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Universal unitary gate for single-photon two-qubit states

Berthold-Georg Englert? Christian Kurtsiefef, and Harald Weinfurtér®
IMax-Planck-Institut fu Quantenoptik, Hans-Kopfermannn-StraRe 1, 85748 Garching, Germany
2Abteilung Quantenphysik, Universitalim, Albert-Einstein-Allee 11, 89069 Ulm, Germany
3sektion Physik, Universitaviiinchen, SchellingstraRe 4, 80799 iinen, Germany
(Received 7 July 2000; published 7 February 2001

Upon entangling a spatial binary alternative of a photon with its polarization, one can use single photons to
study arbitrary 2-qubit states. Sending the photon through a Mach-Zehnder interferometer, equipped with sets
of wave plates that change the polarization, amounts to performing a unitary transformation on the 2-qubit
state. We show that any desired unitary gate can be realized by a judicious choice of the parameters of the
setup and discuss a number of applications. They include the diagnosis of an unknown 2-qubit state, an optical
Grover search, and the realization of a thought experiment invented by Vaidman, Aharonov, and Albert.
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[. INTRODUCTION jointly. Then, in Sec. Ill, we turn to basic applications that
include controlleddoT gates and the measurement of the
Entangled qubits are central to most schemes that hav@ell basis. Advanced applications are discussed in Sec. IV:
been proposed for quantum communication, quantum inforAfter dealing with the diagnosis of 2-qubit states and the
mation processing, and quantum cryptogragbgcure key Grover search, we describe a proposal for a laboratory ver-
distribution. The basic unit consists of an entangled qubitsion of a thought experiment invented by Vaidman, Aha-
pair. ronov, and Albert in 1987. Indeed, their intriguing puzzle
Any binary quantum alternative can serve as a qubit andargely motivated the paper reported here. We close with a
therefore, different degrees of freedom of one physical objectummary and outlook. An appendix contains technical mate-
can represent several qubits. One could, for instance, encod@l of @ more mathematical nature.
some qubits in the motional degrees of freedom of a trapped
ion and other qubits in its internal degrees of freedom. In our Il. UNIVERSAL UNITARY GATES
scheme, both qubits of an entangled pair are physically real-
ized by a single photon: The photon’s polarization is one
qubit—the “polarization qubit’—and the motional alterna-  The spatial qubit consists of the binary alternative of
tive of traveling to the right or to the left is the second moving to the right R) or to the left L), as indicated in the
gubit—the “spatial qubit.” Mach-Zehnder geometry of Fig. 1. As usual, we use analogs
It is our objective to present an optical model that facili- of Pauli’s spin operators,
tates experimental studies of qubit pairs as realized by single t
photons. Such single-photon 2-qubit states were used in a m=|LX(R|, r'=[R)(L,
few recent experiments, including a variant of quantum tele-

A. Gates for the spatial qubit

, : , — t —io_iqt ot
portation[1], a remote state preparati¢®], demonstrations =TT, ==l TET oI,

of simple quantum algorithmf3,4], a quantitative study of + t

wave-particle dualitf5], and a test of noncontextual hidden L=rrtrr, @

variable theorie$6]. Here we go beyond these special appli- . . . . .
cations and consider arbitrary manipulations of such states.sﬁ/etza;ythe unitary action of a symmetric beam splitter is

Studying qubit pairs extensively amounts to measuringg
observables of all kinds. The basic measurement is the de-
tection of the photon in one of four standard states given by UBS:i
combinations of traveling to the right or left and polarized J2
vertically or horizontally. This measurement is easily done,
and experimental limitations are only due to imperfections of 1 .
optical elementgsuch as polarizing beam splitteérsnd the - E(L”L'Tl)' @
efficiency of the single-photon detection. More complicated

observables are measured by first transforming the respecti\(_e?kewise, the joint action of the mirrors inside the Mach-

four eigenstates to the standard basis StateS, and then deteZé'hnder Setup is accounted for by the unitary Operator
ing those. Accordingly, being able to perform arbitrary uni-

tary transformations on 2-qubit states is tantamount to being Uminr=— 1 (JL){R|+|R}{L|)=—i7y, 3)
able to measure arbitrary 2-qubit observables.

How this challenge is met, is shown in Sec. I, where wewhere the inclusion of a phase facteri is a convenient
present experimental setups that realize universal unitargonvention because it givedgsU,wUgs=1,, and phase
gates—for either one of the qubits itself and for both of themshifters in theR andL branches amount to

(IR}RI+[L) (L +TR)(LI+TL)RI)
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Ur(d)=|RYEHR| +|L)(L|=€¢77, Uz =UR(¢2)UpsUr(¢1)U(¢2)U mirUpsUr( 1)
. Sy i i
UL(#)=IR)(R|+[L)e(L|=€?"". (4) :eXp<§(¢1+ b2t @1+ @2) exp(§¢27'3)
Putting these pieces together, one gets i i
Xexp| z(e1— exp| 5 6
(IR)IL) = (UnzlR) Unzl ) =(RN ez ® Plg(erme2)m2 p(z‘m) ©
for the whole Mach-Zehnder interferometer of Fig. 1. The
unitary operator is represented by the numericak2 matrix
: exp(i( ¢+ ¢2))COS(P1_(P2 g2 sin%
Unz= exp<§(¢1+ ®2) B B (7)
iy i PL P2 P17 P2
—€e®1isin cos
2
|
that multiplies the two-component rodR),|L)) in Eqg. (5). and its 2x2 matrix representation reads
This matrix is slightly more general than the one in Eqg.of
Ref.[7]. 1 [1-icog26) —isin(20)
The latter form in Eq(6), which is a parametrization in Uqwe 0) = 2| —isin26) 1+icos26)) (11)

terms of three Eulerian angles;, ¢;— ¢,, and ¢, com-
bined with an over-all phase factor, makes it obvious thaﬁ_
any unitary operator for th&/L qubit can be realized by a
Mach-Zehnder setup of the kind shown in Fig. 1. Note tha
Unz=1,1f ¢1=d»=¢1=¢,=0, which is the reason for the _ 2
conventional phase factor in E(B). Utiwel 0) =[U qwe( 6)]

ikewise, the action of a half-wave platéHWP) is ac-
tcounted for by the unitary operator

— efi (7‘0'287 i (7T/2)0'3é Ooyp
B. Polarizati . .
olarization gates = [0y SIN26)+ o508 26)], (12)
We regard verticalv) and horizontalth) polarization as
the basic alternatives of the polarization qubit, and the correpresented by the matrix
responding Pauli operators are

a=Ihyvl,  o'=[v)hl,

o=+ ol 0'2=i0—i0'T, 0'3:0'T0'—0'0'T,

l,=c'o+oo'. (8)
The photon’s polarization is manipulated with the aid of
wave plates. A quarter-wave plat®WP), with its major
axis at an angl® to the vertical direction, effects the transi-
tion

(|V>v|h>)—>(UQWP( 0)|V>!UQWP( ‘9)|h>):(|v>1|h>)uQWP( 9()9)

where the unitary operatdJ oy is given by out
00y ()0 O FIG. 1. Mach-Zehnder setup that realizes an arbitrary unitary
Uqwe(0) =€ '"72e 3g772 gate for the spatiaR/L qubit. There are symmetric beam splitters

_ . . (BS’s) at the entry and exit, and four phase shiftéPS’s—one
=exp(—i(m/4)[01SiN(26)+03c0826)]) each in the entry and exX® ports, and two inside the interferometer.

1 Additional PS’s in theL ports would be redundant; they could be
=—[l,—io;sin(20)—iozco826)], (10) introduced, either as a supplement or a replacement of the PS’s in
\/E the R ports, but there is no need for them.
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FIG. 2. By sending a photon through a QWP, then through a

HWP, finally through another QWP, its polarization state can be
changed unitarily to any other one.

) L _(cos(20) sin(ze))
Unwpl O)=[Uowel O)1°==1| G 05 _ogq20) /" ‘
(13 L, th R
out

Particular polarization changes can be done with a single g 3. Universal unitary gate for 2-qubit states. In addition to
QWP, or a single HWP, or with a QWP and a HWP in e ps's of Fig. 1, there are now wave plat@éP’s) in the QWP/
succession, and it is familig8] that the configuration of Fig.  Hwp/QWP combination of Fig. 2. Each PS and WP's set is speci-
2, where a HWP is sandwiched by two QWP's, enables onged by a phasécalled ¢, , or @1 ,in Fig. 1) and three angles, 3,
to perform arbitrary changes of the photon’s polarizationand y that state the orientations of the WP’s, as in Fig. 2.
state. This is most easily seen by expressing the net unitary

operator in terms of three Eulerian angles, S= (7T Vot 17 Upg( 7 VR + 777V))
U por= U owe ) U el B)U owel @) XUpminUpgs(7' 7V + 777), (16)
=exp(—i(y+3mld)o)expi(a—2B+ v))o, or
Xexpli(a—mld)o,). (14

SRR SRL
S= TTTSRR"' TTTSLL + TSLR+ TTSRLA < y

. S
We do not get an over-all phase factor here as there is in Eq. RS an
(6), but that does not matter. For examplg,,= 1, obtains

for a=pxmi2=y since Uowe B~ 7/2)=[Uqwe(B)] ™",  where the X2 matrix refers to the spatia/L alternative,
and a= =1y gives Up,=—1,. A polarization dependent znd the entries of this matrix are
phase shifter, that is

1
Upo=|V)e (V] + ) (h], (15) Srr=75 Va(VRTVLV1,

is realized by the setting=y=3m, B=39—:m. 1
SLLZE(VR+ Vo),

C. Arbitrary 2-qubit gates

Unitary gatesJy; andU y,, for manipulations of thér/L SeL=— I_V2(VR_VL)a

qubit and thev/h qubit individually are thus at hand. We 2

now combine them to construct universal gates that process _

arbitrary 2-qubit states unitarily. This is achieved by a modi- |

fication of the Mach-Zehnder setup of Fig. 1. In addition to SLR_i(VR_VL)Vl' (18)

the polarization-independent phase shifters already in place,

we let the photon pass through wave-plate combinations ofhe physical significance of these polarization operators is

the kind depicted in Fig. 2. The entire setup is then as showimmediate:S, g, for instance, accounts for the polarization

in Fig. 3. change associated with photons enteringRhgort and leav-
Where we hadJg andU_ in the product givingUz in ing thelL port.

Eqg. (6), we now have corresponding factors in which the There are no phase shifters or wave plates in the entry and

phase factors of Eq€4) are replaced by unitary operators exit L ports. Indeed, one does not need them because the

that affect the polarization—denoted Wy, V, for the entry  various combinations shown in Fig. 4 are perfectly equiva-

and exit ports, and by, V inside the interferometer. Each lent. Further configurations become possible when using po-

of them represents a phase shifter and a set of wave platdayizing beam splitters in the Mach-Zehnder setup. Of

and is therefore of the forrf14) multiplied by a phase factor. course, when it comes to actual experimental realizations,

Thus, the unitary operat@® associated with the 2-qubit gate one variant could be more advantageous, for technical rea-

of Fig. 3 is given hy sons, than the others, and then the freedom to choose freely

032303-3



ENGLERT, KURTSIEFER, AND WEINFURTER PHYSICAL REVIEW /3 032303

ISgrL= |E1> sind( x|+ |Z2> sin (x|,

iSLr=x1) SN | + | x2) Sin (i, (20)

where the kets and bras stand for particular sets of polariza-
tion states, each set being orthonormal,

(Wilw) =l = xilxd = (xilxd =6, (2D

but with no othera priori relation among them. Each set is
specified by four parameters, two of them phases that do not
enter the basic projectors. Since only states with the same
subscript are paired in Eq&0), six relative phases are rel-
evant, so that two of the eight phases can be fixed by a
convenient convention. In other words, 14 parameters are
needed to specify the various ket-bra products in @§).
Together with the values of and 6, there is thus a total of

16 parameters, as there should be.

FIG. 4. Equivalent setups involving a symmetric beam splitter  FOr given left-hand sides in Eq&0), one determines the
and three or four sets of phase shifter and wave plates. The centraigenvalues and eigenstatesSikSgg to find 9, 6, and they
configuration has polarization-changing and phase-shifting elestategwith arbitrary phases The eigenstates GRRSLRthen
ments in both entry ports and both exit ports. The two top configusupp|y they states with well-defined phases relative to the

rations have one empty input port; the two bottom configurationssiates, and the eigenstatesSé[SLL and SLLSL_ yield the y
have one empty output port. With corresponding polarization gatesandystates respectively.

as indicated, each one of the five setups represents the 2-qubit gate poq 5oon as the ingredients of the right-hand sides of Egs.

~1/2( t t i it
27 AT TRRy F 77 Lol LR TR L) (20) are at hand, one constructs the faloperators in ac-
é:fordance with

among them is handy. For the more theoretical purposes
the present discussion, however, we will confine ourselves to
setups of the kind depicted in Fig. 3.

The four operators in Eq$18) need not be unitary them-

V= x ) (FD) (] + x2) (F) 22,

selves(and as a rule they are ppbut their form is much Vo= ) (=) 1 {xal + | ¢2) (1) X2l
restricted by the unitary property &, which implies the o . o .
identities Ve=|x1) €17 1|+ |x2) €02 x|,

SkrSrrt STRSLR= 10+

+ +
Sp+5, S =1,, . ,
SrSeU S0 S0 where one must use consistently the upper or lower signs of
SLRSRDLSIRSLL:O, i m_()l ar_ld (), but either one of the four possible sign
choices will do.

V=[x 1) €501 x|+ [ x2)€02% x o], (22

St Srrt ST SR=0, (19
I1l. BASIC APPLICATIONS
the last two being adjoints of each other. SiNee V,, Vg,
andV, are unitary themselves, Eq4.9) hold for the opera- A. Controlled-noT gate

tors in Eqs.(18) by construction. As a first application, a warm-up problem, we consider
The reverse is also true: For any given unitary 2-qubitcontrollednoT gates. If theR/L qubit controls thev/h qubit,
operatorS one can find four unitary polarization operators such a gate does nothing to tReinput, but interchanges
Vi, Vs, Vg, andV, such thatSis of the form(17) with v<h on theL branch,
(18). To prove this assertion, we must show that E4S)
can be solved fol;, V,, Vg, andV, provided that the  Scnot—o(|RV),|RD),[LV),[Lh))=(|Rv),|Rh),|Lh),|Lv)),
conditions(19) are obeyed. (23
A first technical step of this proof is given in the Appen-
dix, where we establish th&'S=SS=1,1_=1implies that Where the subscript— ¢ indicates which is the control qubit

the matrix entries of Eq(17) are of the general form () and which the target qubito). Equivalently, we have
Ser= 1) COSO( |+ |1h,) COSH(ify Senotr—o=T Tly+ 7710y,
S =lx1) cosH(xa|+|x2) cost(xal, Sre=lss Su=01, Se=Sk=0. (24

032303-4
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One possibility has the upper signs in E¢22), combined which can serve as an alternative definition. The choice
with 9=6=0 and

XD =Ix2)=ily)y=ilp)=|v),
Ix2)=|x1)=ilw2)=il9h2)=|h), (25)

Vlz_iO']_:Upr(’ﬁ/4),
Vo=io1=Uywp(—m/4),

VR:](T’ VL:_0.3:_iUHWP(O)1 (33)

so that . L
(HWP's at the entry and exit, nothing in tiebranch, phase

V,=Vg=V, =0,=iUgnwe(7/4), V,=1,, (26) shifterand HWP in thé& branch realizes the swapping gate.

wh_ich are easily_realized with t_hree HWP’s and phase C. Walsh-Hadamard gate
shifters that provide the factor af We note that for a
controllednoT gate, which interchangas—h on theR input A Walsh-Hadamard gate turns the states of the standard

but leaves the_ input unchanged, a single HWP fof, is  basis into equal-weight superpositions,
sufficient. No other polarization changing elements are
needed {,=Vg=V, =1,) and thus the Mach-Zehnder inter- Swi(|RV),[Rh),[Lv),[|Lh))

ferometer isn’'t even necessary. This is due to the specific 1 1 1 1
configuration chosen in Fig. 3 where theénput is empty by 11 -1 1 -1
convention and, accordingly, for the gate defined by (E8) =(|Rv),|RN),|LV),|Lh)) =
a single HWR(plus phase shiftgiin the L input suffices, too. ’ R 211 1 -1 -1’
If, however, theR/L qubit is controlled by thes/h qubit, 1 -1 -1 1
Senoto— 7= lLo'o+ 00T, (34

Srr=Sw=0"0, Sri=Sr=00", (27)  so that
the Mach-Zehnder setup is needed. Here one could use 1
S\NHIE(71+ m3)(o1t03),
Vj_:_”la., V2:i:|]~[]'l

. 1
VR:Jl(r! VL:USZIUHWP(O)v (28) SRR:_SLL:SRL:SLRZE(O-1+ 0'3). (35)

that is phase shifters in the entry and éRiports, nothing in ) o -
the R branch of the interferometer, and a phase shifter plus & Simple realization is specified by
HWP in theL branch.

Vi=1,, V,=-1,,

B. Swapping gate Vg 1+i _
The defining property of a swapping gate is its effect on a v|T 2 (o1t 03)=—i€""Uyp(7/8). (36)
product state,
This choice needs nothing in the entry port, a phase shifter in
(IRR+[LL)@(|v)v +[hh) the exit port, and HWP plus phase shifter in each arm of the

—(|Ryv+|LYh)® (]Jv)R+|h)L), (29)  interferometer.

whereR,L andv,h are arbitrary probability amplitudes, so D. Bell basis measurement

that Another simple application is the measurement of the Bell

Sewad |RV),|RNY, [Lv), [LhY) = (|Rv), |Lv), |Rh),|Lh)), basis, where we find the 2-qubit photon in one of the four
(30 entangled superpositions
or [B1)=2"Y4|Rv)—|Lh)),

B,)=2"Y4|Rh)—|Lv}),
Sswap= 5 (1+ 1101+ 7205+ 7303), B2 (IR = [Lv)
Bgy=2"YA|Rh)+[Lv)),

Sr=0'0, Su=o0', Sg=0, Sgr=c'. (3D

Bg)=2"Y4|Rv)+|Lh)). (37)
That Sg.4p interchanges the roles of the qubits is compactly
stated by Since one can detect the states of the standard basis—namely
|Rv), |[Rh), |Lv), and|Lh)—with the aid of polarizing beam
Sswagk= OkSswap  for k=1,2,3, (320  splitters(PBS’9, see Fig. 5, all one needs is a 2-qubit gate
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|a), [b), |¢), |d) IV. ADVANCED APPLICATIONS

entering A. State diagnosis
\ / As pointed out in the Introduction, we can measure any

given 2-qubit observable if we manage to detect its eigen-
|a) = |Rv) [5) — [Rh) state basis, consisting of the mutually orthogonal 2-qubit
ey = |Lv) |d) — |Lh) statega), |b), |c), and|d), say. This is done, see Fig. 5, by
mapping it onto the standard basis. And, of course, it doesn’t
matter if this mapping involves additional phase factors. All

PBS PBS one needs are transitions such|agal—|RV){(Rv|. In this
context it is expedient to introduce two 2-qubit operators in
Lh Rh accordance with
Lv Rv

_ . A=[a)(al+[b)(b|—[c)(c|—[d)dl,
FIG. 5. For a measurement of an arbitrary 2-qubit basis, con-
sisting of the mutually orthogonal statgs, |b), |c), and|d), one
first transforms it to the standard basis with the aid of an appropriate B=|a){a| —|b){b|+|c)(c|—|d){d|, (42)
2-qubit gate. The output is sent through PBS'’s that reflect vertically
polarized photons and transmit horizontally polarized ones. A click

of either one of the four photon detectoisymbolized by semi- gg that|a), ... |d) are the joint eigenkets ok and B with
circles is indicative of the respective input state. eigenvaluesA’=B'=+1,... A’=B’=—1, respectively.

o The essential property of the unitary gate in Fig. 5 is then the
that turns the Bell basis into the standard one, mapping ofA andB onto 73 and o3,

Sgeil(|B1),1B2).|B3),|Ba)) = (|Rv),|Rh),[Lv),[Lh)).
SA= ’7'38, SB= 0'33. (43)

Thus the ingredients
For example, the operatofs= — 7,0y andB= 7,0, are as-

Sgen=2"Y41,1,~i704), sociated with the Bell basi€37), and one verifies Eq43)
for Sge of Eq. (38) easily.
Srr=S1=2"",, SRr=-Sk=2 Y0, (39 Permutation of the basis statgs), ... ,|d) have no ef-

fect on the basis as a whole. Therefore, one can inter-
are required. They are supplied by=V,=1, in conjunc-  change the roles oh and B in Eq. (43), or replace either

tion with one of them by their produé&B=BA. The respective gates
are equivalent—either one can be used to measure the basis
VRZZ_]‘/Z(LT—ia'l)ZUQWP( wl4), in question—but some may be simpler to set up than
others. This is illustrated by the unitary transformation of Eq.
Vi =2"Y2(1, +igy)= U quel — 7/4), (40) (41), which corresponds toA=r7,0; and B=r7303=

(_7'101)(720_2)- ]
for example, where one has just two QWP’s inside the inter- The statistical operator of a _gen_eral 2-qubit state needs 15
ferometer, one in each branch, and nothing in the entry anff@l parameters for its specificatidsee Ref.[9], for ex-

exit ports. ample. The measurement of the probabilities associated
We note that an alternative way—one of many—of mea-With one 2-qubit ba;is supplies 3 of the 1.5 parameters. Ac-
suring the Bell basis is stated by cord[ngly, the full diagnosis of the 2—qub|'t state of interest
requires the measurement of at least 5 suitably chosen bases.
~1/2 _ A convenient set of such bases is reported in Table I,
27t 79) Sowagenotr— ([ Ba)i [Bs), [B), ~[B2)) where each basis is characterized byit8 pair. These pairs
=(|Rv),|Rh),|LV),|Lh)), (41)  identify five 2-qubit observables that are pairwise comple-

mentary and thus optimal in the sense of Wootters and Fields
where the permutation of the Bell states is irrelevant in thg10]. In the terminology of Brukner and Zeilingg¢t1], the
present context. This measurement could be realized by five A andB’s are “a complete set of five pairs of comple-
sequence of unitary transformations: first a controled- mentary propositions.”
gate(with v/h controlling R/L), then a swapping gate, finally Rather than using a minimal set of this kind, one could of
a Walsh-Hadamard gate acting solely on Ri& qubit; each  course measure a larger set of observables. This was done by
of the three gates would require a Mach-Zehnder interferomWhite et al. [12], who produced and studied polarization-
eter. But rather than having three successive interferometeentangled photon pairs—two qubits of tiaéh kind. To our
we can equivalently use a single one, becaaisg unitary  knowledge, theirs was the first experiment in which a com-
2-qubit gate can be realized by the setup of Fig. 3, as showplete characterization of an entangled 2-qubit state was
in Sec. Il C. achieved.
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TABLE I. A minimal set of five A,B pairs of 2-qubit observables. By measuring the corresponding
2-qubit bases, one determines all 15 parameters that specify the statistical operator of the given 2-qubit state.
The third column shows the unitary gat®sieeded for the measurements, see Fig. 5. The last four columns
report possible choices f&f;, V,, Vg, andV, that realize the respecti& see Fig. 3. Th& of the first row
is the Walsh-Hadamard gate of E(85); ¢ is a stand-in fors(1+i).

A B S 4 V, Vg Vi
71 oy 2+ 13) (o + 03) 1, =1, —e(o1+03) —&e*(o1+03)
75 oy 1(,—ir)(l,—ioy) i1, —il, e(l,—ioy) e*(1,~ioy)
T3 o3 1 1y 1y 1, 1,

IOy  To03 21+ 7ol —il,0,+i1507) 1, 1, 1, —io,

o0 T30 %(WI —iml,—iTio1—iT307) —il, o1 1, ioq

B. Grover search

1
In the present context of entangled 2-qubit states, Grov- §(|RV>_|Rh>+|LV>+|Lh>) for Gz,
er's problem 13] amounts to the following, see Fig. 6. Grov-
er's gate applies either one of the four unitary operators 1
§(|Rv)+|Rh>—|Lv)+|Lh)) for Gs,

1
61:1_2|RV><RV| = E(]_ 7'310._170'3_ 7'30'3),

%(|Rv>+|Rh)+|LV)—|Lh)) for G,. (46)

1
G,=1-2|Rh){Rh|= = (1—73l,+ 1,03+ 7303),
2 IRM(RN 2 s $T e Third, since these are four mutually orthogonal states,
they can be mapped onto the standard basis states, as in
Fig. 5, here with the unitary 2-qubit gate appropriate for

1
Ga=1-2[Lv)(Lv|= 5 U+ 73l,=Log+ 7303), A= — 730, andB= — 7,05 in Eq. (43), namely,

1
1 —Z(1- _ —

Ga=1-2|Lh)(Lh|= 5 (1+ 731, + 1,05~ 7305) (44 Se=5 (1= mly= Loy = 7y0). (47)
to any 2-qubit state, and one has to find out which one isTh“S'ha click of theRh detector, say, would tell us th&,
actually acting without using the gate more than once. Wa_?_ht e ﬁa;e.

The solution consists of three steps. First, we seiitl’a € choice
photon through the Walsh-Hadamard gate of Sec. IlIC to N .
produce the superposition Vi==iVo=—V,=l,, Vg=o0; (48)

1 realizesSg and thus offers a rather simple single-photon
= (|RV)+|Rh)+ [Lv) +|Lh)). (450  implementation of Grover's search among four possibilities.
2 We note that Kwiakt al. have already performed an ex-

periment of this kind 3]. These authors also discuss exten-

Second, this is used as input for Grover’s gate, and the oukijons to Grover searches among more than four possibilities.
put is

C. Vaidman-Aharonov-Albert puzzle

1
5 (=[Rv)+[Rh)+[Lv)+[Lh)) for Gy, Fitting to the present context, we rephrase the intriguing

puzzle introduced by Vaidman, Aharonov, and Albert
(VAA) in Ref. [14] (and subsequently generalized by Ben-
|Rv) =={Swn Gy Sa detection Menahem[15] and Mermin[16]): Chuck invites Doris to
prepare two photons for him, photon 1 vertically polarized
FIG. 6. Scheme of an optical implementation of Grover's search"’lnd photon 2 In any polarization state she'd like. He'll then
among four possibilities. A photon in the 2-qubit stiR) enters a perform_ a pplarlzatlon measurement c_m photon 2, thereby
Walsh-Hadamard gate, then passes through the Grover gate, whi€R€asuring either one of the threg Pau!' operators o, or
performs eitheiG,, G,, Ga, or G,. The photon is detected in one 3, Without, however, telling Doris which one of the three
of the standard basis states, after being process&gbynd each ~ complementary measurements is actually done. Since
of the four final states corresponds uniquely to one of the fourChuck’s measurement destroys photon 2, he promises to
settings of the Grover gate. Such an experiment was performethimic an ideal von Neumann measurement by turning the
recently by Kwiatet al.[3]. polarization of photon 1 from vertical to the one detected for
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photon 2. Thereafter, Doris can measure any property of
photon 1 allowed by quantum mechanics. Only after she did
the measurement of her choosing, Chuck will tell Doris
which one of the three polarization measurements he had
performed, and he then challenges her to tell him the out-
come of his measurement.

Readers who do not know as yet how Doris can meet
Chuck’s challenge—thereby doing the seemingly impos-
sible: ascertain the values of three mutually complementary
measurements—should try to figure it out themselves before
reading on. There is a lesson here about the wonderful things
entanglement can do for you.

Doris prepares the two photons in the entangled state

27 Y2 (Rv)1v2) +|(Lv)1hy)). (49)

As shown in Fig. 7, this is achieved by processing one pho-
ton of a polarization-entangled pair emitted by a suitable
source[17] in the polarization state

27 Y%(|vyvp) + [hihy)). (50

Upon sending photon 1 through a polarizing beam splitter
and rotating the transmitted polarization tov, the polariza-
tion entanglement is turned into an entanglement between
the R/L degree of freedom of photon 1 and thé& degree of
freedom of photon 2, as described by the ket vector of Eq.
(49). All of this happens during the first stage of the experi-
ment sketched in Fig. 7.

At the second stage, Chuck does one of the three polag, |
ization measurements. If he measures say, finding+1

PHYSICAL REVIEW /3 032303

VAA gate

Lh Rh

Lv Rv

FIG. 7. Proposed realization of the Vaidman-Aharonov-Albert
ught experiment of Ref14]. It involves two photongcircled

number$ and consists of three stagédashed boxes labeled by

leaves photon 1 in the state boxed-in numbejs In the first stage, Doris prepares two photons

271%|Rv) = |Lv)), (51

and the subsequent change of its polarization froto v+h
puts photon 1 into

for Chuck. She uses polarization-entangled photons from a source
of entangled photon paitSEPB. Photon 1 moves to the left and
passes through a polarizing beam splitter. With a subsequent half-
wave plate, Doris converts the transmitted, horizontally polarized,
amplitude into vertical polarization. The photons are then no longer

1 entangled in polarization. Instead, the polarization degree of free-
|1.)= §(|Rv>i|Rh>i|Lv>+ [Lh)). (52)  dom of photon 2 is now entangled with the spatial degree of free-
dom of photon 1. In the second stage) Chuck measures the

Likewise, if Chuck measures,, photon 1 will emerge from
the second stage in one of the states

polarization of photon 2, either by distinguishing the linear polar-
izationsv and h, or the linear polarizationg*h, or the circular
polarizationsv=ih. Suitably set wave plates enable him to choose

1 between the three complementary polarization measuremgmts.
|2_:>E —(|Rv)i i|Rh>: i||_v>+ | Lh)), (53 Chuck then leaves a quantum record of his measurement result by
2 changing the polarization of photon 1 from vertical to the just-

and a measurement of; will produce

detected polarization of photon 2. For this purpose he adjusts two
sets of wave plates accordingly. In the third stage, with the aid of an

3 >E|Rv) or |3 )E|Lh) (54) appropriate unitary gate, such as the VAA gate specified by Eqgs.
* - ' (58), Doris measures the VAA basi$6) on photon 1. If Chuck
of Eq. (37) did at the second stage, Doris can infer, with absolute certainty, the
' result he obtained.
[1.)=2""4|B,) *|B3)), .
(VAA1| 1 —i 1 1 <Bl|
_o—12 i
3.)=2""4|B4) *|B1)). (55) (VA | 2| -1 i 1 1| (B4
At the third stage, Doris measures the VAA basis that (VAA,] -1 —i -1 1/ \ (B4

consists of the states defined by
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TABLE Il. Probabilities for Doris’s measurement of the VAA V. SUMMARY AND OUTLOOK
basis(at the third stage of Fig.)7on the various states possibly .
prepared by Chuckat the second stae We showgd h_ow one can mampulate, and thus study, en-
tangled qubit pairs that are physically represented by single
Doris Chuck prepares photons. One qubit is encoded in the polarization, the other
finds 11.) 110 J22)  [22) 13y I30) in a spatial alternative of the photon. By purely optical
means, one can perform arbitrary unitary transformations on
(VAA| 172 0 1/2 0 1/2 0 the qubit pair, so that any 2-qubit observable can be mea-
(VAA| 0 12 0 12 12 0 sured. Potential applications include the complete diagnosis
(VAA| 1/2 0 0 1/2 0 1/2 of the entangled 2-qubit state supplied by some source and
(VAA| 0 1/2 1/2 0 0 1/2 the experimental realization of a laboratory version of the

Vaidman-Aharonov-Albert thought experiment.
_ _ _ The combined possibilities of performing any desired
The corresponding\,B pair of observables and their prod- unitary transformation and of measuring any observable

uct, of one’s liking enables one to use qubit pairs for other pur-
) ) poses as well. In particular, any unitary 2-qubit gate is
A=[B1)(Ba| +i[B2)(Bs| —i|B3)(B,| +[B4)(B4| equivalent to a four-way interferometer with certain relative
1 phases between the four partial amplitudes of certain
= E( T3l,+ 1,03+ T 0,— T07), strengths. Therefore, a systematic quantitative study of four-

way interferometers—that might ask questions concerning
wave-particle duality, for example—could be done with
single photons and 2-qubit gates of the kinds we discussed
above.
= %(71104— l.o1— 103+ 7305), . Fiqally, we note that the setup of Fig. 7—the optical re-
alization of the VAA thought experiment—could be used for
the purposes of quantum cryptography. Chuck, who would
now control stages 1 and 2, sends single photons to Doris,
1 each photon in one of the six 2-qubit product states of Egs.
=§(—7210+LO'2+ T103+ 7301) =BA, (57 (55 (which, incidentally, could be produced by different
methods as well Doris, whose equipment would consist of

permute the states of the Bell basis. The measurement of tiBe VAA gate and the photon detectors in stage 3 of Fig. 7,

VAA basis could, for example, employ a 2-qubit measures the VAA basis for _each photon. After receiving
that mapsA on 75 andB on (Eg as ianqu (43) que ?:?i?a- public word from Chuck on which one of the three measure-

tion of this VAA gate is specified by ments he performed at stage 2a, Doris infers his measure-
ment results. In this way, a random bit sequence is estab-

B=—i|B1)(Bo|+i|B)(B1|+|B3)(Bal +|B4)(B3|

AB=|B1)(B3|+i|B2)(Ba| +|B3)(By|—i|B4)(B|

Vi=ioy=Upwel — m/4), lished that can serve as a cryptographic key. TheS{e matters

are beyond the scope of the present paper and will be dis-
Vo=1,, cussed elsewhelfd.8].
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1 .
VL:_Z(Lr'ng) APPENDIX: CONCERNING EQUATIONS (20)

V2 Equations(19) state S'S=1 more explicitly. Likewise
—Uowdl T4 Uque0)Ugwe( — m/4),  (58)  SS=1requires
+ o
which would need a HWP at tHe entry, a phase shifter and SrrSRr SriSRL= 16
two QWP’s in one arm, three QWP’s in the other arm, and . .
nothing at the exit. StrRS(RTSLLSL =10,
The probabilities listed in Table Il are crucial in under-
standing how Doris infers the result of Chuck’s polarization SRRSIR+ SRLS[L=O,
measurement. Suppose, for instance, that lthedetector
clicked, so that Doris found photon 1 in stdtéAAs|. Then S rSkr+ SiL Sk =0, (A1)

Chuck must have founet 1 if he measured;, and—1 if he
measuredr, or o;. The VAA basis(56) is, of course, cho- of which the last two are adjoints of each other. We recall
sen such that there are enough entries “0” in Table II. that, in a finite-dimensional Hilbert space as is the case here,
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the self-adjoint productX™X and X X' are unitarily equiva- SrLSh =1, — SrrShe
lent for any operatoX. When applied toX=S,r, the first o L o
line in Egs.(19) and the second line in EqéAL) imply that =) (SIND) 2y |+ | o) (SINO)X(ih,|,  (A3)

StrSrr @nd S, S!, are unitarily equivalent. Upon denoting
eigenkets oBSkSrg by |1 ») and those 0BggSkg by |#1.2),
the eigenkets o8], S, by |x12), and those ofS, S, by
|x12, we then arrive at the first two lines of EO). In  where @ and g are phases that are undetermined as yet.
doing so, some relative phases have been absorbed in tigalogously, the first line of Eq$20) and the second line of
global phases of the various kets and bras, but there remaifjs. (A1) establish

the option to redefine them in accordance with

N L S IR R L
[0 =11h [9=Ivh where the phase factors are fixed by the third and fourth

. ok v\ v Ve Pk equations in Eqs(20) and(Al).
X =l xid—lxwe™, (A2) Now, the substitutiongA2) amount to

iSpL=|w1)e @ sind( x| +|¥o)e P sind(x,|, (A4)

iSLR=|x1)€ SN 1| +|x2)€P sinO(y|,  (AD)

for k=1,2, without affecting the first two lines of Eq&0).

Next, the second line of Eq&0) and the first line of Egs. a—atei=d1, BBt ¢, (AB)
(A1) tell us that in Egs.(A4) and(A5). Therefore, the phase factors'& and
Sh Se=1,—S!, S e"'# can be removed by a suitable redefinition of the kets
RLZRLT o =LL=LL and bras, and this turns Eq#4) and (A5) into the last two
=[x1)(siN®)*(xa| + [x2) (sin0)*(xal, lines of Egs.(20).
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