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Abstract: We present a fully integrated, ready-for-use quantum rando
number generator (QRNG) whose stochastic model is basetieonan-
domness of detecting single photons in attenuated lightshviger that often
annoying deadtime effects associated with photomultiglidkves (PMT)
can be utilized to avoid postprocessing for bias or corieiat The random
numbers directly delivered to a PC, generated at a rate ob &0 tMbit/s,
clearly pass all tests relevant for (physical) random nurgleeerators.
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1. Introduction

Random numbers are essential for a number of applicatiarténgt from lottery games, crypto-
graphic applications such as generation of secure keyandom numbers for secure personal
identification, all the way to numerical simulations in ptegs When calculated by algorithmic
generators they are fully deterministic and necessaritybétxa huge but finite period. Though
they are quite frequently employed, care has to be taken &myrapplications [1, 2]. On the
contrary, physical random number generators (RNG) avoithgieity typical in algorithmic
ones as their output results from generically stochasticgsses. Measurements sample these
processes pointwise in time, for example the Johnson noisedsistor [3], the telegraph signal
deduced from noisy Zehner diodes [4] or, more recently ingital implementation, the phase
noise fluctuation of a laser system [5, 6]. However, accagrdinthe laws of classical physics
all these sources of noise are governed by perfectly detéstici dynamics. Only the complex-
ity of the often chaotic evolution makes it impossible togice the bit sequence with today’s
technology. Quantum physics provides inherent randomaregsondeterminacy. First designs
of quantum random number generators used the spontanecass aferadioactive nuclei as a
non-deterministic quantum process [7]. Yet clearly phaamplementations are the tool of
choice, as well developed optical components enable feliafd fast generation of random
bits. First optical setups [8, 9] used the randomness of ¢tection of a single photon behind
a beamsplitter. The registration of the photons in one ormther output of the beamsplitter
was associated with the bit values '0’ or '1’, respectivéythese experiments different detec-
tion efficiencies of both detectors or the imperfect spigtratio of the beam splitter lead to a
preference of '0’ or 1’ and dead time effects caused coti@tis between consecutive bits. To
remove the resulting bias and correlations, manipulatfcgff@iencies, post-processing algo-
rithms and reduction of the sampling rate had to be used,nddicsignificantly decreased the
output rate. More recently a variaty of QRNGs was develoiogudifferent types of quantum
randomness [8, 10, 11, 12, 13, 14, 15]. They all exhibit Seadvantages, but often also one
or the other disadvantage like low data rates, poor qualitgv@ random numbers either due to
the bias or correlations along the bit sequence, and/or leoxnimplementations. It should be
also emphasized, that the standard test suites have to tevitkecare since they usually are



Fig. 1. Schematic of the setup (left) and picture of the fully integrated quanémndom
number generator (right). The main components are a light emitting didt®)(mounted
on the entrance window of a photomultiplier tube (PMT). The electrical puizen the
PMT are amplified (AMP) and fed into a threshold discriminator (ST). Tigeads are
counted and processed by the FPGA, the resulting random bits arestradso a PC via
a USB connection. The total dimension of the housing 1828 cn®.

not optimized to detect typical problems of (quantum) ptasRNGs such as bias, short time
fluctuations, correlations and dropouts [16, 17]. Ultinhatdhe quantumness of random num-
ber generators might be certified in a device independenterasy Bell’s theorem, currently
though only at very low rates [18].

Here we present an optical QRNG, whose randomness is bastg: aery principles of
quantum physics. The compact setup consists of a light sawith stabilized intensity attenu-
ated to the single photon level and one single photon detéidie detection events are counted
during a sampling time intervals and are interpreted as 'O’ for an even number of counts,
whereas an odd reading corresponds to '1’. According todumehtal laws of quantum optics
the probability distribution of the number of photons in angding interval should follow a
Poissonian distribution with meanfor a constant intensity light source [19], fully analogous
to radioactive sources for loy. This fact would cause a considerable bias between the num-
ber of '0’'s and "1’s in the random bit sequence. However, aslamonstrate below, dead time
effects of the photomultiplier together with the read-det&onics allow to eliminate the bias
even for very fast generation of random bits. In additionasging standard test suites [20, 21]
for the evaluation of a physical random number generator d1€ochastic model is required
[17, 4]. Based on the concept outlined above here we dedtrbessential ingredients of such
a model as well as the relevant tests of our implementatiearly showing its suitability as a
high rate optical QRNG.

2. Principle and setup

In the optical setup (Fig. 1) the constant light source isvigled by a light emitting diode
(LED) driven in cw-mode with digital feedback stabilizatido about 1 %.. The photon dis-
tribution emitted by the LED could be influenced by the Coutobfockade effect inside the
p-n-junction of the LED [22, 23], but, given the very weak pbug to the detector on the order
of 1078, this effect can be neglected and the resulting distributibphotons falling on the
detector is essentially Poissonian [24, 25]. To achievé higes of random numbers we use
a photomultiplier tube (PMT) instead of often used avalanshotodiodes (APD), as the long
dead time of the latter on the order of 5A.000 ns, characteristic for Geiger-mode operation,
would significantly reduce the rate of random bits. Alteively one might consider self differ-
encing readout of APDs [26]. A PMT on its own has no such deae in the single photon
detection regime. There, the generation of a photoeleetnohits subsequent amplification in
the electron multiplier stages is in principle independenin any preceding processes. Yet,



the time of flight distributions of the photoelectrons andt@ secondary electrons inside the
PMT-module lead to an electrical pulse width on the order f#vananoseconds (see inset in
Fig. 2). A threshold discriminator used to convert the agalatput pulse of the PMT into a
digital signal can distinguish two pulses only, if they aeparated by about the pulse width.
This leads to an effective dead tinig, which even isextendablén the high intensity regime
where more and more pulses start to overlap [27]. In orden#dlyi produce the random bits the
output of the discriminator circuit is fed into an FPGA log&partan 3, clock speed 50 MHz).
There, the counter, the periodic sampling procedure anthexily functionality tests [17, 4]
are implemented, and the random bits are transmitted to a&&€WSB connection.

Let us analyze the consequences of the dead time effecte@etformance of the QRNG.
For fully independent detection events with a mean ratg @fithin the sampling intervats,
the probability to registen clicks is given by a Poisson distribution (Fig. 2)

n
P(np) = Lo &)
This distribution becomes modified when using a PMT. Due ® (#xtendable) dead time
the initially Poissonian distribution of absorbed photimsignificantly distorted by a factor
depending on the mean numberefisteredeventsy; and the ratio between sampling time
and dead time of the PM1y. It is given by [27, 28]
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being the maximum detectable number of photons within the thtervalts. Figure 2 displays
the change in the distribution relative to the Poissonithistion if the number of counts is close
to K. While the mean decreases frquto p, = 1 -exp(—UT4/Ts) the probability for obtaining
higher number of events is drastically reduced.

As the output of the QRNG results from an even/odd number tatien events within the
sampling time interval, any change in the distribution ofiets will influence the statistics of
the random bits, and can cause artefacts, most remarkatsybicorrelations. The probability

for the random bit '0’ p) and '1’ (p1) can be calculated from Eg. (2). A bibgesults from an
unequal number of '0’s and '1’s and is given by

1 1 &
b=>-p=3 —n:;WP(n,u)- (3)

Clearly, the asymmetry of the Poisson distribution resulis bias, which only slowly reduces
with increasing mean photon number. Thus, for this type oN@Rpostprocessing or sampling
over longer times would become necessary. Both measurasadide output rate of random
bits. The dead time modified distribution Eq. (2), howevghikits significantly different sym-
metry properties. Figure 3 compares the bias Eq. (3) reguftom the modified distribution
Eq. (2) with the one due to a Poisson process. We observénthhids of the modified distribu-
tion rapidly drops to and oscillates around 0, and is smblfasrders of magnitude over a wide
range of mean number of detections. In the implementatidhefyenerator this enables one
to choose high rates with negligible bias and without serigensitivity on fluctuations of the
illumination intensity.
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Fig. 2. Normalized distributions of detected photon numbers (calculafée)black line
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Fig. 3. Comparison between the dependency of the modulus of the béasaotdom bit
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3. Evaluation and tests

Physical RNGs require new evaluation methods particularbrder to monitor the continuity
of the stochastic process [16, 17]. For that purpose onégatstfor a coarse functionality in-
spection [16] are implemented in the FPGA logic and regulpelrformed on strings of 1 Mbit
at intervals of one minute. These tests include the morebitand a chi-square test analyzing
bias and statistics of 4-bit patterns, respectively, a$ ageh total-failure test. So far no excess
fluctuations or degradation in the quality of the randombis observed by these test routines.

To evaluate the performance of the actual implementatiohave first analyzed the depen-
dence of the bias on the mean number of detections (Fig. #&) 8sGbit bit strings in order to
obtain a statistical uncertainty as small a8-30° (dashed line). For sampling time intervals
T of 20,40 and 80 ns these measurements are compared to the thedquetidictions. From
these measurements also the minimal dead timeas extracted to bey = 2.7 ns by fitting
the bias Eq. (3) to the data points.

The experimental result shows good agreement with the dfieal predictions and the ef-
fect of the extendable dead time reducing the bias was glearified. At higher detection rates
(ur /Ts) some deviation was caused mostly by the fact that this rédteyisnd the specifications
of the PMT (< 50- 10° events/s). Nevertheless, operating the QRNG around thedirs cross-
ing of b enables one to obtain a performance consistent with whathe texpected for finite
samples.

In addition, an important parameter of random numbers igtieedependence between con-
secutive bits. Contrary to algorithmic ones, physical mnchumber generators are particularly
susceptible to short time fluctuations, which easily carseazorrelations. For that reason a
dedicated analysis of the serial correlation coeffic8€¢ depending on the bit distantef
a bit sequence; ... by [29] has to be performed in addition to applying conventioaadom
number test suites.

The correlation analysis of a 40 Gbit random bit string ta&tea sampling interval of 20 ns
and a mean photon numbergf= 1.41 is shown in figure 4b. For all bit distandese observe
small values below 210°. This fully complies with the statistical predictions at)eit the
magnitude of this sample, there are finite size effects whalse fluctuations of th8CG,
even for perfectly uncorrelated data of the same magnitude.

For further evaluation, bit strings of 1 Gbit obtained at teraf 50 Mbit/s were analysed
with two batteries of statistical tests: The “StatisticabTSuite” (STS) [20] from NIST and the
“DieHarder” (DIE) test suite [21] for the same operatinggraeters as before.

The STS battery consists in total of 15 independent testsh Halividual test, resulting
in p-values evaluated on 1 Mbit substrings, is performedOltes. A p-value gives the
probability that a perfect random number generator woutdipce the actual one or a worse
result. A final x? test is applied on the p-value distribution of each indialdtests which
results in a total p-value (see Fig. 5). In order to appraiese results a significance level
a is chosen. A typical value for this parameterdis= 1%, (labeled by the black line in Fig.
5). P-Values above this significance level indicate thattdst is passed by the bit sequence
generated by the QRNG.

The “DieHarder” battery of tests is a collection of 19 indival tests. Unlike in the STS tests,
here a final Kuiper Kolmogorov-Smirnov Test [30] is perfodrgving p-values for each test

separately. Again, the same level of significance is apyalled to these results. The p-values
from all tests are clearly above the significance level aedettore all the tests of the two test
suites analysing the randomness of the output of our QRN @assed.
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SCQG to be expected for an ideal random bit sequence with finite sample length.
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a typical sequence of 40 Gbit. Without processing, the p-values atmebuabove the

significance level confirming the quality and the reliability of the QRNG



4. Conclusion

In this contribution we have presented a ready-for-useaandumber generator, whose ran-
domness directly originates from the randomness of quaptwsics. Remarkably, the usually
quite irksome dead time effects of a PMT turned out to be vesitjye for the performance

of the QRNG. They significantly reduced the bias value of #relom bits and enabled stable
operation at very high rates. The implementation as a cotrgetap directly connected to

a PC via a USB interface yielded a random bit-stream at a gegented rate of 50 Mbit/s,

which was collected and analysed continuously over sedeang without any variation of the

properties of the random bits observed. The random bitgsrobtained routinely passed all
the conventional test suites as well as on-the-fly monigpiim particular, we could confirm the

essential elements of a stochastic model for this QRNG atalradul pair correlations and the
bias within the statistical limits. The system is easilylabke to even higher rates by simply
implementing a multi-channel photomultiplier tube, thsréorming the ideal equipment for

today’s demanding applications such as numerical sinmiaficonventional cryptography, or
novel, high rate quantum cryptography systems.
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