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Operational multipartite entanglement classes for symmetric photonic qubit states
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We present experimental schemes that allow us to study the entanglement classes of all symmetric states
in multiqubit photonic systems. We compare the efficiency of the proposed schemes and highlight the relation
between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for
atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental
parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
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I. INTRODUCTION

Entanglement is recognized as a fundamental resource
in many quantum information tasks [1,2], such as quantum
teleportation [3], quantum cryptography [4], or quantum
computation [5]. In the general N -partite case, the structure
of entanglement is extremely rich and exhibits a much higher
complexity than in the simplest bipartite case. There exist dif-
ferent kinds of entanglement and a lot of effort has been put into
trying to group them into different classes, particularly with
respect to their equivalence properties under stochastic local
operations and classical communication (SLOCC) [6–14].

Recently, an operational approach to this classification
problem has been proposed where in a single experimental
setup a one-to-one correspondence between well-defined
sets of experimental parameters and multiqubit entanglement
classes of the symmetric subspace of atomic qubits is obtained
[13,14]. When it comes to experimentally implementing
different classes of entanglement, photonic qubits are widely
used and are so far, the most flexible system [15–24], where
even the observation of different types of entanglement in a
single setup has been achieved experimentally [19–23,25].

Here we propose three experimental schemes that establish
a one-to-one correspondence between experimental config-
urations and entanglement classes of photonic qubit states.
Our proposed experimental schemes are based on linear optics
setups making use of photons produced by single photon
sources (SPSs) or spontaneous parametric down-conversion
(SPDC) processes. These schemes are divided into two steps.
First, a photonic state |ψ〉I is obtained, where N photons of
well-defined polarization states occupy a single spatial mode
[26–28]. Second, these photons are symmetrically distributed
into N separate spatial modes via polarization-independent
beam splitters (BSs), essentially a multiport BS [29–31]. Upon
successful detection of a single photon in each of these modes,
the result is the observation of a symmetric state |ψ〉O . Its
entanglement class is fully determined by the experimental
parameters of the N -photon source. We compare the efficiency
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of the different realizations and in particular use their relation
to reveal the link between the atom-based [13,14] and the
projective measurement-based scheme for symmetric Dicke
states [21–23,32].

The paper is organized as follows. In Sec. II we establish the
connection |ψ〉O ↔ |ψ〉I , which is the same for all schemes.
Subsequently, in Sec. III different possibilities are presented
to obtain the state |ψ〉I . We study three types of photon
source arrangements: overlap of SPSs via BSs, overlap of
photons from entangled pairs created by SPDC and subsequent
projective measurements, and projective measurements on a
2N -photonic symmetric Dicke state.

II. THE MULTIPORT

The multiport output setup is illustrated in Fig. 1. It
fulfills the task of distributing N properly polarized photons
propagating in a single spatial input mode a to N output modes
A = a1, . . . , aN . In the following, without loss of generality,
the photonic qubits are encoded in the horizontal (|H 〉) and
vertical (|V 〉) polarization states. It is assumed that the input
mode is populated with N photons in the state

|ψ〉I = 1

N (α, β)

N∏
i=1

(αia
†
H + βia

†
V )|0〉a, (1)

where αi and βi are complex numbers with |αi |2 + |βi |2 = 1
for i = 1, . . . , N ; the normalization N (α, β) depends on these
parameters with α = α1, . . . , αN and β = β1, . . . , βN ; |0〉a
denotes the vacuum state of the input mode a; and a

†
H (a†

V )
is the photon creation operator for horizontally (vertically)
polarized photons in that mode. Equation (1) can be rewritten
as

|ψ〉I = 1

N (α, β)N !

N∑
k=0

ck

(
Ck

N

)1/2
(a†

V )k(a†
H )N−k|0〉a, (2)

where Ck
N is the binomial coefficient

(
N

k

)
and

ck = (
Ck

N

)1/2 ∑
1�i1 �=···�=iN�N

βi1 · · · βikαik+1 · · · αiN , (3)
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FIG. 1. (Color online) Proposed experimental setups for the
observation of arbitrary symmetric states in an N -qubit photonic
system. A one-to-one correspondence exists between experimental
parameter configurations and entanglement SLOCC classes of the
observed photonic states. (a) Photons from single photon sources
are combined with BSs and are distributed symmetrically through
the N modes of an output multiport. (b) The photons are produced
from noncollinear spontaneous parametric down-conversion (SPDC)
processes and the desired state is prepared by projection of the
noncollinear SPDC output photons occupying modes b1, . . . , bN .
(c) The symmetric photonic states are obtained by use of a collinear
SPDC and subsequent projective measurements in half of the output
modes (see text for detailed explanations of the schemes).

where the sum is over all N ! possible tuples i1, . . . , iN . Note
that we choose the form of Eqs. (2) and (3) to resemble
the ones given in Ref. [13] for an atom-based scheme
aiming at the creation of all symmetric states. Now we can
also determine the normalization factor in Eqs. (1) and (2):
N (α, β)2 = (

∑N
k=0 |ck|2)/N !. The dependence on the actual

coefficients α and β is due to the bosonic character of photons.
The maximal value of N ! is obtained if all photons are equally
polarized, and the minimal value of (N/2)!2 if orthogonal
polarizations are equally populated.

The photons are distributed into the output modes via BSs.
The optimal splitting ratio is achieved if the probability for a
single photon to go into the different modes is equal. For the
case considered in Fig. 1, this implies the reflectivity 1/n for
BSn. Under the condition of collecting one photon per output
of the multiport, which occurs with probability

pO = N !/NN, (4)

each term in Eq. (2) contributes equally to populate each of
the N output modes according to [29]

(
Ck

N

)1/2
(a†

V )k (a†
H )N−k|0〉a → ∣∣D(k)

N

〉
A
, (5)

where
∣∣D(k)

N

〉
A

=(
Ck

N

)−1/2∑
i

Pi(|V1, V2, . . . , Vk,Hk+1, . . . ,HN 〉)

(6)

is the symmetric Dicke state of the N output modes with
k vertically polarized photons and Pk denotes all possible
permutations of N qubits [33,34]. Consequently, the multiport
transforms with probability pO the initial state Eq. (1) into the
output state

|ψ〉O = 1

N (α, β)
√

N !

N∑
k=0

ck

∣∣D(k)
N

〉
A
. (7)

Note that |ψ〉O describes a state of polarization-encoded
photonic qubits in different spatial modes, while |ψ〉I is
a single-mode multiphoton state. This scheme allows any
desired symmetric state in the multiport output modes to be
produced: any collection of the ck coefficients in Eq. (7) can be
obtained from initial state (1) with properly selected complex
coefficients αi and βi . The ratios αi/βi must be equal to the K

roots of the polynomial P (z) = ∑N
k=0(−1)k

√
Ck

Nckz
k , where

K is the polynomial degree, and the remaining αi must be
equal to 1 [13].

The entanglement SLOCC class of the generated symmetric
state is then obtained from the analysis of the degeneracy
configuration D and the diversity degree d of the set of states
{|ε1〉, . . . , |εN 〉}, where |εi〉 = αi |H 〉 + βi |V 〉. The degener-
acy configuration D is the decreasing order list of the numbers
of the |εi〉 states identical to each other (and this number is 1
for each state |εi〉 that occurs once). The diversity degree d is
the dimension of this list. States differing in their degeneracy
configuration are necessarily SLOCC inequivalent. This is
outlined in detail in Ref. [14]; here an example is given in
Sec. III A for the three-qubit case.

III. THE PHOTON SOURCES

In this section, different options to obtain the required state
of Eq. (1) are discussed.

A. Single photon sources

A direct approach is to combine photons from SPSs with
BSs. This can be done with a multiport BS similar to the one
used for the distribution of the photons, as shown in Fig. 1(a).
The input modes, denoted ei , must be prepared in the states

|ψ〉SPSei
= (αie

†
iH + βie

†
iV )|0〉ei

. (8)

The mode a is populated by using the input multiport according
to

N∏
i=1

(αie
†
iH + βie

†
iV )|0〉SPSei

BSs→
N∏

i=1

(αia
†
H + βia

†
V )|0〉a

≡ |ψ〉I . (9)

In this scheme, the entanglement class of the resulting
final symmetric state |ψ〉O after passage through the output
multiport is fully determined from the polarization states of
the input photons in the modes ei . For instance, for N = 3,

032316-2



OPERATIONAL MULTIPARTITE ENTANGLEMENT CLASSES . . . PHYSICAL REVIEW A 81, 032316 (2010)

the use of three identically polarized photons (corresponding
to the state set {ε1, ε1, ε1}, whose degeneracy configuration
is D3 and diversity degree is d = 1) generates a separable
state |ψ〉O ; two identically polarized photons (corresponding
to the state set {ε1, ε1, ε2}, whose degeneracy configuration
is D2,1 and diversity degree is d = 2) generate a W state;
while photons with distinct polarization states (corresponding
to the state set {ε1, ε2, ε3}, whose degeneracy configuration is
D1,1,1 and diversity degree is d = 3) set the output modes of
the second multiport in a Greenberger-Horne-Zeilinger (GHZ)
class state [14].

The latter case leading to the observation of GHZ states
has been suggested in Ref. [26] in the context of states
useful for super-resolving phase measurements and has been
implemented experimentally with three photons [27]. In our
work, we establish all symmetric multiphoton entanglement
classes (i.e., not only the GHZ class) via the framework
of operational classification of arbitrary symmetric photonic
qubit states and their experimental realization.

To obtain the optimal efficiency in the preparation of the
desired states, we need to find a suitable BS configuration.
For a particular state, partially polarizing BSs might be most
suitable. Yet, as we aim for a flexible scheme to observe all
symmetric states, we neglect the polarization for considering
the efficiency, which is then optimized for BSs with well-
defined reflectivity of 1/n if n denotes the nth BS of the
input multiport, as shown in Fig. 1(a). The total efficiency
additionally depends on the amplitude of obtaining all photons
in mode a, which is dependent on the photon’s polarization
due to interference effects and reflected in the normalization
factorN (α, β) in Eq. (1). Then, the probability pI,SPS to obtain
|ψ〉I is the product of these two contributions:

pI,SPS = N (α, β)2
N∏

n=2

(n − 1)(n−1)

nn
= N (α, β)2

NN
. (10)

In an experiment involving deterministic photon creation, the
rates at which the photons are supplied are given by the rates at
which the single photons are prepared. As this does not scale
with the photon number, this scheme is hardly comparable with
the following probabilistic implementations based on SPDC
sources. In contrast, for probabilistic single photon sources, we
can determine a rate RSPS for comparison with the following
schemes from the rate of single photon creation, cSPS:

RSPS = (cSPS)NpI,SPSpO = (cSPS)NN (α, β)2 N !

N2N
. (11)

B. Noncollinear SPDC and projective measurements

The scheme exposed in the previous section requires
SPSs for the N input ports. With present technology, this
represents a limit to the achievable number of entangled
photons because deterministic SPSs are not yet mature enough
for multiphoton entanglement experiments [35–37]. The best
present alternative is given by the use of heralded SPSs realized
with noncollinear SPDC (NCL) combined with conditional
detection, as shown in Fig. 1(b) [38,39]. In this scheme, N

noncollinear SPDC sources overlap one of their modes with
each other into the input mode a of the multiport [Fig. 1(b)].
Each SPDC source, numbered 1 to N , is supposed to emit the

antisymmetric Bell state

|ψ−〉NCLi
= 1√

2
(a†

H b
†
iV − a

†
V b

†
iH )|0〉abi

, (12)

where |0〉abi
denotes the vacuum state in modes a and bi , and

bi is the nonoverlapping output mode of the ith SPDC source.
In this case, before any projective measurement is performed,
the first-order emissions create the 2N -photon state

|ψ〉NCL,ab1...bN
= 1√

(N + 1)!

N∏
i=1

(a†
Hb

†
iV − a

†
V b

†
iH )

× |0〉ab1...bN
, (13)

where |0〉ab1...bN
denotes the vacuum state in all modes

a, b1, . . . , bN . The desired state of Eq. (2) is then obtained by
projecting each of the output modes bi onto the polarizations
orthogonal to the ones that should be combined in mode a,
that is, onto the state

|S〉b1...bN
=

N∏
i=1

(α∗
i b

†
iV − β∗

i b
†
iH )|0〉b1...bN

. (14)

Indeed, the residual state obtained in mode a by this projective
measurement is simply given (denoting with B the collection
of modes b1, . . . , bN ) by

B〈S|ψ〉NCL,aB = 1√
(N + 1)!

N∏
i=1

(αia
†
H + βia

†
V )|0〉a

= N (α, β)√
(N + 1)!

|ψ〉I . (15)

In this scheme, the entanglement class of the final symmet-
ric state |ψ〉O is fully determined from the degeneracy config-
uration and the diversity degree of the polarization states se-
lected in the modes bi during the projection step. The efficiency
to get the N -photon state |ψ〉I from 2N photons is dependent
here on the probability to project onto the separable state |S〉B ,
which is given by the normalization factor in Eq. (15),

pI,NCL = N (α, β)2

(N + 1)!
. (16)

For a probabilistic source with pair creation rate cNCL

[Eq. (12)] (i.e., an N -pair creation rate of (cNCL/2)N (N + 1)!
[Eq. (13)]), the rate RNCL to obtain the desired output state is

RNCL =
(cNCL

2

)N

(N + 1)!pI,NCLpO

= (cNCL)NN (α, β)2 N !

(2N )N
. (17)

This yields for N > 2 a higher rate than the scheme using
SPSs [Eq. (11)] if the rates cNCL and cSPS are equal.

C. Projective measurements on symmetric 2N-partite
Dicke states

1. Analogy between noncollinear SPDC
and symmetric Dicke states

In the following we show the correspondence between the
previously described scheme of Sec. III B and the property
of symmetric entangled Dicke states to be projectable onto
different classes of entanglement.
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To this end, let us study the 2N -photon state emergent after
splitting the photons in mode a in the output multiport and
before projection of the photons in modes bi . This corresponds
to the state given in Eq. (13) and a subsequent symmetric
distribution of the photons in mode a [see Fig. 1(b)]. This
state is given by

|ψ〉2N = (
CN

2N

)−1/2
N∑

k=0

(−1)kCk
N

∣∣D(k)
N

〉
A

⊗ ∣∣D(N−k)
N

〉
B
. (18)

Note that CN
2N = ∑N

k=0 (Ck
N )2, and A denotes the N output

modes of the output multiport fed by mode a. The same
expression with positive signs is obtained via a π/2-phase
shift in each bi mode that transforms the states emitted from
each SPDC source from the antisymmetric Bell state (12) to a
symmetric Bell state

|ψ+〉SPDCi
= 1√

2
(a†

Hb
†
iV + a

†
V b

†
iH )|0〉abi

. (19)

The 2N -photon state generated in that case reads

|ψ〉2N = (
CN

2N

)−1/2
N∑

k=0

Ck
N

∣∣D(k)
N

〉
A

⊗ ∣∣D(N−k)
N

〉
B

≡ ∣∣D(N)
2N

〉
A,B

. (20)

Thus, the resulting state is a 2N symmetric Dicke state with N

excitations [33,34]. As before, projections in the B modes can
be used to obtain any desired symmetric state |ψ〉O . However,
the phase shift has to be compensated for, and in that case we
need to project onto

|S〉B =
N∏

i=1

(α∗
i b

†
iV + β∗

i b
†
iH )|0〉bi

(21)

in order to obtain the same state in the end. Because the Dicke
states are symmetric under permutation of particles, it does not
matter which N of the 2N photons are projected. That means
we could just as well project the photons from A and observe
the state in the modes B.

Therefore, the scheme is very similar to the atom scheme
of Refs. [13,40]: entangled atom-photon pairs are created,
one part of each pair is mixed with all the others and,
finally, symmetrically distributed to several detectors. The
polarization setting at the photon detector determines the
entangled state for the atoms. In our case, we consider
entangled photon-photon pairs.

2. Collinear SPDC for obtaining symmetric Dicke states

The symmetric Dicke state can also be obtained by a
symmetric distribution of the N th-order emission of a type
II collinear down-conversion (CL) [21–23]:

|ψ〉CL = 1

N !
(a†

H a
†
V )N |0〉a. (22)

This gives rise to the scheme shown in Fig. 1(c). In order
to compare this approach with the previous schemes, we
assume a pair emission rate cCL and obtain the 2N -photon
emission rate (cCL)N (N !)2 [see Eq. (22)]. Distribution of the
2N photons into separate modes occurs with a probability
of pI,CL = (2N )!/(2N )2N and leads to the state of Eq. (20).
Thus, the probability for a projective measurement preparing
the desired state is given by Eq. (16). The total state preparation
rate RCL is

RCL = (cCL)N (N !)2 (2N )!

(2N )2N

N (α, β)2

(N + 1)!

= (cCL)NN (α, β)2 N !

(2N )N
(2N )!

(N + 1)(2N )N
. (23)

Hence, while the advantage of this scheme is its simplicity, the
disadvantage is its reduced efficiency.

IV. CONCLUSION

We have presented different experimental schemes to obtain
the entanglement classes of all symmetric states of photonic
qubits. A univocal mapping between well-defined sets of
experimental parameters and the corresponding multiqubit
entanglement classes in the symmetric subspace of the pho-
tonic system is obtained, similar to the one achieved in the
atom-photon system described in Refs. [13,14]. This directly
translates to a systematic classification of the states obtained
by the well-known scheme of projective measurements on
symmetric Dicke states. Comparison of the different imple-
mentations showed that, for the probabilistic state-of-the-art
photon sources, the scheme relying on noncollinear SPDC
and subsequent projective measurements is most efficient. We
are convinced that this result will initiate flexible experiments
allowing the observation of any photonic symmetric state
belonging to well-defined classes of symmetric states. Fur-
thermore, we expect our work to stimulate the translation of
the presented scheme to other physical systems. A near future
goal is to extend this approach to an operational classification
of nonsymmetric states.
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[2] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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