of the estimator �est for
the phase shift �0 ¼ 0:2� and different values of m. As
expected, with increasing m, the histograms approach a
Gaussian shapewith standard deviation��est decreasing as

1=
ffiffiffiffiffiffiffiffiffiffiffi
mF�̂

p
. The width of the histograms is smaller for the

Dicke state [solid light gray (red) lines] than for the sepa-
rable state [solid dark gray (blue) lines]. Figure 4 shows
�res ¼

ffiffiffiffi
m

p
��est as a function of �0. For m ¼ 10 the

standard deviation is below the CRLB [Eq. (2)] for several
�0 values. This is possible because the estimation is biased;
i.e., for b � h�esti � �0 we have b � 0 and @�0b � 0

[15,19]. The bias can be taken into account by replacing
the numerator in the CRLB Eq. (2) by j1� @�0bj. For even
smaller m, only a few different maxima of the likelihood
function Lð�Þ can occur [see Fig. 3(a)]. Then, �est scatters
significantly and hardly allows for an unbiased phase esti-
mate. When m ¼ 100, the bias is strongly reduced and the
agreement of ��est with the unbiased CRLB is improved
significantly. While the bias is still large enough to cause
apparent sensitivities below the shot-noise limit for the
separable state, for the Dicke state the CRLB is saturated
for a large phase interval. This clearly proves that the
multiparticle entangled Dicke state created experimentally
indeed achieves the SSN phase uncertainty predicted by
the CRLB Eq. (2) using the experimentally obtained Fisher
information from Fig. 2(k).

FIG. 3 (color online). Comparison of the ML method to the
Bayesian approach for the estimation of a phase shift �0 ¼ 0:2�
(vertical dashed black line). Upper row: histograms (normalized
to one) of the estimators �est obtained for a large number of
repetitions of m-experiments: (a) m ¼ 1, (b) m ¼ 10, and
(c) m ¼ 100. Light gray (red) solid lines show the results of
the state �exp

D ; dark gray (blue) solid lines show the results of the

state �exp
sep .. Lower row: exemplary Bayesian probability densities

Pð�jf�igmi¼1Þ of singlem-experiments for (d)m ¼ 1, (e)m ¼ 10,
and (f) m ¼ 100 for the state �exp

D [solid light gray (red) lines]

and �exp
sep [solid dark gray (blue) lines]. In panel (e) the dashed

black lines are Gaussians of width 1=
ffiffiffiffiffiffiffiffiffiffiffi
mF�̂

p
plotted to illustrate

that the densities rapidly approach a Gaussian shape. For m ¼ 1,
we plot Pð�j� ¼ 1Þ for �exp

D and Pð�j� ¼ �1Þ for �exp
sep . The

shaded region indicates the confidence interval (�est � C, �est þ
C) around the maximum of the distribution.

FIG. 2 (color online). Calibration curves and Fisher information. The small panels show the conditional probabilities Pexpð�j�0Þ for
the state �exp

D [solid red curve, upper row (a)–(e)] and for �exp
sep [solid blue curve, lower row (f)–(j)]. Dashed black lines are the ideal

probabilities Pð�j�0Þ; dots are experimental results. The solid light gray (red) and dark gray (blue) curves are fits obtained by
assuming that the main sources of errors are misalignments in the polarization optics [15]. The measurements are performed for 31
values of �0 by collecting approximately 7000 events for each phase value. Panel (k) shows the Fisher information [Eq. (3)], obtained
from the fits Pexpð�j�0Þ. The line widths correspond to the error intervals F�̂½�0; �exp� ��F�̂ with �F�̂½�exp

D � � 0:08 and

�F�̂½�exp
sep � � 0:04 [15]. Horizontal lines indicate limits for separable states (‘‘sep’’ equal to F�̂½jc sepi�), for 2- and 3-particle

entangled states, and for the ideal Dicke state F�̂½jDð2Þ
4 i�. Theoretically, F�̂ ¼ FQ holds for the ideal input states, phase operations, and

output measurements. Experimentally, we observe F�̂½�0; �exp�<FQ½�exp� due to technical noise. In particular, F�̂½�0; �exp
D � is

strongly reduced for values of the phase shift where some of the ideal conditional probability densities Pð�j�0Þ of panels (a)–(e) go to
0 (�0 ¼ 0, 0:3�, 0:5�). For reduced visibilities [when Pexpð�j�0Þ> 0 while ideally Pð�j�0Þ ¼ 0], the contribution to the Fisher

information is reduced since in these points also the derivatives of Pexpð�j�0Þ vanish [cf. Eq. (3)].
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A conceptually different phase estimation protocol is
given by the Bayesian approach assuming that the phase
shift is a random variable. The probability density for the
true value of the phase shift being equal to �, conditioned
on the measured results �1; �2; . . . ; �m, is provided
by Bayes’s theorem, Pð�jf�igmi¼1Þ ¼ Pexpðf�igmi¼1j�Þ
Pð�Þ=Pðf�igmi¼1Þ. To define the a priori probability density
Pð�Þ we adopt the maximum ignorance principle and take
Pð�Þ to be constant in the phase interval considered.
The Bayesian probability density is then given by
Pð�jf�igmi¼1Þ /

Q
m
i¼1 Pexpð�ij�Þ ¼ Lð�Þ. The phase shift

can be estimated as the maximum of the probability den-
sity as before. However, in contrast to the ML method, the
Bayesian analysis allows us to assign a meaningful uncer-
tainty to this estimate even for a single m-experiment
and biased estimators. This can be taken, for instance,
as a confidence interval �� ¼ C around the estimate,
where the area of Pð�jf�igmi¼1Þ is equal to 68% [see

Fig. 3(d) and [15] ].
Figures 3(d)–3(f) illustrate how the Bayesian probabil-

ity density evaluated for a single m-experiment becomes

Gaussian with a width 1=
ffiffiffiffiffiffiffiffiffiffiffi
mF�̂

p
, already for small values

of m. In contrast, the ML histograms [Figs. 3(a)–3(c)]
approach a Gaussian shape more slowly. We also inves-
tigated how the Bayesian analysis performs on average
using the same data as in the ML case. The results are
shown in Fig. 4 with the rescaled Bayesian uncertainty
�res ¼

ffiffiffiffi
m

p
C for various �0 and averaged over several

m-experiments. For m ¼ 10 the mean values of the con-
fidences deviate from the CRLB and have a large spread.

Form ¼ 100, however, the confidences agree well with the
CRLB for most values of �0, for both states.
In conclusion, we have investigated experimentally the

relation between SSN phase estimation and the entangle-
ment properties of a probe state. We have identified useful
multiparticle entanglement by determining the quantum
Fisher information from the tomographical data of a
four-photon Dicke state. The benefit of such entanglement
has been demonstrated by implementing two different
phase estimation analyses, both of which saturate the
Cramer-Rao bound and clearly surpass the shot-noise limit.
The approach is completely general: it applies for any
probe state, is scalable in the number of particles, and
does not require state selection. Our study thus provides
a guideline for the future technological exploitation of
multiparticle entanglement to outperform current metro-
logical limits.
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